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Abstract
Purpose  Given the need for utilizing size-dependent elasticity theories and non-Fourier heat transfer models in extremely 
small dimensions, the present research intends to provide a novel theoretical framework for thermoelastic dissipation (TED) 
in circular cross-sectional micro/nanobeams on the basis of the modified couple stress theory (MCST) and nonlocal single-
phase-lag (NSPL) heat conduction model.
Methods  In the first step, the coupled heat equation of Euler–Bernoulli beams in polar coordinate system is derived by 
capturing the nonlocal and phase-lagging effects. By solving this equation, the function of temperature change is attained. 
Substitution of the couple stress-based constitutive relations and obtained temperature field in the definition of TED from the 
point of view of energy yields a TED relation in the form of infinite series encompassing mechanical length scale, thermal 
nonlocal and phase lag parameters.
Results  Numerical results are provided in three sections. In the first section, the correctness of the extracted formulation 
is explored via conducting a comparative study. In the second section, a convergence analysis is performed to ascertain 
the sufficient number of terms of the obtained infinite series for achieving well-founded outcomes. In the final section, a 
parametric analysis is made to illuminate the dependence of TED on some factors like mechanical length scale parameter, 
thermal nonlocal parameter, beam geometry, ambient temperature and beam material.
Conclusion  According to the obtained results, utilization of MCST lowers the amount of TED. Moreover, the incorporation 
of thermal nonlocal parameter in the governing equations can have substantial impacts on both the amount and the trend of 
TED, especially at high vibration frequencies.

Keywords  Circular cross-sectional micro/nanobeams · Thermoelastic dissipation · Scale-dependent analysis · Modified 
couple stress theory · Nonlocal single-phase-lagging effect · Theoretical approach
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Background

Micro/nano-electromechanical systems (MEMS/NEMS) 
can be incredibly little, with some segments measuring no 
more than a few nanometers in size. This makes them per-
fect for utilizing in applications where space is restricted, 
such as in consumer electronics, medical equipment, and 
aerospace devices [1–5]. In addition, advantages such as 
low cost, little power consumption, high accuracy and ver-
satility have made MEMS/NEMS attractive options for use 
in industrial and engineering applications. For instance, 
MEMS and NEMS devices are exploited in flow sen-
sors [6, 7], gyroscopes [8–10], pressure sensors [11, 12], 
accelerometers [13, 14], temperature sensors [15, 16] and 
microfluidic devices [17]. MEMS and NEMS technology 
is still under development. As MEMS and NEMS devices 
become smaller, cheaper, and more powerful, they are 
likely to be employed in even more engineering applica-
tions in the future.

The findings from various experimental tests reveal that 
the static and dynamic responses of small-sized structural 
elements are influenced by their size. The classical theory 
(CT) of elasticity is inadequate in representing this aspect 
of micro/nanostructures as its constitutive equations lack 
length scale parameters. To overcome this limitation of 
CT, several elasticity theories that account for scale effect 
and comprise one or more length scale parameters have 
been proposed [18–23]. In the couple stress theory (CST) 
[18], two additional characteristic lengths have been incor-
porated to consider the influence of size in the constitutive 
relations. Yang et al. [19] established the modified couple 
stress theory (MCST), which introduces a single length 
scale parameter into the governing equations by making 
specific amendments to CST. As a consequence, the cou-
ple stress tensor becomes symmetric, leading to a sub-
stantial simplification in its application. To examine the 
impact of size on the mechanical characteristics of micro/
nanostructures, numerous analytical studies have been 
performed employing various size-dependent elasticity 
theories [24–33]. For instance, Sladek et al. [34] utilized 
the strain gradient theory (SGT) to create a mathematical 
framework for describing the size-dependent character-
istics of in-plane cracks in piezoelectric nanostructures 
under thermal loading.

An important part of MEMS and NEMS devices con-
sists of structures like beams, rings, disks and plates 
[35–38]. The Fourier heat conduction model is based on 
the assumption that the heat flux at a point is proportional 
to the temperature gradient at that point. This assumption 
is valid for macroscopic systems, but it fails at micron and 
submicron dimensions. This is because the mean free path 
of phonons can be comparable to the size of the system 

at small scales. Non-Fourier heat conduction models cap-
ture the non-diffusive transport of phonons at small scales. 
These models are typically more complex to solve than the 
Fourier model, but they can be used to design and opti-
mize micro/nanostructures for a variety of applications. 
Among the most significant non-Fourier models, one can 
cite single-phase-lag (SPL) [39], Green–Naghdi (GN) 
[40], Green–Lindsay (GL) [41], Moore–Gibson–Thomp-
son (MGT) [42], dual-phase-lag (DPL) [43] and nonlo-
cal single-phase-lag (NSPL) [44] models. In addition to 
the mentioned models, by taking into account the second 
derivatives of temperature within the constitutive equation 
for the higher-order heat flux, Sladek et al. [45] formulated 
an innovative gradient theory to characterize nonlocal heat 
conduction in nanostructures. With the help of different 
models introduced for heat transfer, numerous articles 
have been published on thermomechanical responses of 
thermoelastic media and structures [46–60].

