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Abstract
Purpose  Defects and cyclic loads often lead to tooth-root cracks in spur gear transmission systems, affecting system stiffness, 
vibration patterns, and lifespan. Traditional methods using straight limiting lines and parabolic curves to assess reduced 
load-bearing areas due to cracks have limitations, including substantial errors with deep cracks and incompatibility with 
semi-analytical techniques.
Methods  This paper introduces a novel approach: a modified limiting line for calculating gear mesh stiffness over a broader 
range of crack depths. Gear body is treated as rigid to avoid error in gear-body deflection estimates. The modified limiting 
line is defined by minimizing the difference between mesh stiffness obtained using analytical and finite element methods at a 
particular mesh position. Moreover, the orientation is used to derive mesh stiffness at additional mesh sites for a given crack 
configuration. Also, an optimization problem involving a compatibility condition is proposed to determine the load-sharing 
ratios during double tooth pair engagement.
Results  The optimization problems, featuring nonlinear constraints, are solved using sequential quadratic programming. The 
mesh stiffness and load-sharing ratios are obtained for various crack configurations and are verified using the finite element 
method. Moreover, the dynamic responses at different crack levels are obtained.
Conclusions  The current approach demonstrates better accuracy at higher crack levels than the existing analytical methods 
and is computationally less expensive than finite element methods.

Keywords  Gear mesh stiffness · Limiting line · Tooth root crack · FEM · Load sharing ratio

Introduction

To avoid catastrophic gear failures and for vibration-based 
condition monitoring, it is of utmost significance to model 
the gear drive system precisely. The time-varying mesh 
stiffness computation has drawn considerable attention to 
enhance the gear drive model. Several calculation efforts 
have been made to investigate the mesh stiffness of spur 
gear pairs, including experimental, finite element (FE) and 
analytical methods. Yesilyurt et al. [1] used modal experi-
mental modal analysis to compute the reduction in gear tooth 
stiffness due to wearing. Munro et al. [2] proposed a method 
based on Harris maps to obtain stiffness of spur gear pair 
experimentally. They included extended contact region when 

cornering contact occurs. An experimental methodology [3] 
based on photo-elasticity technique was presented for obtain-
ing stress intensity factor which was related to variation of 
effective mesh stiffness in cracked spur gear tooth for single 
tooth pair contact. Raghuwanshi et al. [4] extended the work 
for full mesh cycle during double tooth pair contact. Later, 
the same author [5] utilized strain gauge technique to deter-
mine the mesh stiffness for cracked spur gear. Mahapatra 
et al. [6] estimated the input torque in a two-stage gearbox 
by measuring the torsional vibrations. Experimental meth-
ods [7] are accurate and reliable, However, they necessitate 
specialized methodologies and sophisticated equipments.

FE methods [8] are also accurate and often require spe-
cialized capabilities as mesh stiffness fluctuates over time. 
Cooley et al. [9] obtained gear mesh stiffness using the aver-
age slope and local slope methods. Arafa et al. [8] performed 
2d FE analysis using the commercial package COSMOS/M 
to obtain mesh stiffness. Single-toothed gear-pinion system 
was modeled, where the pinion was kept fixed at its bore, 
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and the wheel was applied a torque by loading two equal 
and opposite tangential loads at its bore. Liang et al. [10] 
obtain the linear mesh stiffness from torsional mesh stiffness 
by obtaining the angular deflections at the gear end. One of 
the key for accurate FE modelling is the element size [7]. 
Contact regions should contain high-density mesh [11] with 
controlled transition to larger elements at other locations. FE 
methods are computationally expensive.

