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the safety and quality of structures. Such filtering involves 
impeding the transmission of acoustic or elastic waves in 
certain frequency ranges, which is known as bandgap or 
stop-band behavior.

Many research in the past decades have been used to 
investigate the bandgap behavior of structures. Studies have 
recognized Bragg scattering and local resonance as the pri-
mary mechanisms underlying the production of bandgap 
behavior in periodic structures. Bragg scattering occurs 
when periodic impedance mismatches within a structure. 
When waves encounter such impedance variations periodi-
cally, the scattering is generated at the boundaries of the unit 
cell. The scattering can be caused by various factors, such 
as inclusions, geometric inconsistencies [1, 2], or mate-
rial inhomogeneity [3–5]. When the interaction between 
reflected waves and incident waves results in destructive 
interference, wave propagation is hindered or completely 
stopped [6, 7], which results in the formation of a bandgap. 
However, generating wide low-frequency bandgaps through 

Introduction

Vibration control and mitigation have become critical 
considerations in various engineering applications, rang-
ing from aerospace and automotive applications to civil 
engineering and structural design. The ability to suppress 
and attenuate vibrations within specific frequency ranges 
is essential for ensuring structural integrity, user comfort, 
and overall performance in various systems and compo-
nents. The filtering of vibrational waves, which is a difficult 
task, has attracted substantial interest as a means to enhance 
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Abstract
Objective  Periodic structures have been widely investigated in the past decade because of its potential for noise and vibra-
tion reduction. However, there is limited research applying the concept of periodic structures to composite sandwich struc-
tures. This paper proposes two lightweight types of periodic hollow-shaped cores in composite sandwich structures, which 
are simple geometries and able to generate wide flexural bandgap in mid-frequency range for broaden applications.
Methodology  Floquet theory and wave finite element method are used to compute the bandgap behavior. The frequency 
response function (FRF) of the proposed structures is performed to demonstrate the performance of vibration attenuation by 
using the finite element simulation.
Results and Conclusions  The FRF shows that the low vibration transmissibility is observed within a certain frequency range, 
which is consistent with the predicted flexural bandgap. The effect of face–core delamination on the FRF is also examined. 
Our findings indicate that the proposed structures have higher performance of vibration attenuation than the pristine conven-
tional sandwich structures, even when the proposed structures exhibit face–core delamination. Last, our study demonstrates 
that despite the simplicity of the core design, it is capable of achieving comparable bandgap behavior to more complex 
geometries.
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Bragg scattering is challenging. The generation of low-fre-
quency Bragg band gaps requires large lattice constant [8], 
which is difficult to achieve in practical applications.

Locally resonant band gaps occur when certain elements 
or substructures within the unit cell structure exhibit reso-
nant behavior. To form a locally resonant band gap, a soft 
material is preferred as the matrix material, and a relatively 
hard and high-density material is embedded in or attached to 
the matrix material, e.g., phononic crystals [9–12]. Numer-
ous researchers have used a spring–mass system directly 
connected to a beam or plate-type structure to generate a 
low-frequency bandgap [13, 14]. In contrast to bandgaps 
generated through Bragg scattering, bandgaps generated 
through local resonance are not strongly influenced by the 
size of the unit cell and can be achieved at low frequen-
cies with unit cells that are considerably smaller than the 
corresponding wavelengths. Therefore, the locally resonant 
mechanism has attracted extensive attention in recent years 
and some studies have even coupled the aforementioned two 
mechanisms for bandgap generation. For example, Chen 
et al. [15] proposed a composite beam with an interleaved 
core and resonator. They theoretically and experimentally 
investigated the beam and found that it can generate a low-
frequency bandgap at 500  Hz. Although locally resonant 
mechanism generate low-frequency bandgap easier, the 
result of total structure becomes heavier.

In certain situations, such as abrupt changes in natu-
ral environmental conditions or disturbances caused by 
human activities, external vibrations exhibit considerable 
variations. Consequently, the design of wide-bandgap 
structures is receiving increasing attention. Several stud-
ies have achieved bandgaps with a wide frequency range. 
Domadiya et al. [16] achieved an ultrawide bandgap (band-
width approximately 2000  Hz) in the middle-frequency 
range for a phononic beam with cross-sectional variations 
in material properties; the experimental results agreed well 
with the theoretical results. A few studies have attempted to 
optimize structures with wide and low-frequency bandgaps. 
For example, Chronopoulos et al. [1] proposed an optimiza-
tion method to enhance the bandgap width and lower the 
center frequency of bandgap. Jeon et al. [17] developed a 
tapered beam with an ultrawide and ultralow-frequency 
bandgap (below 100 Hz) and investigated the effect of geo-
metric parameters on the bandgap behavior. Acar et al. [18] 
proposed a complex structure with a bandgap generated 
through inertia amplification and achieved a low-frequency 
bandgap near 300 Hz. In a later study, the shape of a pho-
nonic bandgap structure is optimized by incorporating the 
inertial amplification mechanism to broaden the bandgap 
[19].