Thermoelastic dissipation (TED) is a phenomenon where 
the mechanical energy of an oscillating structure is dissi-
pated as heat owing to the internal friction induced by the 
temperature variations in the material. This is caused by 
the thermal expansion and contraction of the structure as 
it vibrates. TED can be remarkable in micro/nanoscale 
devices, where other sources of damping like viscous damp-
ing and Coulomb damping are mostly inconsequential. TED 
is a principal reason for energy loss in MEMS/NEMS and 
can affect their performance and reliability. Consequently, it 
is important to understand and model TED when designing 
micro/nanoscale systems. The earliest mathematical frame-
work for TED has been established by Zener [61], in which 
he employed the classical theory (CT) of elasticity and the 
Fourier law, and achieved an analytical TED relation for 
slender beams in the context of energy approach. By using 
another approach called the frequency approach, Lifshitz 
and Roukes [62] derived a simpler expression for TED in 
classical Euler–Bernoulli beams. By means of energy and 
frequency approaches, and employing different elasticity 
theories and heat conduction models, many researchers have 
worked on the modeling of TED in small-sized mechanical 
devices, which are introduced below a selection of these 
studies.

By utilizing DPL model and extracting a size-depend-
ent formula for TED, Guo et al. [63] evaluated the influ-
ence of phase lag parameters on TED in micro/nanobeam 
resonators. By using energy approach, Zhou et al. [64] 
and Zhou et al. [65] presented analytical solutions for 
TED in small-scaled circular cross-sectional beams on the 
basis of SPL and DPL models, respectively. According 
to CT and the Fourier model, Zuo et al. [66] developed a 
theoretical framework for computing TED value in aniso-
tropic piezoelectric microbeam resonators. Based on DPL 
model, Kim and Kim [67] established a mathematical 
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formulation to illuminate the impact of phase lags on 
TED in micro/nanorings with circular cross section. In 
the context of CT and the Fourier model, Zheng et al. 
[68] implemented Rayleigh–Ritz method to attain an 
analytical solution for TED in small-sized tubular shells 
with arbitrary boundaries. Kumar and Mukhopadhyay 
[69] provided a mathematical formulation on the basis 
of nonlocal theory (NT), modified couple stress theory 
(MCST) and MGT model to estimate the amount of TED 
in nanobeam resonators. By accounting for surface effect 
and exploiting DPL model, Shi et al. [70] established a 
size-dependent TED model for nanobeams. Borjalilou 
and Asghari [71] employed MCST and DPL model to 
highlight size effect on TED variations in miniaturized 
rectangular plates. Within the framework of MCST and 
the Fourier law, Yang et al. [72] rendered a theoretical 
model for TED in rectangular micro/nanoplates with 
three-dimensional (3D) heat conduction. With the aid of 
MCST and nonlocal dual-phase-lag model, Ge and Sarkar 
[73] developed a comprehensive model to assess TED in 
rectangular cross-sectional micro/nanoring resonators. In 
addition to the mentioned cases, many other papers have 
been published in the field of TED calculation by analyti-
cal method in different structures [74–89].

The aforementioned content highlights that, up until 
now, TED modeling in micro/nanobeam resonators with 
circular cross section has been conducted solely in the 
framework of SPL and DPL heat conduction models, 
utilizing the classical theory of elasticity and without 
accounting for the size effect in the structural domain. The 
current paper strives to establish a mathematical frame-
work for predicting TED value in small-scaled circular 
cross-sectional beams using the modified couple stress 
theory (MCST) and nonlocal single-phase-lag (NSPL) 
model for the first time. To attain this target, the coupled 
heat equation of Euler–Bernoulli beams on the basis of 
NSPL model is firstly extracted in polar coordinates. This 
differential equation is then solved to determine the tem-
perature field in the beam. By inserting the constitutive 
relations and obtained temperature field in the definition 
of TED in the context of the energy approach, a NSPL-
based mathematical relationship for TED is derived in 
the form of infinite series. In the numerical results sec-
tion, the validity of provided model is firstly surveyed by 
making a comparative analysis. After that, with the aim 
of finding out the adequate number of terms of the solu-
tion for achieving reliable results, a convergence study 
is accomplished. Eventually, via a thorough parametric 
study, the sensitivity of TED to some crucial factors such 
as thermal nonlocal parameter, size of beam, environment 
temperature and material is analyzed.