Due to the computational challenges, mesh stiffness is 
often calculated using analytical methods. In 1980, Yang and 
Lin [12] considered the gear tooth as a non-uniform canti-
lever beam and established the analytical potential energy 
method by assuming that the total energy stored in a gear 
tooth is sum of bending energy, axial compression energy 
and Hertzian contact energy. Tian [13] later introduced the 
shearing energy into consideration. The above works did 
not consider the gear body flexibility, and the TVMS was 
overestimated. Chen and Shao [14] improved the calcula-
tion of TVMS by incorporating the gear body deflection 
derived by Sainsot et al. [15] using Mushkelliville’s circu-
lar ring theory [16]. The work was limited to single tooth 
pair engagement. Later, Xie et al. [17] adopted quadratic 
and cubic stress distributions along the tooth and gear-body 
junction to derive analytical formulas to calculate the fillet 
foundation deflections considering the structural coupling 
effect. Many researchers [18, 19] proposed different semi-
analytical models to deal with the deficiency of an analyti-
cal formula for gear body stiffness when double tooth pair 
contact occurs. Ma et al. utilized correction factors [19] 
calculated in conjunction with FE method to calculate the 
gear body flexibility. Based on contact mechanics, Dai et al. 
[20] proposed an improved mathematical model to obtain 
gear mesh stiffness. Due to cornering contact, extended 
tooth contact can occur under larger torques. Ma et al. [21] 
obtained mesh stiffness considering extended tooth contact. 
Methods for calculating mesh stiffness for healthy gears have 
evolved over time. Nevertheless, the computation of mesh 
stiffness for defective gears is being presented below.

Due to fatigue or high service load, a crack might develop 
at a high-stress concentration location [22]. Lewick et al. 
[23] studied the influence of the gear body thickness on the 
direction of crack propagation. The backup ratio, defined as 
the ratio of gear-body thickness to tooth height, affects the 
crack propagation direction. It was established that a lower 
backup ratio would cause the crack to propagate through the 
gear body. However, the crack may propagate through the 
gear body with a lower initial angle, even if with a higher 
backup ratio. Later, the same author [24], using the princi-
ples of linear elastic fracture mechanics estimated the stress 
intensity factors to model the crack propagation directions. 
Extended finite element method is beneficial for mesh stiff-
ness determination [25] for discontinuity due to faults like 
cracks.

In their crack model, Zouari et al. [26] examined the 
effects of the crack position, direction, and depth on the 
mesh stiffness and transmission error. By improving the 
model suggested by Yang and Lin [12] and examining the 
impact of the crack propagation size on the mesh stiffness, 
Tian [13] provided an analytical method for modeling the 
crack for mesh stiffness evaluation by defining a straight 
limiting line that designates an unloaded load-bearing zone 
known as the dead zone. Wu et al. [27] obtained the mesh 
stiffness of spur gear analytically under various tooth root 
crack levels, assuming straight line path for crack propa-
gation direction. They modeled the gear-rotor system with 
a lumped parameter scheme and obtained the dynamic 
responses to be analyzed. They studied the influence of 
crack on various statistical indicators. Later, three different 
crack propagation scenarios were investigated by Moham-
med et al. [28]. Firstly, they assumed the crack propaga-
tion path to be straight and uniform across the width. In the 
second case, the crack path was considered parabolic, and 
lastly, they assumed the crack path in both depth and width 
direction. Chaari et al. [29] examined the stiffness reduc-
tion phenomena in spur gear transmission by accounting for 
two forms of tooth faults: tooth breaking and spalling. Ma 
et al. [19] established a revised model to predict the mesh 
stiffness of spur gear with a tooth root crack while account-
ing for a more realistic tooth root transition curve. Zhou 
et al. [30] established a mathematical model by considering 
the gear body as a semi-planar cantilever beam and derived 
the formula for gear meshing stiffness with different crack 
levels. An analytical model was put forth by Chen and Shao 
[31] to determine the mesh stiffness of gears with cracks 
propagating along both tooth width and depth directions. 
The determination of gear body flexibility has been a chal-
lenging task for a cracked gear. Yang et al. [32] proposed 
that the root position of cracked tooth should be redefined 
using the connecting line between the crack root and the 
endpoint of transition curve. More recently, researchers 
conducted studies on mesh stiffness for high contact ratio 
gears, which are smoother compared to low contact ratio 
gears. Huang et al. [33] established a dynamic model for 
high contact ratio gears (HCR) with multiple clearances. 
Later, Nandu et al. [34] conducted a parametric study of 
the fracture properties of a non-standard HCR spur gear. 
Mohammed et al. [35] extended the analysis of HCR gears 
to the modification of gear tooth addendum dimensions 
for obtaining a high contact ratio for incipient fault detec-
tion. The dynamic responses of the gear-rotor system were 
obtained, and various time domain indicators were analyzed 
for different crack scenarios.