Over the past five decades, composite materials and 
structures have been extensively developed and widely 

utilized in industries such as the shipbuilding, automotive, 
and aerospace industries. Significant progress has been 
achieved in various types of composites including the state-
of-the-art research, such as damage modeling methods [20, 
21] and manufacturing techniques for laminated composites 
[22, 23]. One of the commonly used composite structure 
called composite sandwich structures comprises two thin 
but strong face sheets bonded to a core material. The core 
is often made of lightweight material, such as honeycomb 
panels or polymers, whereas the face sheets are made from 
strong and stiff materials, such as carbon-fiber-reinforced 
polymer [24]. Due to their lightweight and high stiffness 
properties, composite sandwich structures have emerged 
as a popular choice for mitigating vibration and effectively 
filtering vibration waves in practical applications. Ampat-
zidis et al. [25] proposed two composite sandwich beams 
with simple core geometries. These beams contain metama-
terial cores, and the bandgaps were located in the middle-
frequency range. The aforementioned beams are easy to 
manufacture and can thus be applied across a wide variety 
of domains.

Although many studies have developed different types of 
periodic structures, factors such as the complex geometries, 
manufacturing difficulties, and high-frequency bandgaps of 
these structures have restricted their practical applications. 
Therefore, inspired by several previous studies several [16, 
17, 25], two types of composite sandwich structures are 
proposed in this paper. The objective of the present work 
is to design the composite sandwich structures with simple 
core geometries that still can have wide flexural bandgaps 
in intermediate-to-low-frequency ranges. In this paper, the 
unit cell of two proposed structures with detailed design 
and geometric dimensions are discussed first followed by 
the brief introduction of the analysis method and the band-
gap behavior. Parametric studies of the flexural bandgap are 
discussed next to investigate the influence of changing geo-
metric dimensions. The frequency response function (FRF) 
by using FE simulations is then performed to examine the 
flexural bandgap behavior and discuss the effect on differ-
ent lengths of the proposed structures. Moreover, many ref-
erences indicate that the delamination damage reduces the 
bending stiffness of sandwich structures and causes its natu-
ral frequency to occur in an undesirably low range [26]– 
[27]. Therefore, the effects of delamination on the FRF and 
the flexural bandgap behavior are investigated last.
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Design and Analysis

Structural Design

To expand the practical utility of composite sandwich struc-
tures, it is essential to carefully consider both the manufac-
turing process and the overall structural weight. Several 
innovative structural designs including intricate geometries 
and combination of different materials were demonstrated 
to achieve the wide bandgap behavior. However, employing 
multiple materials often necessitates secure bonding during 
fabrication, leading to increased complexity and the poten-
tial for debonding due to a higher number of bonding inter-
faces. Intricate geometries make challenges in achieving 
practical feasibility, further complicating their implementa-
tion. Also, structural weight is often sacrificed to achieve it 
to create the wide bandgap behavior in structures such as 
phononic crystals, or the combined materials by soft and 
stiff materials. Furthermore, limited research focus on the 
bandgap behavior in traditional composite sandwich struc-
tures. Therefore considering the aforementioned factors, 
two lightweight types of periodic hollow-shaped cores are 
proposed and applied to the composite sandwich structures 

as shown in Fig. 1(a). Both structures consist of two rectan-
gular face sheets and a core, which are made of the carbon 
fiber reinforced polymers (CFRP) and PVC foam, respec-
tively. The properties of the adopted materials are used 
as listed in Table  1 [25]. Figure  1(b) shows two different 
designs of the unit cells, namely schemes A and B in this 
paper. Comparing with the core geometry in conventional 
sandwich composites, two additional cut-outs on the top and 
bottom of the core are applied in scheme A, while a rectan-
gular cut-out in the middle of the core is applied in scheme 
B. It can be seen that these two geometries are relatively 
simple, which enhances their practical applicability. The 
geometric dimensions of the irregular cores in schemes A 
and B are shown in Fig. 1(c) and Fig. 1(d), respectively. The 
geometries of both schemes are symmetric with respect to 

Table 1  Material properties for numerical simulation [25]
Facesheet Core
Ex= 55 GPa Gxy = 1.2 GPa E = 75 MPa
Ey= 50 GPa Gyz = 1.2 GPa G = 27.75 MPa
Ez= 20 GPa Gxz = 3.6 GPa ρ = 100 kg/m3

νxy = 0.4 ρ = 1420 kg/m3

νyz = 0.4
νxz = 0.25

Fig. 1  (a) Schematics of the 
proposed structures with detailed 
dimensions of (b) scheme A and 
(c) scheme B
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A Floquet periodic boundary condition is applied to the unit 
cell to determine the dispersion curve. Thus, the relation 
between the kinematics of the left and right nodes of the 
unit cell is expressed as follows:

qR = qLe
−ix � (3)

where µx = kxLx is the propagation constant in the x-direc-
tion, kx is the wavenumber, and Lx is the length of the unit 
cell in the x-direction. The equation of motion of a free 
vibration unit cell can be written as
(
K− 2M

)
q = 0� (4)

Substituting Floquet periodic boundary condition into 
Eq. (4) and solve the eigenvalue problem, then the disper-
sion relation of proposed structures can be obtained. In this 
work, the COMSOL Multiphysics finite element software 
is used to compute the dispersion curve and bandgap of the 
proposed structures based on the Floquet theory and wave 
FEM. To analyze the flexural bandgap behavior, the dis-
placement in y−direction of the entire unit cell is fixed in 
order to filter out in-plane shear wave and torsional wave. 
Next, the displacement in x−direction of neutral axis is 
fixed for filtering out longitudinal wave [17]. Floquet peri-
odic boundary condition was applied to the left− and right 
side (along x−direction) of the unit cell and then flexural 
band behavior of the infinite periodic structures can be cal-
culated. The reader is referred to the references [28–30] for 
more details.