Problem Formulation

Basic Relations of Nonlocal Single‑Phase‑Lag Heat 
Conduction Model

Based on the nonlocal single-phase-lag (NSPL) general-
ized thermoelasticity theory [44, 64], the equation of heat 
conduction can be expressed via the following relation:

In the above equation, q represents the vector of heat 
flux. Moreover, symbol � = T − T0 is the temperature 
increment, in which parameters T  and T0 denote the instan-
taneous and reference temperatures, respectively. Vari-
able t  represents time. Parameter k refers to the thermal 
conductivity of material. Non-classical constants � and 
lQ stand for phase lag and thermal nonlocal parameters, 
respectively. Note that by eliminating parameter lQ form 
Eq. (1), this equation becomes the constitutive relation of 
SPL model. Furthermore, when both parameters � and lQ 
are set to zero, the NSPL-based heat equation is converted 
to the heat equation of Fourier law.

The equation of conservation of energy is given by [44]:

in which material constants � and cv represent mass density 
and specific heat per unit mass, respectively. Moreover, sym-
bol � defines thermal expansion coefficient of the material. 
Parameters E and � denote the Young modulus and Poisson 
ratio, respectively. Variable �c stands for the cubical strain 
which is equal to the trace of strain tensor � . The omission 
of heat flux vector q from Eqs. (1) and (2) provides:

Basic Relations of Modified Couple Stress Theory

According to the modified couple stress theory (MCST), 
the strain energy U of an elastic body encompassing vol-
ume Ω is expressed by [19]:

In the above equation, �ij and mij denote the components of 
Cauchy stress tensor � and deviatoric part of couple stress 
tensor m , respectively. Additionally, symbols �ij and �s

ij
 refer to 

the components of strain tensor � and the symmetric part of 
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rotation gradient tensor �s , respectively. The mathematical 
relations of these kinematic parameters are given by:

in which u represents the displacement vector, and ui stands 
for its components. Moreover, variable �i denotes the com-
ponents of rotation vector � . The non-classical constitutive 
relations in the context of MCST are expressed by:

where lM is the mechanical length scale parameter. Fur-
thermore, parameter � denotes the shear modulus, which is 
obtained via the following relation:

Coupled Thermoelastic Constitutive Relations 
of Circular Cross‑sectional Beams

Geometry and coordinate system of a circular cross-sectional 
beam with radius a and length L are demonstrated in Fig. 1. 
The beam coordinate system is represented by (x, y, z) in the 
Cartesian system and (x, r, �) in the cylindrical system. In the 
Cartesian system, the displacement field of an Euler–Bernoulli 
beam is described via the following relations:

where ux , uy and uz are displacements along the directions x , 
y and z , respectively. Also, function w(x, t) represents lateral 
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2
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1
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M
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(7)� =
E

2(1 + �)

(8)ux = −z
�w(x, t)

�x
, uy = 0, uz = w(x, t)

deflection of the beam. According to Eq. (8), normal strain 
�xx can be obtained as follows [64]:

Coupled thermoelastic constitutive relations are 
expressed by [77]:

in which �ij and �ij denote the components of strain tensor � 
and stress tensor � , respectively. Moreover, �kk refers to the 
trace of tensor � . Parameter �ij stands for the components 
of the Kronecker delta. By considering the uniaxial state of 
stress in thin beams (i.e. �yy = �zz = 0 ), Eq. (10) leads to the 
relation below:

By substituting the above equation into Eq. (10), one can 
get:

Hence, the cubical strain �c can be obtained as follows:

By inserting Eq. (9) into the above equation, the follow-
ing relation is derived:

Substitution of Eq. (8) into Eq. (5b) yields the following 
relation:

By inserting the above equation into Eq. (6), one can 
obtain:

(9)�xx = −z
�2w

�x2
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1

E
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Fig. 1   Configuration and 
coordinate system of a circular 
cross-sectional beam resonator
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NDPL‑Based Heat Equation of Circular 
Cross‑sectional Beams

By substituting Eq. (14) into Eq. (3) and simplifying the result, 
one can arrive at the following equation:

in which

In most cases, ΔZ ≪ 1 . Therefore, Eq. (17) can be expressed 
in the following form:

By introducing � = k∕�cv , the above equation can be writ-
ten as follows:

To solve the above partial differential equation, the follow-
ing simple harmonic forms are adopted for temperature incre-
ment � and lateral deflection w:

where � stands for the vibrational frequency of the beam. 
Substitution of Eqs. (21a) and (21b) into Eq. (20) results in 
the following equation:

Considering that ∇2 =
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equation can be expressed in the following form:

According to Fig. 1, one can write:
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Hence, Eq. (23) can be written in polar coordinate as 
follows:

where the Laplacian operator in polar coordinate has the 
following form:

Temperature Distribution in the Circular 
Cross‑Sectional Beam

According to Eq. (26), it can be concluded that the partial dif-
ferential Eq. (25) is a Bessel type equation with respect to r . 
Therefore, the solution of Eq. (25) can be expressed as follows:

where Ji represents ith-order Bessel function of the first 
kind. In addition, Aij , Bij and �ij are unknown constants that 
must be determined. Given no extension or contraction in 
the neutral plane, temperature amplitude in this plane should 
be zero. Consequently, for i� = n� ( n = 1, 2, 3,… ), we have 
Bij = 0 . In addition, by considering the right side of Eq. (25) 
and orthogonality property of trigonometric functions, one 
can infer that Aij = 0 for i ≠ 1 . Given these points, Eq. (27) 
can be written in the following simpler form:

It is assumed that the surface of the beam is thermally 
insulated. By referring to Eq. (21a), one can deduce that 
�Θ∕�r = 0 at r = a . This means that:

Based on the properties of Bessel functions, one can 
write:

By setting � = �1j∕a and utilizing the above equation in 
Eq. (29), one can reach the following characteristic equation 
to determine the value of �1j:
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Note that according to the properties of Bessel functions, the 
above equation is equivalent to equation J0

(
�1j

)
− J2

(
�1j

)
= 0 

and their roots are the same. The first ten roots of Eq. (31) can 
be seen in Table 1. By substituting Eq. (28) into Eq. (25) and 
grouping similar terms, one can get:

At this stage, we use the orthogonality property of Bessel 
functions as follows to determine the coefficient A1j:

Moreover, we have:

Hence, by multiplying the sides of Eq. (32) by rJ1
(

�1j

a
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)
 , 

integrating the result from 0 to a , and using Eqs. (33) and (34), 
the coefficient A1j is finally obtained as follows:

with

Therefore, according to Eqs. (28) and (35), temperature 
amplitude Θ can be expressed as follows:
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Derivation of TED Relation

To calculate the amount of TED in mechanical structures, 
the inverse of quality factor (Q-factor) is used. In the context 
of energy approach, TED value is computed via the follow-
ing relation [64]:

in which ΔE and Emax represent the dissipated thermoelastic 
energy and the maximum amount of strain energy per cycle 
of oscillation, respectively. In an elastic body with volume 
Ω , the amount of ΔE and Emax can be estimated by [73]:

In the above relations, the hat symbol on each variable 
denotes the highest amount of that variable in one cycle of 
oscillation. Additionally, �th

ij
 indicates thermal strain. Moreo-

ver, the operator Im stands for the imaginary part of different 
parameters. For a beam, one can write:

where

By considering Eqs. (9), (11) and (21b), and the fact that 
thermal stress is negligible compared to mechanical stress, 
one can attain:

Moreover, use of Eqs. (21a) and (37) leads to:

(37)

Θ(x, r, �) = 2a
ΔZ

�
d2W
dx2

sin�
∑∞

j=1
1

(

�21j − 1
)

J1
(

�1j
)

i��j − ��j�2

(

1 − ��j�2
)

+ i�
(

�N + �j
) J1

(�1j
a
r
)

(38)Q−1 =
1

2�

ΔE

Emax

(39a)ΔE = −�∭ Ω

�̂ijIm
(
�̂th
ij

)
dΩwith�th

ij
= ���ij

(39b)Emax =
1

2∭ Ω

(
�̂ij�̂ij + m̂ij�̂

s
ij

)
dΩ

(40)ΔE = −�∭ Ω

�̂xxIm
(
�̂th
xx

)
dΩ with �th

xx
= ��

(41)dΩ = dr ∙ rd� ∙ dx

(42)�̂xx = −Ez
d2W

dx2
= −Ersin�

d2W

dx2

(43)

Im
(

�̂thxx
)

= �Im(Θ) = 2aΔZ
d2W
dx2

sin�
∑∞

j=1
1

(

�21j − 1
)

J1
(

�1j
)

×
�j� + ��j�N�3

(

1 − ��j�2
)2 +

(

�j + �N
)2�2

J1

(�1j
a
r
)