In most of the above works, crack is modeled by consid-
eration of a straight limiting line that designates an altered 
load-bearing zone. Mohammed et al. [36] reported that using 
the traditional straight limiting line induces error at higher 
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crack levels. To overcome this, they proposed the parabolic 
limiting curve based on variation in stress gradient which 
is difficult to identify. Cui et al. [37] utilized the concept 
of a parabolic curve as the limiting line for mesh stiffness 
evaluation, considering the universal equation of gear pro-
file. Results were compared using the traditional straight 
limiting line and the parabolic curve method, establishing 
that the latter method showed better accuracy. Recently, Liu 
et al. [38] used the parabolic limiting curve for mesh stiff-
ness evaluation in spur gear for higher crack levels consid-
ering elastoplastic deflection in gears. More recently, Yang 
et al. [39] studied two crack types, tooth root crack and sur-
face crack and utilized the straight limiting line to model the 
cracks and were able to show that the traditional limiting 
line showed accurate results even at higher crack depths. 
The results shown in the above few works seem contradic-
tory. In all of these above works, the gear body flexibility is 
determined either using the method of correction factor [19] 
or the gear body deflection equations containing the curve 
fitting constants proposed by Xie et al. [17] for healthy gears. 
The calculation errors for gear body deflections for three 
healthy gear pairs used [17] vary from 7.19 to 28.56%, and 
for structural coupling-induced tooth deflections, the error 
varies from 0.55 to 5.23%. So, we believe that the effect of 
the limiting line used on the tooth stiffness calculation alone 
has not been given priority. The error in gear-body calcula-
tions is one of the reasons for the contradicting results. Any 
error in the gear-body calculation formula will misinterpret 
the use of a correct limiting line. So, it is important to estab-
lish a standard limiting line considering the tooth stiffness 
alone that can be more generally useful. Hence, the gear 
body is assumed to be rigid in this study. A straight limit-
ing line has been shown to produce large errors at higher 
crack levels [36]. The parabolic curve established in ref36 
follows the variation of stress gradients and is difficult to be 
identified distinctively. Also, the parabolic curve presented 
by Liu et al. [37, 38] is unique with respect to crack tip and 
tooth vertex due to the nature of curve equation proposed. 
This is also discussed in more detail in "Parabolic Limit-
ing Line". Therefore, for different crack path configurations 
with same crack tip, it cannot calculate the mesh stiffness 
accurately. Therefore, a modified limiting line that connects 
the crack tip but is not constrained to the tooth vertex and 
is more suitable to be used in conjunction with FE method 
is established here. To embolden the relevance of the novel 
approach, the results of an illustrative cantilever beam are 
compared with the existing methods. Later, the proposed 
scheme is applied to time-varying tooth stiffness calcula-
tion for spur gear under various crack configurations. A 
minimization problem with nonlinear constraints is formu-
lated by acquiring the mesh stiffness using the FE method. 

Further, the sequential quadratic programming (SQP) [40] 
algorithm is implemented to solve for the obliquity of the 
limiting line. The proposed method requires FE simulation 
at a particular gear meshing position during single tooth pair 
contact to determine the orientation of the modified limiting 
line. Later, the same orientation can be utilized to obtain 
tooth stiffness at other mesh positions for a particular crack 
configuration. Also, an improved load-sharing calculation 
approach is proposed for tooth stiffness calculation during 
double tooth pair meshing.

To generate the dynamic responses of the system, the 
estimated time-varying tooth stiffness is introduced to the 
dynamic model. The results are analyzed in both frequency 
and time domain. Further, statistical indicators are used to 
quantify the crack characteristics. The structure of the paper 
is as follows:

"Traditional Time-Varying Tooth Stiffness Model for 
Cracked Tooth" describes the existing tooth stiffness mod-
els for cracked teeth of spur gear. The modified limiting line 
and, subsequently, the proposed model for tooth stiffness cal-
culation is developed in "Proposed Tooth Stiffness Model for 
Cracked Case". The FE modeling for time-varying stiffness 
evaluation is explained in "Finite Element Method for Tooth 
Stiffness Evaluation". "Results and Discussion" presents the 
results and discussion.