Sweeping the wavenumber from point X to point Γ in the 
first Brillouin zone, the dispersive curve can be obtained. 
Figure  2 shows the dispersive relations of the schemes A 
and B, respectively. The core geometric dimensions are tA1 
= tB1 = 1.5 mm, tA2 = tB2 = 3 mm, and wA = wB = 12.5 mm in 
this case. The first flexural bandgap of the scheme A is com-
puted between 1441.2 and 2539.8 Hz, while the first flex-
ural bandgap of the scheme B is existed between 1494.4 and 
2574.6 Hz. The dispersion curves of the solid core in con-
ventional sandwich composites are also illustrated in Fig. 2 
as comparisons, which indicates that no bandgap behavior is 
observed in the conventional sandwich structures.

Moreover, Fig. 2 depicts the vibration modes at the lower 
and upper bounds of the bandgaps in schemes A and B. 
Cheng et al. [31] proposed an analytical method for exam-
ining the effects of beam size and Poisson’s ratio on the 
bending stiffness and bandgap frequency of a micro-beam. 
The analytical result shows that the size effect increases 

the x-axis, y-axis, and z-axis. The length and width of both 
unit cells are all 50 mm, and the thickness of the CFRP face 
sheets is 1 mm. The total thickness of the core is initially set 
as 6 mm with wA = wB = 12.5 mm, tA1 = tB1 = 1.5 mm, and 
tA2 = tB2 = 3 mm. Parametric studies of the core dimensions 
are discussed later in Sect. 3.

Dispersion Curve and Bandgap Analysis

The wave finite element methodology [28–30] was used 
to calculate the bandgaps of the two proposed unit cells as 
briefly described in the following, and the first bandgap is 
mainly focused on this study. Both unit cells are arrayed 
periodically along the x-axis, which can be assumed as a 
one-dimensional problem. The kinematic motion of any 
node in a unit cell can be expressed as a time-harmonic 
vibration as follows:

q (t) = qeit � (1)

where t is time and ω is the harmonic wave frequency. The 
degrees of freedom of a unit cell are defined using the vector 
q (Eq. 2). This vector can be divided into three components, 
namely qL, qI, and qR, which correspond to the degrees of 
freedom on the left side, in the interior, and on the right side 
of the unit cell, respectively.

Fig. 2  Dispersion curves and flexural bandgaps of (a) schemes A and 
(b) scheme B compared with the conventional composite sandwich 
with solid core. Mode A and B depict the vibration modes at the lower 
and upper bounds of the bandgaps in schemes A and B
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Parametric Studies

Effect of the Core Width

In this subsection, the influence of changing core width wA, 
wB on the bandwidth and frequency range of the bandgap 
are discussed for both schemes A and B. To investigate the 
effect of different core width, the dimensions of the CFRP 
face sheets are remained at 50 × 50 × 1 mm3 while other core 
geometric parameters tA1, tA2, tB1, and tB2 are fixed the values 
of 1.5 mm, 3 mm, 1.5 mm, and 3 mm, respectively. Figure 3 
depicts the fluctuations in the lower-bound frequency fl and 
upper-bound frequency fu of the bandgaps for schemes A 
and B with respect to variations in wA and wB, respectively 
(from 7.5 mm to 17.5 mm in intervals of 1.25 mm). As illus-
trated in Fig. 3(a), the fl value gradually increases when wA 
increases because the length of suspended portion in the 
middle of the core in scheme A is short, which causes shear 
stiffening with an increase in fl. It can be explained that the 
vibration mode at the lower-bound frequency is attributed 
to the shear motion as shown at mode A in Fig. 2(a). If a 
low fl value is desired, wA needs to be decrease for a lon-
ger length of suspended portion in the middle of the core, 
and this causes shear softening and leads to a decrease in 

the bending stiffness of the micro-beam, causing the band 
gap to move to a higher frequency. Moreover, an increase 
in Poisson’s ratio led to a decrease in bending stiffness and 
bandgap frequency. Hans et al. [2] examined a diamond-like 
hole meta-plate and found that the lower and upper bound 
frequencies of the bandgap are depended on the vibration 
modes of the unit cell. In Fig. 2(a), it is observed that the 
mode A (1441.2 Hz) in scheme A is attributed to the shear 
motion, whereas the mode B (2539.8  Hz) is attributed to 
the symmetric bending motion. Similar observations are 
obtained in scheme B. In Fig. 2(b), the mode A (1494.4 Hz) 
at the lower-bound of the bandgap shows the shear motion. 
It can be seen that the mode A in scheme B is the direct con-
verse of the mode A in scheme A. The mode B (2574.6 Hz) 
at the upper-bound of the bandgap corresponds to a sym-
metric bending mode.

Although two different proposed schemes have similar 
bandgap behavior when the core geometric dimensions are 
initially set to tA1 = tB1 = 1.5 mm, tA2 = tB2 = 3 mm, and wA 
= wB = 12.5 mm, the changes in the core geometry lead to 
different influence on their bandgap behaviors. Therefore, 
the parametric studies of the core geometry are investigated 
and discussed in the next section.

Fig. 3  Lower and upper bounds 
of the flexural bandgaps for (a) 
schemes A, (b) scheme B, and 
their (c) RBW with respect to the 
core width (wA, wB)
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the core width is between 10 mm and 17.5 mm. Overall, the 
scheme A outperforms the scheme B in terms of the RBW. 
The highest RBWs for schemes A and B, namely 0.564 and 
0.556, are achieved at core widths of 11.25 mm and 10 mm, 
respectively.