Table 1   Values of the first ten 
terms of �

1j and Cj

j �1j Cj

1 1.841 0.987
2 5.331 0.010
3 8.536 1.528 × 10–3

4 11.706 4.292 × 10–4

5 14.864 1.647 × 10–4

6 18.016 7.618 × 10–5

7 21.164 3.996 × 10–5

8 24.311 2.294 × 10–5

9 27.457 1.409 × 10–5

10 30.602 9.132 × 10–6
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By substituting Eqs. (41), (42) and (43) into Eq.  (40) 
and integrating the result over 0 ≤ r ≤ a , 0 ≤ � ≤ 2� and 
0 ≤ x ≤ L , the relation of ΔE is obtained as follows:

According to Eq. (39b), parameter Emax for a beam can be 
written as:

By considering Eqs. (9) and (21b), one can get:

Moreover, utilization of Eqs. (15), (16) and (21b) gives:

Substitution of Eqs. (41), (42), (46), (47a) and (47b) into 
Eq. (45) and integration of result in the range of the volume 
of beam leads to:

At last, by inserting Eqs. (44) and (48) into Eq. (38), one 
can achieve the following TED expression for circular cross-
sectional beams according to MCST and NSPL heat conduc-
tion model:

where Cj represents the weighting coefficient defined by the 
following relationship:

The values of sequence Cj for its first ten terms are given 
in Table 1. As can be seen, the value of the terms of sequence 
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Cj shrinks rapidly. By referring to Eq. (7), the TED relation in 
Eq. (49) can be expressed as follows:

Considering that the TED relation in Eq. (51) is an infi-
nite series, it is necessary to account for a finite number of 
terms of the mentioned relation to extract the numerical 
results. For this reason, the relationship of TED, including 
its first n terms, can be shown as follows:

Indeed, in the above equation, q−1
j

 represents the j-th 
mode of thermoelastic dissipation.

Numerical Results and Discussions

Model Validation

To assess the correctness of established model, the out-
comes of this work are compared with those extracted by 
Zhou et al. [64] on the basis of classical elasticity the-
ory and SPL model. Note that to derive the results in the 
framework of CT and SPL model, it is enough to set the 
values of lM and lQ to zero in the formulation developed in 
this article. In other words, lM = �N = 0 should be placed in 
TED relationship presented in Eq. (51). By considering the 
abovementioned explanations, TED variations against the 
vibration frequency � is depicted in Fig. 2 for a beam with 
radius a = 100 nm at T0 = 300 K . In this figure, curves 
of Q−1

1
 and Q−1

10
 are drawn. Thermomechanical properties 

of the beam material are: E = 160 GPa , � = 2330 kg∕m3 , 
cv = 699.57J∕kg K , k = 150 W/m K , � = 2.6 × 10−61∕K 
and � = 4.02 ps . The perfect match between the results 
derived through the relation provided in this article and 
those reported by Zhou et al. [64] implies the validity and 
accuracy of the established formulation.

Convergence Analysis

In this section, a convergence study is done to determine 
how many terms of TED relation in Eq. (51) can lead to a 
convergent and sufficiently accurate answer. To extract the 
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results, a silicon (Si) beam at a temperature of T0 = 300 K 
is considered. The material properties of silicon at the 
mentioned temperature are given in Table  2 [90]. By 
assuming lM = 0.5 μm and lQ = 150 nm , Figs. 3a and 3b 
indicate the variations of thermoelastic dissipation modes 
q−1
1

 , q−1
2

 , … and q−1
10

 with vibration frequency � for 
a = 50 nm and a = 500 nm , respectively. It is clear that for 
both the values of a = 50 nm and a = 500 nm , and 
throughout the investigated frequency range (i.e. 
10 MHz ≤ � ≤ 107 MHz ), the value of q−1

1
 is greater than 

the values of q−1
2

 to q−1
10

 by a large distance, so that q−1
1

 is at 
least 104 times q−1

10
 . Based on this, it can be concluded that 

the terms of sequence q−1
j

 are descending with a high rate.
Figure  4a shows the values of TED by taking into 

account the first, fifth, ninth and tenth terms of Eq. (51) 
(that is Q−1

1
 , Q−1

5
 , Q−1

9
 and Q−1

10
 ). In these diagrams, it is 

assumed that a = 50 nm , lM = 0.5 μm and lQ = 150 nm . As 
it is clear, the difference of the results is so small that it 

cannot be easily recognized from the figure. Moreover, the 
changes of ratio Q−1

n
∕Q−1

10
 for n = 1 , 5 and 9 with respect 

to vibration frequency � are portrayed in Fig. 4b. As can 
be seen, this ratio is greater than 0.996 for n = 1 and is 
almost equal to one for n = 9 . From this, it can be stated 
that accounting for the first ten terms of the relationship 
presented for TED (that is, the value of Q−1