Traditional Time‑Varying Tooth Stiffness 
Model for Cracked Tooth

The existing analytical method for mesh stiffness evalua-
tion requires that the gear tooth be treated as a cantilever 
beam with a continuously varying cross-section. Due to the 
emergence of a crack, the cross-sectional area and moment 
of inertia of a defective gear tooth are reduced. Here, the 
potential energy method [13] is employed to determine the 
tooth stiffness of healthy teeth. It is assumed that the gear 
is static, and the contact force traverses the involute profile 
of the non-uniform cantilever beam being fixed at the base 
circle. We take into account the more realistic scenario when 
the tooth is fixed on the dedendum circle. As depicted in 
Fig. 1, the tooth profile is composed of three distinct curves: 
the involute curve CD, the straight line BC, and the circular 
fillet curve AB. Potential energy owing to bending, shearing, 
and axial compression generated by force F at a distance x 
from D is provided by Eqs. (1), (2), and (3), respectively 
[13]. F is resolved into transverse and axial directions as Ft 
and Fa, respectively. x, d and L are defined in Fig. 1. d1 and 
d2 are distances from Y-axis in the opposing directions from 
C to B and B to A. α1 is the pressure angle.
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where kb, ks and ka are gear tooth stiffness due to bending, 
shearing and axial compression, respectively. E and G are 
the modulus of elasticity and rigidity of the gear material, 
respectively. In the traditional approach [9], the Hertzian 
contact stiffness was independent of the contact force. Here, 
load-dependent Hertzian contact stiffness [17, 38] is used 
(Eq. (4)). W is the gear face width. Hertzian contact stiffness 
[17] (kh) is given by

The area moment of inertia Ix and area of cross-section 
Ax in Eqs. (1), (2) and (3) are defined as follows:

For healthy gear,

(1)
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F2
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=

d
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0
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rb and rd are base circle and addendum circle radii. rf is 
the fillet radius. Half tooth angle�2 =

�

2N
+ tan �0 − �0

, N is the number of teeth, and α0 is the pressure angle. 
The center coordinates (xc and yc) of the fillet circular arc 
(portion B to A in Fig. 1) are obtained from geometry as: 
xc = rb cos �2 − (rd + rf ) cos �f  , yc = rb sin �2 + rf  . Equiva-
lent tooth stiffness(kt) can be calculated by taking the stiff-
ness due to pinion and gear in series using the formula [13]:

The subscripts p and g, respectively, denote pinion and 
gear. Due to the appearance of a crack, the drop in tooth 
stiffness is caused by a change in geometric parameters Ix 
and Ax in Eqs. (1) to (6). Identifying the altered load-bearing 
zone due to the crack yields the geometric parameters. The 
straight and parabolic limiting lines are utilized for the afore-
mentioned purpose, which is discussed in "Straight Limiting 
Line" and "Parabolic Limiting Line" below.

Straight Limiting Line

Researchers [12, 13, 27] used the conventional limiting line 
(the green dashed line depicted as traditional in Fig. 1) to 
recognize an unloaded zone, also known as a dead zone, 
caused by a crack. The new load-bearing zone now influ-
ences the tooth stiffness calculation by affecting Ix and Ax 
(Eq. (5)) for the bending and shearing phenomenon. How-
ever, the axial compression energy [13] is not impacted.

For cracked gear [27],

where Lx is given by Eq. (5) and Lxc = rb sin �2 − q cos � , 
here, q is the crack length, and β is the crack orientation 
(Fig. 1). α2 is the half-tooth angle. The different crack cases 
can be found in Tian’s work [13].

Parabolic Limiting Line

The parabolic limiting line originally proposed by Moham-
med et al. [36] was utilized by Cui et al. [37] and Liu et al. 
[38]. It is assumed that the curve connects the tooth adden-
dum vertex and crack tip (point D), as shown in Fig. 1. The 
parabolic curve equation [38] is given by

(5)
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Fig. 1   Geometric parameters of cracked spur gear
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Here xD, yD are coordinates of point D and x1, y1 are 
the coordinates of the crack tip and are obtained from the 
geometry. Equation (8) is used in Eq. (7) to obtain the geo-
metric parameters to model the crack for further evalua-
tion of time-varying tooth stiffness using Eqs. (1) to (6). 
On simplifications, Eq. (8) can be re-written in the form 
Lxc = ax2 + bx + c.