Effect of the Core Thickness

The effect of the core thickness (tA1, tA2, tB1, and tB2) on the 
bandgap are investigated in this subsection. The core widths 
wA and wB are fixed at 12.5 mm. The thickness ratios for 
scheme A (tA2/tA1) and scheme B (tB2/tB1) are kept con-
stant at 2. The core thickness tA1 and tB1 are varied from 
0.5 mm to 2.5 mm in intervals 0.25 mm each, while the tA2 
and tB2 are correspondingly varied from 1 mm to 5 mm. Fig-
ure 4 illustrates the relationship between the lower-bound 
fl, upper-bound fu frequencies of the bandgaps and the core 
thickness as well as the RBWs for schemes A and B. As 
shown in Fig. 4(a) and (b), the values of lower-bound fre-
quency fl in the first bandgap for both schemes are increased 
slowly, which indicates the less effect of the shear motion 
in the unit cell when the core thickness is increased. On the 
other hand, the values of upper-bound frequency fu in the 
first bandgap for both schemes are increased rapidly, which 
means the strong effect of the bending motion in the unit 
cell when the core thickness is increased. Although the first 
bandwidth in scheme A exists a sudden drop when core 
thickness tA1 is decreased from 1 mm, 0.75 mm to 0.5 mm, 
one distinction observed is that the second bandgap (dashed 
line) appears only in scheme A within that range and a new 
pass band appears that divides the single bandgap into two 
bandgaps as shown in Fig. 5. The mode A for three cases in 
Fig. 5 are all attributed to the shear motion which behave 
the same with the mode A displayed in Fig. 2. However, the 
mode B in Fig. 5(a) is not just a purely symmetric bend-
ing motion as discussed at mode B in Fig. 2. It represents a 
hybrid bending mode that involves the coupling of the sym-
metric bending motion of the entire unit cell with the reso-
nant motion in the suspended portion of the unit cell. As the 
core thickness decreased, the suspended portion in the mid-
dle of the core is getting thinner to become softener. The flat 
second pass band is then observed and the locally resonant 
phenomenon becomes more clear as shown in modes C and 
D in Fig. 5(a) as well as the modes B, C in Fig. 5(b) and (c). 
The formation of the first bandgap becomes Bragg scatter-
ing coupling with locally resonant mechanism. Moreover, 
the bandwidth of the first bandgap is decreased while the 
bandwidth of the second bandgap is increased and moving 
down. This result can be attributed to the fact that when the 
thickness of the suspended portion tA2 is reduced, the bend-
ing stiffness itself is decreased, which leads to a decrease in 
the resonant frequency.

fl. The lowest and highest fl values for scheme A, namely 
1218.1 Hz and 1861.3 Hz, are obtained under wA values of 
7.5 mm and 17.5 mm, respectively. Considering the feasibil-
ity of manufacturing, the value of wA should not too small. 
Otherwise, the bonding area between the face sheets and 
the core becomes excessively small, which increases the 
possibility of delamination damage. On the other hand, the 
fu value also increases with an increase of wA because the 
vibration mode at the upper-bound frequency is attributed to 
the bending motion as shown at mode B in Fig. 2(a). A large 
value of wA increases the bending stiffness of the unit cell 
and an increase in fu, while a small value of wA decreases 
the bending stiffness of the unit cell and a decrease in fu. 
The lowest and highest fu values for scheme A, namely 
1993.2  Hz and 2751  Hz, are computed at wA values of 
7.5 mm and 17.5 mm, respectively. Figure 3(b) shows the 
variations in fl and fu with the core width wB for scheme B. 
It can be seen that the fl and fu values of scheme B could be 
altered in the same manner as those of scheme A because 
of the identical vibration mode as shown in Fig. 2(b). For 
the width wB varying from 7.5 mm to 17.5 mm, the low-
est and highest fl values for scheme B, namely 1254.5 Hz 
and 1920.2 Hz, and the lowest and highest fu values namely 
2175.9 Hz and 2761 Hz, are obtained under wB values of 
7.5 mm and 17.5 mm, respectively.

Figure 3(c) illustrates the variations in the relative band-
gap widths (RBWs) of schemes A and B with wA and wB, 
respectively. The RBW is defined as follows [32]:

RBW =
fu − fl

(fu + fl)/2
� (5)

where (fu + fl)/2 represents the center frequency of the band-
gap. As mentioned earlier, the increase of core width causes 
the increase of bending and shear stiffness of the unit cell. 
The value of RBW for scheme A is initially climbed from 
wA value of 7.5  mm to 11.25  mm. Within this range, the 
elevation in shear stiffness exhibits a lesser effect compared 
to the increment in bending stiffness, and the observed 
increase is attributed to the RBW. As wA is increased from 
11.25  mm to 17.5  mm, the influence of shear stiffness is 
greater than the bending stiffness. It can be observed in 
Fig. 3(a) that the slope of fl curve is enhanced rapidly while 
the slope of fu curve is reduced, and the RBW then decreases 
rapidly in the wA range of 11.25 mm to 17.5 mm. Similar 
behavior of RBW for scheme B is observed compared to the 
scheme A. When wB is increased from 7.5 mm to 10 mm, 
the RBW is increased. When wB is increased from 10 mm 
to 17.5 mm, the RBW is decreased. Noted that the RBW 
for scheme B is higher than that of scheme A when the 
core widths are 7.5 mm and 8.75 mm. On the contrary, the 
RBW for scheme A is higher than that of scheme B when 
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obtain a large RBW. Thus, increasing the core thickness 
does not increase the lower-bound frequency significantly 
but effectively increases the upper-bound frequency and the 
mechanical performance of the structure.