10
 ) can provide 

precise and convergent outcomes.
Figure 5 is similar to Fig. 4, with the only difference 

that it is drawn for a beam with cross-sectional radius 
a = 500 nm . In Fig. 5a, it is apparent that at high frequen-
cies, the value of Q−1

1
 is somewhat lower than the values 

of Q−1
5

 , Q−1
9

 and Q−1
10

 , although at low frequencies, the four 
mentioned values are almost identical. As can be readily 
seen in Fig. 5b, the values of Q−1

1
∕Q−1

10
 and Q−1

5
∕Q−1

10
 are 

greater than 0.86 and 0.99, respectively. In addition, the 
value of Q−1

9
∕Q−1

10
 in the entire range under study for the 

vibration frequency � is almost equal to one. Hence, con-
sidering Figs. 4 and 5, it can be said that the inclusion of 
the first ten terms of Eq. (51), i.e. computing the amount 
of Q−1

10
 , guarantees the convergence of the obtained result.

Fig. 2   Comparison study 
for evaluating the validity of 
developed formulation with the 
results of Zhou et al. [64]

Table 2   Thermomechanical 
properties of silicon, gold 
and diamond at reference 
temperature T

0
= 300 K

Material E (GPa) � � (kg∕m3) k (W∕mK) �cv (J∕m
3 K) � (10−6∕K) � (ps)

Silicon 160 0.22 2300 150 1.6 × 106 2.6 4.04
Gold 82 0.4 19,300 320 2.5 × 106 15 90.4
Diamond 1070 0.18 3520 2000 1.83 × 106 1.1 10.8
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Fig. 3   Variations of thermoe-
lastic dissipation modes q−1

1
 , 

q−1
2

 , … and q−1
10

 with vibration 
frequency � for a a = 50 nm 
and b a = 500 nm
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Parametric Analysis

This section deals with the role of key factors such as the 
mechanical length scale parameter lM , thermal nonlocal 

parameter lQ , beam size, reference temperature T0 and beam 
material in the amount and pattern of changes of TED. To 
this aim, except for the cases where the sensitivity of TED 
value to the material of the beam or reference temperature 

Fig. 4   Convergence analysis for 
a beam with radius a = 50 nm 
(a) Q−1

1
 , Q−1

5
 , Q−1

9
 and Q−1

10
 (b) 

Q−1
n
∕Q−1

10
 for n = 1 , 5 and 9
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Fig. 5   Convergence analysis for 
a beam with radius a = 500nm 
a Q−1

1
 , Q−1

5
 , Q−1

9
 and Q−1

10
 and b 

Q−1
n
∕Q−1

10
 for n = 1 , 5 and 9



	 Journal of Vibration Engineering & Technologies

Fig. 6   Impact of mechanical 
length scale parameter lM on 
TED variations with vibration 
frequency � a a = 50 nm and b 
a = 500 nm
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is investigated, a beam made of silicon at the reference tem-
perature T0 = 300 K is considered.

In Fig. 6a and b, the impact of mechanical length scale 
parameter lM on TED value is explored for beams with cir-
cular cross-sectional radius a = 50 nm and a = 500 nm , 
respectively. In these figures, the thermal nonlocal parameter 
is supposed to be lQ = 150 nm . As can be seen, for both the 
values adopted for the radius and throughout the considered 
interval for the vibration frequency, the larger value of lM 
weakens TED. Another noteworthy point is that due to the 
larger radius in Fig. 6b, the impact of increasing the amount 
of lM on TED value is reduced, providing further evidence 
for the reduction of size effect in bigger dimensions.

Figure 7 examines the influence of thermal nonlocal 
parameter lQ on TED alterations against vibration frequency 
� . Figure 7a and b are plotted for a beam with geometric 
specifications a = 50 nm and a = 500 nm , respectively. 

To extract these curves, it is assumed that lM = 0.5 μm . 
According to the obtained results, at low frequencies (i.e. 
𝜔 < 100 MHz ), the effect of thermal nonlocal parameter on 
the amount of TED is trivial, and the difference between the 
predictions of SPL and NSPL models is imperceptible. At 
intermediate frequencies (i.e. 100 MHz < 𝜔 < 5 × 105 MHz 
for a = 50 nm , and 100 MHz < 𝜔 < 5 × 104 MHz for 
a = 500 nm ), thermal nonlocal parameter attenuates TED 
value, but at high frequencies, this impact is reversed and 
TED value estimated by NSPL model gets higher than that 
anticipated by SPL model. Another thing that is evident in 
these figures is that the inclusion of thermal nonlocal param-
eter increases the number of peak points in TED curve, 
although the highest TED value occurred in the range under 
investigation of vibration frequency belongs to SPL model. 
Additionally, as expected, due to the larger dimensions of 
beam in Fig. 7b compared to Fig. 7a and the diminution of 
size effect, the difference between the estimates of NSPL 
and SPL models in Fig. 7b is smaller, especially at low and 
intermediate frequencies.