W h e r e ,  a =
yD−y1

(xD−x1)
2  ,  b = −2x1

yD−y1

(xD−x1)
2  a n d 

c =
yD−y1

(xD−x1)
2 x

2
1
+ y1.

The constants a, b and c are functions of the coordinates 
of tooth vertex and crack tip and tooth vertex being always 
fixed. Therefore, the parabolic curve given in Eq. (8) repre-
sents a unique curve with respect to the crack tip. Moham-
med et al.'s [36] proposed method requires the parabolic 
curve to be fitted with the finite element results. As a, b 
and c have constant values, Eq. (8) is not appropriate to 
be used in the semi-analytical method. Hence, it is neces-
sary to establish a modified limiting line that is not unique 
and allow it to be fitted with FE results, and that will be an 
appropriate candidate for mesh stiffness evaluation under 
the crack. The novel limiting line will be developed in the 
subsequent sections.

Proposed Tooth Stiffness Model for Cracked 
Case

The mesh stiffness of a gear is the effective stiffness result-
ing from tooth and gear body flexibility. Separate calcu-
lations have been proposed for gear-body deflections and 
tooth deflections, and the load sharing connects the calcula-
tion methods. So, improving the tooth stiffness calculation 
method will improve the overall mesh stiffness. The tooth 
stiffness of spur gears is calculated by considering the tooth 
as a non-uniform cantilever beam. A fault such as a crack 
modifies the load-bearing zone and is determined by the 
effective section width. As the crack parameters affect the 
effective section width, the cross-sectional area and moment 
of inertia will likewise change proportionally. The effective 
section width is calculated based on approaches discussed 
in "Straight Limiting Line" and "Parabolic Limiting Line" 
with a straight affecting line and a parabolic affecting curve, 
respectively. Since straight affecting line produces large 
error with higher crack levels, it is not suitable for mesh 
stiffness determination. On the other hand, the parabolic 
curve, which is fixed on the tooth vertex, is not convenient 
due to reasons explained in "Parabolic Limiting Line". The 
present study uses the tooth as a cantilever beam. Hence, 

(8)Lxc =

(
yD − y1

)
(
xD − x1

)2
(
x − x1

)2
+ y1

to establish the unloaded zone, first, an illustrative simple 
cantilever beam with a growing vertical crack (Figure 23 
in appendix A) subjected to a concentrated load at its free 
end is considered to embolden our conviction to establish 
a modified limiting line in gear. For the sake of brevity, we 
keep the details in Appendix A, and only the results obtained 
for cantilever beam are shown here in Fig. 2. Figure 2a dis-
plays the comparison of stiffness of cantilever beam using 
the straight and modified (oblique) limiting line with the 
FE method.

Figure 2b shows that the percentage error is higher with 
increasing crack depth for the straight limiting line, whereas 
for the oblique limiting line considered, the percentage error 
is close to zero. The orientation of limiting line versus crack 
length is depicted in Fig. 2c. A similar oblique limiting line 
can now be established to improve the calculation of tooth 
stiffness of meshed gears.

Figure 3 depicts the modified limiting line (MLL) form-
ing an angle of θ with the horizontal axis (OX). The solid red 
line represents the crack with length q, and the crack angle 
is β with respect to the vertical Y-axis. Figure 3a shows 
the limiting line crossing the involute profile at a point P 
between tooth vertex D and point C and satisfies the rela-
tion Lxc ≥ Lh and � ≤ �s from P to D and 𝛼 > 𝛼s from P to C. 
Figure 3b displays the limiting line that meets the extended 
tooth profile and Lxc < Lh and � ≤ �s during the whole tooth 
engagement duration. The moment of inertia ( Ix′) and area 
of cross-section ( Ax′ ), along with the reduced section width, 
are given in Eqs. (9) and (10), respectively.

Section width, Lx for healthy gear is given in Eq. (5) and 
Lxc for the crack case for the proposed scheme is expressed 
in Eq. (10) below.