Performance of Vibration Attenuation

Numerical Models

The commercial FE software Abaqus is used to compute 
the frequency response function (FRF) for verifying the 
calculated bandgap behavior for schemes A and B. Fig-
ure 6 depicts the schematics of the finite element model for 
schemes A and B. The geometric parameters of the cores in 
schemes A and B are set as follows: wA = 12.5 mm, tA1 = 
1.5 mm, and tA2 = 3 mm for scheme A; wB = 12.5 mm, tB1 = 
1.5 mm, and tB2 = 3 mm for scheme B as discussed earlier 
in Sect. 2.2. The material properties [25] listed in Table 1 
are assigned to the composite face sheet and the core. The 
C3D8 element type, which is an eight-node hexahedral solid 
element in three-dimensional, is adopted in the FE model. 
The unit cell of scheme A comprises 512 elements for the 
face sheets and 1024 elements for the core. The unit cell of 

Figure 4(c) displays the RBWs of the bandgaps for both 
schemes. The RBWs in the first bandgap are increased for 
the entire range of tA1 and tB1, which are different from the 
effect of core width on the RBW as discussed in previous 
section. The largest and smallest values of RBW in the first 
bandgap for scheme A and B are from 0.058 to 0.625 and 
from 0.390 to 0.602, respectively. As mentioned earlier, the 
second bandgap appears only in the scheme A due to the 
resonant motion of the suspended portion in the middle of 
the core. As the tA1 is within the range between 0.5 mm and 
1 mm, the RBW values in the second bandgap are existed 
from 0.345 to 0.018. It indicates that more strong reso-
nant effect is contributed to the second bandgap when the 
thickness of suspended portion is decreasing. As the core 
thickness is further increased from the tA1 value of 1 mm 
to 2.5 mm, the RBW of scheme A become slightly larger 
than that of scheme B. The RBWs of both schemes continue 
to increase with the core thickness without exhibiting any 
inflection point. This result is different from that observed 
for the effect of the core width (wA, wB) on the RBW. Over-
all, if a low-frequency bandgap is desired, the core width 
can be decreased to effectively reduce the lower-bound fre-
quency of the bandgap. To obtain the larger possible RBW 
for first bandgap, a large core thickness can be selected to 

Fig. 4  Lower and upper bounds 
of the flexural bandgaps for (a) 
schemes A, (b) scheme B, and 
their (c) RBW with respect to the 
core thickness (tA1, tB1)
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Effect of the Number of Unit Cells on the FRF

Previous research on the bandgap behavior of periodic 
structures has indicated that the influence of the number of 
unit cells on transmissibility of structures has to be consid-
ered. Jensen [33] analytically demonstrated that the extent 
of vibration attenuation depends on the number of unit cells. 
Studies [1, 16] have experimentally and numerically indi-
cated that the bandgap behavior becomes more noticeable 
as more unit cells are present. To verify the effects of the 

scheme B comprises 512 elements for the face sheets and 
896 elements for the core. The interfaces between the face 
sheet and the core are subjected to tie constraints. To com-
pute the FRF, an excitation force is applied at the left edge 
of the bottom face sheet, and the displacement response is 
measured at the right edge of the top face sheet (7).

Fig. 5  Dispersion curves, bandgaps, and different vibration 
modes in scheme A for different core thickness (a) tA1 = 
1 mm, (b) tA1 = 0.75 mm, and (c) tA1 = 0.5 mm
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Fig. 7  Frequency response func-
tion for different numbers of unit 
cells for (a) Scheme A and (b) 
Scheme B

 

Fig. 6  Schematics of the finite element model for schemes 
A and B (used for calculating FRF)
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Effect of Delamination on the FRF

Delamination is the main damage events in composite sand-
wich structures, which usually reduces the stiffness and 
strength of the composites and leads to the catastrophic 
failure of the entire structures. Therefore, the effect of 
delamination on the performance of vibration attenuation 
is investigated in this subsection. The proposed schemes 
A and B with 15 unit cells are discussed to see the effect 
of face–core delamination on the FRF. Figure 9 illustrates 
the delamination area in red, where exists in the middle 
between the top surface of the core and the bottom surface 
of the upper CFRP face sheet. Surface-to-surface contact 
without tie constraints is defined in the delamination area of 
the FE model. The delamination lengths, which is 20% and 
60% of the total structural lengths, investigated in this study. 
Figure 10(a) and (b) presents an FRF comparison of a pris-
tine conventional composite sandwich with those of pris-
tine/delaminated proposed schemes A and B, respectively. 
It can be seen that the pristine conventional composite sand-
wich (black solid line) has no attenuation of displacement 
compared to the proposed structures. The performances of 
vibration attenuation for both pristine proposed structures 
(red solid line) are better than the delaminated structures 
(dash line). As the delamination length increased, the perfor-
mance of vibration attenuation worsens within the bandgap 
(grey area) and the bandgap behavior could not be clearly 
observed. Nevertheless, the delaminated structures for both 
schemes still exhibit better performance of vibration attenu-
ation than the pristine conventional composite sandwich.

number of unit cells, the proposed schemes A and B with 
different numbers of unit cells (5, 10, and 15 unit cells) 
are performed in this section. Figure  8 depicts the FRFs 
obtained with different numbers of unit cells for schemes A 
and B. The shaded frequency ranges in Fig. 8 correspond to 
the bandgaps obtained from the results displayed in Fig. 2. 
The low transmissibility of the flexural wave is consistent 
with the predicted bandgap, and the bandgap behavior is 
notable for both proposed structures. The level of vibration 
amplitude significantly decreases within the bandgap when 
the number of unit cells is increased to 15, which agrees well 
with the observation in the literature [1, 16]. This phenom-
enon occurs because as a wave travels through unit cells, it 
interacts with reflected waves, which reduces its amplitude 
within the bandgap frequency. Consequently, the amplitude 
of the wave decreases as it passes through each unit cell, 
and the amplitude loss is amplified as the wave propagates 
through the sandwich beam.