For different values of mechanical length scale parameter 
lM , the variations of TED with the cross-sectional radius 
a are shown in Fig. 8. The amount of thermal nonlocal 
parameter is considered as lQ = 150 nm . According to the 
obtained results, regardless of the radius of the cross section 
of the beam, the higher the value of lM , the smaller value 
is estimated for TED. It is also evident that as the radius 
enlarges, the disparity in TED values obtained for different 
values of lM dwindles, which is relevant to the weakening 
of size-dependent behavior. Additionally, the comparison 
of Fig. 8a–d reveals that the influence of incorporating the 
couple stress effect is more pronounced at high frequencies 
compared to intermediate and low frequencies.

In Fig. 9, the dependency of TED value on radius a is 
appraised for different amounts of thermal nonlocal param-
eter lQ and vibration frequency � . To obtain the results, it 
is supposed that lM = 0.5 μm . As it can be seen, in lower 
frequencies (Fig. 9a and b), the inclusion of thermal nonlo-
cal parameter leads to a diminution in TED value, but with 
increasing frequency (Fig. 9c), the reducing effect of lQ on 
TED value weakens, and becomes an increasing effect at 
higher frequencies (Fig. 9d). In addition, in general, it can be 
said that for larger values of thermal nonlocal parameter, the 
value of the radius where the maximum TED value comes 
about enlarges.

Figure 10a and b exhibit the impact of temperature 
reference T0 on the variations of TED with vibration fre-
quency for two cases a = 50 nm and a = 500 nm , respec-
tively. To draw these figures, thermal nonlocal parameter 
lQ is considered equal to 150 nm . Also, it is assumed that 
lM = 0.5 μm . Thermomechanical properties of silicon at 
different temperatures are listed in Table 3 [90]. In gen-
eral, it can be stated that with the increase of the reference 

Fig. 7   Impact of thermal nonlocal parameter lQ on TED variations 
with vibration frequency � a a = 50 nm and b a = 500 nm
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temperature T0 , the value of TED enlarges, but it should 
be kept in mind that at the frequency where the high-
est TED value comes about at the reference temperature 
T0 = 40 K , the amount of TED computed for other tem-
peratures is lower than that predicted for T0 = 40 K . It is 
also observed that with the increase of beam radius from 
50 nm to 500 nm , the vibration frequency in which the 
maximum value of TED happens lessens for all reference 
temperatures. Moreover, at lower reference temperatures, 
TED peak points have a sharp appearance, but with the 
increase of T0 , TED curve becomes smoother at the peak 
points. It can also be seen that at the reference tempera-
ture T0 = 40 K , TED diagram has multiple peaks, but with 
increasing the value of T0 , TED curve tends to have one 
or two peak points.

To explore the influence of beam material on TED 
value, the variations of TED with respect to both the 
mechanical length scale parameter lM and thermal nonlo-
cal parameter lQ are depicted in Figs. 11 and 12 for three 
materials silicon, gold and diamond. Thermomechanical 
properties of the mentioned materials at T0 = 300 K are 
presented in Table 2. Figures 11 and 12 correspond to 
vibration frequencies � = 103 MHz and � = 106 MHz , 
respectively. In addition, the surfaces presented in these 
figures are drawn for a beam with cross-sectional radius 
a = 300 nm . Note that for a correct comparison between 
the calculated TED value for each material, the exact 
value of their mechanical length scale parameter lM and 
thermal nonlocal parameter lQ should be accessible. As it 
is clear, at lower frequency (i.e. � = 103 MHz ), regardless 

Fig. 8   Sensitivity of TED value to radius a for different amounts of length scale parameter lM a � = 10
3
MHz , b � = 10

4
MHz , c � = 10

5
MHz 

and d � = 10
6
MHz
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of the actual amount of lM and lQ for the three studied 
materials, the highest value of TED belongs to golden 
beams, but at higher frequency (i.e. � = 106 MHz ), it is 
imperative to have information about the actual value of 
lM and lQ to compare the amounts of TED. As can be seen, 
regardless of the type of material or vibration frequency, 
increasing the amount of lM attenuates TED value, but the 
influence of thermal nonlocal parameter lQ (compared to 
SPL model) strongly depends on the vibration frequency 
� and type of material, in a way that can cause a decrease 
or increase in TED value compared to the estimation of 
the SPL model.