Figure 8 displays the displacement fields of the proposed 
structures with 10 unit cells at different frequencies. Fig-
ure  8(a) and (c) show the displacement fields excited at 
1603 Hz and 1694 Hz for schemes A and B respectively, 
and both excited frequencies are located in the bandgap as 
discussed in Fig.  2. It can be seen that the displacements 
are attenuated rapidly and do not propagate to the right 
side of the structures. When out-of-bandgap frequencies 
at 2808 Hz and 2716 Hz for schemes A and B are applied 
to the structures, the displacements are propagated to the 
right side of the structures without attenuation as shown in 
Fig. 8(b) and (d).

Fig. 8  Displacement response of the proposed structures. Scheme A excitation at (a) 1603 Hz (within bandgap) and (b) 2808 Hz (out of bandgap). 
Scheme B excitation at (c) 1694 Hz (within bandgap) and (d) 2716 Hz (out of bandgap)
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Fig. 10  Frequency response 
function of pristine (red solid 
line) and delaminated (dash line) 
proposed structures compared 
with the conventional composite 
sandwich with solid core (black 
solid line) for (a) Scheme A and 
(b) Scheme B

 

Fig. 9  Schematics of the face–core delamination for the 
proposed structures with 15 unit cells
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7.	 Hussein MI, Leamy MJ, Ruzzene M (2014) Dynamics of Pho-
nonic Materials and Structures: Historical Origins, Recent Prog-
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https://doi.org/10.1115/1.4026911
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first Bragg band gap in periodic continuously corrugated beam 
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org/10.1016/j.jsv.2019.01.029

9.	 Yu K, Chen T, Wang X (May 2013) Band gaps in the low-fre-
quency range based on the two-dimensional phononic crys-
tal plates composed of rubber matrix with periodic steel stubs. 
Phys B Condens Matter 416:12–16. https://doi.org/10.1016/j.
physb.2013.02.011

10.	 Zhang Z, Han XK, Ji GM (2018) Mechanism for controlling the 
band gap and the flat band in three-component phononic crys-
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11.	 Moscatelli M, Ardito R, Driemeier L, Comi C (Aug. 2019) Band-
gap structure in two- and three-dimensional cellular locally reso-
nant materials. J Sound Vib 454:73–84. https://doi.org/10.1016/j.
jsv.2019.04.027

12.	 Mizukami K, Kawaguchi T, Ogi K, Koga Y (Jan. 2021) 
Three-dimensional printing of locally resonant carbon-fiber 
composite metastructures for attenuation of broadband vibra-
tion. Compos Struct 255:112949. https://doi.org/10.1016/j.
compstruct.2020.112949

13.	 Ding L, Ding B, Wu Q-Y, Zhu H-P (2023) Flexural Wave Propa-
gation in a Double-Beam System Interconnected by Local Reso-
nators with Two Degrees of Freedom, J Eng Mech, vol. 149, no. 
2, Feb. https://doi.org/10.1061/JENMDT.EMENG-6762

14.	 An X, Yuan X, Hou X, Fan H (Feb. 2023) Low frequency vibra-
tion attenuation of meta-orthogrid sandwich panel with high 
load-bearing capacity. Compos Struct 305:116560. https://doi.
org/10.1016/j.compstruct.2022.116560

15.	 Chen JS, Sharma B, Sun CT (2011) Dynamic behaviour of sand-
wich structure containing spring-mass resonators, Compos Struct, 
vol. 93, no. 8, pp. 2120–2125, Jul. https://doi.org/10.1016/j.
compstruct.2011.02.007

16.	 Domadiya PG, Manconi E, Vanali M, Andersen LV, Ricci A 
(2016) Numerical and experimental investigation of stop-bands 
in finite and infinite periodic one-dimensional structures, Journal 
of Vibration and Control, vol. 22, no. 4, pp. 920–931, Mar. https://
doi.org/10.1177/1077546314537863

17.	 Park S, Jeon W (May 2021) Ultra-wide low-frequency band gap 
in a tapered phononic beam. J Sound Vib 499:115977. https://doi.
org/10.1016/j.jsv.2021.115977

18.	 Acar G, Yilmaz C (2013) Experimental and numerical evidence 
for the existence of wide and deep phononic gaps induced by 
inertial amplification in two-dimensional solid structures, J 
Sound Vib, vol. 332, no. 24, pp. 6389–6404, Nov. https://doi.
org/10.1016/j.jsv.2013.06.022

19.	 Yuksel O, Yilmaz C (Oct. 2015) Shape optimization of phononic 
band gap structures incorporating inertial amplification mecha-
nisms. J Sound Vib 355:232–245. https://doi.org/10.1016/j.
jsv.2015.06.016

Conclusion

In this paper, two lightweight types of composite sandwich 
structures with periodic hollow-shaped cores are proposed 
to have a wide flexural bandgap in intermediate-to-low-
frequency ranges. First, parametric studies are conducted to 
investigate the influence of core geometric dimensions to 
the flexural bandgap. Changing the core width is more effec-
tive in reducing the bandgap frequency whereas increasing 
the core thickness leads to a larger RBW. In most cases, the 
RBW of scheme A is slightly larger than that of scheme B. 
Next, the FRF simulations are performed to investigate the 
performance of vibration attenuation for the proposed struc-
tures, and the simulated results agree well with the predicted 
bandgap. When the number of unit cells is increased, the 
displacement amplitude decreases considerably. Last, the 
effect of delamination on the FRF are examined. The simu-
lated results indicate that the performance of vibration atten-
uation is getting worse as the delamination length increased. 
Nevertheless, the delaminated proposed structures still have 
better performance of vibration attenuation than the pristine 
conventional sandwich structures. Our findings demonstrate 
that despite the simplicity of the core design, it is capable of 
achieving comparable bandgap behavior to more complex 
geometries.

Supplementary Information  The online version contains 
supplementary material available at https://doi.org/10.1007/s42417-
024-01420-1.

Acknowledgements  This work is supported by National Science and 
Technology Council (NSTC) in Taiwan through the grant MOST 111-
2222-E-006 -009 -MY2.

Declarations

Conflict of interest  The authors declare that they have no conflict of 
interest.

References

1.	 Ampatzidis T, Leach RK, Tuck CJ, Chronopoulos D (2018) 
Band gap behaviour of optimal one-dimensional compos-
ite structures with an additive manufactured stiffener, Com-
pos B Eng, vol. 153, pp. 26–35, Nov. https://doi.org/10.1016/j.
compositesb.2018.07.012

2.	 Valiya Valappil S, Aragón AM, Goosen H (Feb. 2023) Pho-
nonic crystals’ band gap manipulation via displacement modes. 
Solid State Commun 361:115061. https://doi.org/10.1016/j.
ssc.2022.115061

3.	 Chen Z, Wang G, Shi F, Lim CW (Jun. 2022) Analytical mod-
eling and numerical analysis for tunable topological phase tran-
sition of flexural waves in active sandwiched phononic beam 
systems. Int J Mech Sci 223:107292. https://doi.org/10.1016/j.
ijmecsci.2022.107292

1 3

https://doi.org/10.1121/1.3641365
https://doi.org/10.1121/1.3641365
https://doi.org/10.1016/j.jsv.2017.04.016
https://doi.org/10.1016/j.jsv.2005.02.030
https://doi.org/10.1016/j.jsv.2005.02.030
https://doi.org/10.1115/1.4026911
https://doi.org/10.1016/j.jsv.2019.01.029
https://doi.org/10.1016/j.jsv.2019.01.029
https://doi.org/10.1016/j.physb.2013.02.011
https://doi.org/10.1016/j.physb.2013.02.011
https://doi.org/10.1016/j.jpcs.2018.08.012
https://doi.org/10.1016/j.jsv.2019.04.027
https://doi.org/10.1016/j.jsv.2019.04.027
https://doi.org/10.1016/j.compstruct.2020.112949
https://doi.org/10.1016/j.compstruct.2020.112949
https://doi.org/10.1061/JENMDT.EMENG-6762
https://doi.org/10.1016/j.compstruct.2022.116560
https://doi.org/10.1016/j.compstruct.2022.116560
https://doi.org/10.1016/j.compstruct.2011.02.007
https://doi.org/10.1016/j.compstruct.2011.02.007
https://doi.org/10.1177/1077546314537863
https://doi.org/10.1177/1077546314537863
https://doi.org/10.1016/j.jsv.2021.115977
https://doi.org/10.1016/j.jsv.2021.115977
https://doi.org/10.1016/j.jsv.2013.06.022
https://doi.org/10.1016/j.jsv.2013.06.022
https://doi.org/10.1016/j.jsv.2015.06.016
https://doi.org/10.1016/j.jsv.2015.06.016
https://doi.org/10.1007/s42417-024-01420-1
https://doi.org/10.1007/s42417-024-01420-1
https://doi.org/10.1016/j.compositesb.2018.07.012
https://doi.org/10.1016/j.compositesb.2018.07.012
https://doi.org/10.1016/j.ssc.2022.115061
https://doi.org/10.1016/j.ssc.2022.115061
https://doi.org/10.1016/j.ijmecsci.2022.107292
https://doi.org/10.1016/j.ijmecsci.2022.107292


Journal of Vibration Engineering & Technologies

28.	 Mead DJ (1973) A general theory of harmonic wave propa-
gation in linear periodic systems with multiple coupling, 
J Sound Vib, vol. 27, no. 2, pp. 235–260, Mar. https://doi.
org/10.1016/0022-460X(73)90064-3

29.	 Phani AS, Woodhouse J, Fleck NA (2006) Wave propagation in 
two-dimensional periodic lattices, J Acoust Soc Am, vol. 119, no. 
4, pp. 1995–2005, Apr. https://doi.org/10.1121/1.2179748

30.	 Mace BR, Manconi E (2008) Modelling wave propagation in two-
dimensional structures using finite element analysis, J Sound Vib, 
vol. 318, no. 4–5, pp. 884–902, Dec. https://doi.org/10.1016/j.
jsv.2008.04.039