Summary and Conclusions

In the paper at hand, the modified couple stress theory 
(MCST) and nonlocal single-phase-lag (NSPL) heat con-
duction model have been employed for the first time to 
provide a scale-dependent formulation for thermoelastic 
dissipation (TED) in circular cross-sectional micro/nano-
beam resonators. In the first step, the NSPL-based heat 
conduction equation for Euler–Bernoulli beams with cir-
cular cross section has been derived in polar coordinates. 
By employing Bessel functions and solving the differential 

Fig. 9   Sensitivity of TED value to radius a for different amounts of thermal nonlocal parameter lQ a � = 10
3
MHz , b � = 10

4
MHz , c 

� = 10
5
MHz and d � = 10

6
MHz
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Fig. 10   Influence of reference temperature T
0
 on the variations of TED with vibration frequency � for a a = 50 nm and b a = 500 nm
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equation of heat, the temperature distribution in the beam 
has been specified. The classical and couple stress-based 
constitutive relations of the beam together with the 
extracted temperature field have been inserted in the rela-
tionship of TED according to the energy approach. In this 
way, a new TED expression has been rendered in the form 
of infinite series on the basis of MCST and NSPL model. 
The accuracy of the obtained solution has been assessed by 
way of a comparison study. By performing a convergence 
analysis, the requisite number of terms of TED relation for 
achieving accurate results has been determined. Also, via 

an all-out parametric study, the influence of consequen-
tial factors such as the mechanical length scale parameter, 
thermal nonlocal parameter, cross-sectional radius of the 
beam, environment temperature and material type on TED 
has been scrutinized. The remarkable outcomes of this 
article are summarized below.

First, for all examined cross-sectional radii, vibration 
frequencies and materials, the inclusion of couple stress 
effect in the governing equations leads to a decrease in 
the TED value. Second, the increase of the ratio of beam 
radius to mechanical length scale parameter (i.e. a∕lM ) 

Table 3   Mechanical and 
thermal constants of silicon at 
different reference temperatures

T0 (K) E (GPa) � � (kg∕m3) k (W/mK) �cv (J∕m
3 K) � (10−6∕K) � (ps)

40 169.3 0.22 2330 3660 0.1 × 106 − 0.164 1511.13
80 169.2 0.22 2330 1360 0.4 × 106 − 0.472 140.46
160 168.5 0.22 2330 375 1.1 × 106 0.689 14.14
293 165.9 0.22 2330 156 1.7 × 106 2.59 3.87
400 163.1 0.22 2327 105 1.8 × 106 3.253 2.5

Fig. 11   Effect of beam material on TED value for a beam with radius a = 300 nm at vibration frequency � = 10
3
MHz . a Silicon, b gold and c 

diamond
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mitigates the impact of couple stress, so that TED value 
calculated based on the current formulation converges to 
the result of classical elasticity theory. Third, the effect 
of thermal nonlocal parameter lQ on TED depends on the 
value of the vibration frequency, in such a way that at low 
frequencies (almost 𝜔 < 100 MHz ) it does not make a sig-
nificant difference compared to SPL model, at intermediate 
frequencies (approximately 100 MHz < 𝜔 < 105 MHz ) it 
causes a decrease in TED in comparison with SPL model 
and at high frequencies (about 𝜔 > 105 MHz ) it leads to 
TED amplification. Fourth, in general, for higher ambi-
ent temperatures, a higher value of TED is estimated. 
Fifth, at lower reference temperatures (more precisely at 
T0 = 40 K ), TED diagram exhibits multiple peaks. Sixth, 
regardless of the exact value of lM and lQ , at low fre-
quencies (i.e. � = 103 MHz ), among the three materials 
silicon, gold and diamond, beams made of gold experi-
ence the highest amount of TED, but at high frequencies 
( � = 106 MHz ), for a valid comparison of TED value of 

each of these materials, the exact amount of lM and lQ of 
each material should be available.

In a few words, it can be stated that if the characteristic 
lengths of beams with circular cross section, such as their 
cross-sectional radius, are within the range of mechanical 
length scale parameter or thermal nonlocal parameter, the 
impact of size must be included in the constitutive relations 
and heat equation. It is expected that due to the use of the 
modified couple stress theory (MCST) and nonlocal single-
phase-lag (NSPL) model, the present work can help in the 
more accurate design of circular cross-sectional micro/nano-
beam resonators.

Data Availability  The raw data required to reproduce these findings can 
be accessed by directly contacting the corresponding author.
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Fig. 12   Effect of beam material on TED value for a beam with radius a = 300 nm at vibration frequency � = 10
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