31.	 Zhao P, Zhang K, Deng Z (Sep. 2021) Size effects on the band gap 
of flexural wave propagation in one-dimensional periodic micro-
beams. Compos Struct 271:114162. https://doi.org/10.1016/j.
compstruct.2021.114162

32.	 Liu L, Hussein MI (Jan. 2012) Wave Motion in Periodic Flex-
ural beams and characterization of the transition between Bragg 
Scattering and local resonance. J Appl Mech 79(1). https://doi.
org/10.1115/1.4004592

33.	 Jensen JS (Oct. 2003) Phononic band gaps and vibra-
tions in one- and two-dimensional mass–spring structures. 
J Sound Vib 266(5):1053–1078. https://doi.org/10.1016/
S0022-460X(02)01629-2

Publisher’s Note  Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

20.	 Liang Y-J, Dávila CG, Iarve EV (Nov. 2021) A reduced-input 
cohesive zone model with regularized extended finite ele-
ment method for fatigue analysis of laminated composites in 
Abaqus. Compos Struct 275:114494. https://doi.org/10.1016/j.
compstruct.2021.114494

21.	 Liang Y-J, McQuien JS, Iarve EV (May 2020) Implementa-
tion of the regularized extended finite element method in 
Abaqus framework for fracture modeling in laminated com-
posites. Eng Fract Mech 230:106989. https://doi.org/10.1016/j.
engfracmech.2020.106989

22.	 Wu K-J, Young W-B (Aug. 2022) Internal characteristics analy-
sis of woven/unidirectional composite angle part by VBO pro-
cess. Compos Commun 33:101215. https://doi.org/10.1016/j.
coco.2022.101215

23.	 Wu K-J, Young W-B (2023) Complex angle part fabricated by 
vacuum bag only process with interleaved dry fiber and prepreg, 
J Compos Mater, vol. 57, no. 2, pp. 199–211, Jan. https://doi.
org/10.1177/00219983221143229

24.	 Karsandik Y, Sabuncuoglu B, Yildirim B, Silberschmidt VV 
(Jun. 2023) Impact behavior of sandwich composites for aviation 
applications: a review. Compos Struct 314:116941. https://doi.
org/10.1016/j.compstruct.2023.116941

25.	 Ampatzidis T, Chronopoulos D (Aug. 2019) Mid-frequency 
band gap performance of sandwich composites with unconven-
tional core geometries. Compos Struct 222:110914. https://doi.
org/10.1016/j.compstruct.2019.110914

26.	 Kim H-Y, Hwang W (Jan. 2002) Effect of debonding on natu-
ral frequencies and frequency response functions of honey-
comb sandwich beams. Compos Struct 55(1):51–62. https://doi.
org/10.1016/S0263-8223(01)00136-2

27.	 Tsai S-N, Taylor AC (Feb. 2019) Vibration behaviours of single/
multi-debonded composite sandwich structures with nanoparti-
cle-modified matrices. Compos Struct 210:590–598. https://doi.
org/10.1016/j.compstruct.2018.11.071

1 3

https://doi.org/10.1016/0022-460X(73)90064-3
https://doi.org/10.1016/0022-460X(73)90064-3
https://doi.org/10.1121/1.2179748
https://doi.org/10.1016/j.jsv.2008.04.039
https://doi.org/10.1016/j.jsv.2008.04.039
https://doi.org/10.1016/j.compstruct.2021.114162
https://doi.org/10.1016/j.compstruct.2021.114162
https://doi.org/10.1115/1.4004592
https://doi.org/10.1115/1.4004592
https://doi.org/10.1016/S0022-460X(02)01629-2
https://doi.org/10.1016/S0022-460X(02)01629-2
https://doi.org/10.1016/j.compstruct.2021.114494
https://doi.org/10.1016/j.compstruct.2021.114494
https://doi.org/10.1016/j.engfracmech.2020.106989
https://doi.org/10.1016/j.engfracmech.2020.106989
https://doi.org/10.1016/j.coco.2022.101215
https://doi.org/10.1016/j.coco.2022.101215
https://doi.org/10.1177/00219983221143229
https://doi.org/10.1177/00219983221143229
https://doi.org/10.1016/j.compstruct.2023.116941
https://doi.org/10.1016/j.compstruct.2023.116941
https://doi.org/10.1016/j.compstruct.2019.110914
https://doi.org/10.1016/j.compstruct.2019.110914
https://doi.org/10.1016/S0263-8223(01)00136-2
https://doi.org/10.1016/S0263-8223(01)00136-2
https://doi.org/10.1016/j.compstruct.2018.11.071
https://doi.org/10.1016/j.compstruct.2018.11.071

	﻿Numerical Investigation of Broad Mid-Frequency Flexural Bandgap in Composite Sandwich Structures with Periodic Hollow-Shaped Core Geometry
	﻿Abstract
	﻿Introduction
	﻿Design and Analysis
	﻿Structural Design
	﻿Dispersion Curve and Bandgap Analysis

	﻿﻿Parametric Studies﻿
	﻿﻿Effect of the Core Width﻿
	﻿﻿Effect of the Core Thickness﻿

	﻿﻿Performance of Vibration Attenuation﻿
	﻿﻿Numerical Models﻿
	﻿﻿Effect of the Number of Unit Cells on the FRF﻿
	﻿﻿Effect of Delamination on the FRF﻿

	﻿﻿Conclusion﻿
	﻿References