The bending, shearing, and axial compression stiffness 
due to the appearance of a crack are derived in Eqs. (10) 
through (16) below for two cases. Figure 3a depicts a situa-
tion when the MLL cuts the involute profile at point P, and 
for calculation of stiffness is based on case-1 (Eqs. (11) to 
(13)). On the other hand, Fig. 3b shows the condition that 
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Fig. 2   a Comparison of stiffness of cantilever. b Percentage error using the proposed method and traditional method for various crack lengths. c 
Orientation of limiting line

Fig. 3   Gear tooth with modified 
limiting line(MLL) for two 
different crack cases. a MLL 
cuts the tooth profile. b MLL 
intersects on extended tooth 
profile
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MLL meets on the extension of the involute profile outside 
the teeth, and the calculation of stiffness is based on equa-
tions in case-2 (Eqs. (14) to (16)).

Case (1): Lxc ≥ Lh and 𝛼 > 𝛼s

Case (2): ( Lxc < Lh or Lxc ≥ Lh ) and � ≤ �s
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sin � − cos �
)]2(�2 − �

)

cos �
EI′x

d�

+

d1

∫
0

12
[(

rb − rb cos �1
)

+ x cos �1
]2

EI′x
dx

+

d2

∫
d1

12
[(

rb − rb cos �1
)

+ x cos �1
]2

EI′x
dx

(15)

1
ks

=

�2

∫
−�1

1.2
(

�2 − �
)

cos � cos2 �1
GA′

x
d�

+

d1

∫
0

1.2 cos2 �1
GA′

x
dx +

d2

∫
d1

1.2 cos2 �21
GA′

x
dx

(16)

1

ka
=

�2

∫
−�1

(
�2 − �

)
cos � sin2 �1

EAx

d� +

d1

∫
0

sin2 �1

EAx

dx +

d2

∫
d1

sin2 �1

EAx

dx

The local Hertzian stiffness is calculated using Eq. (4). 
Equation (6) is further used along with equations in case-1 
and case-2 to obtain the effective tooth stiffness.

The above equations are entirely defined for the tradi-
tional limiting lines (straight and parabolic). However, the 
proposed limiting line requires the orientation θ (Fig. 3a) to 
be determined. In order to obtain the orientation (θ) of the 
modified limiting line, a minimization problem is formu-
lated, which is described below in "Formulation of Minimi-
zation Problem for Determination of Orientation of Modified 
Limiting Line".

Formulation of Minimization Problem 
for Determination of Orientation of Modified 
Limiting Line

The assumption that orientation (θ) of limiting line is inde-
pendent of the point of action and the force applied ensures 
that θ depends only on the crack parameters. On the condi-
tion that tooth stiffness obtained from finite element analysis 
at a particular gear contact position is available, the error 
is the difference between theoretical (kt) and FE obtained 
(kFEM) stiffness. In order to constrain the minimum error 
to a small positive value (near zero), the fitness function is 
formulated by the square of error (E) (Eq. (17))

The angle αs depicted in Fig. 3 is a function of θ, which can 
be obtained by solving the minimization problem (Eq. (17)). 
The constraint equation is formed by equating the coordinates 
of the intersection point of the revised limiting line and the 
involute tooth curve.

The above minimization problem with the nonlinear con-
straint (Eqs. (17) and (18)) can be solved by the method that 
will be described later in "Sequential Quadratic Program-
ming". Now, as MLL is completely defined, it can be used to 
obtain the stiffness during double tooth pair meshing.

Tooth Stiffness During Double Tooth Pair Meshing

The contact load is shared between two teeth during double 
tooth pair meshing, as shown in Fig. 4. If the individual effec-
tive stiffness of tooth-1 and tooth-2 are k1 and k2, respectively, 

(17)

Minimize f
(

�, �s
)

= E2

=
(

kFEM − kt
)2, subject to 0◦ ≤ � ≤ 90◦and

− �2 ≤ �s ≤ �max

(18)

rb
[(

�2 + �s
)

cos �s − sin �s
]

− tan �
×
[

rb
(

cos � −
(

�2 − �s
)

sin �s − cos �2
)]

+ tan � ×
((

rd + rf − rb
)

cos �2 + q cos�
)

−
(

rd + rf
)

sin �2 + q sin� = 0
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and the corresponding loads shared are F1 and F2, then from 
energy balance, the equivalent stiffness for the healthy case 
can be written as:

With 1
k1
=

1

kt1
+

1

kh1
 and 1

k2
=

1

kt2
+

1

kh2
, the effective tooth stiffness 

[17]

wherein, lsr1 =
F1

F
, lsr2 =

F2

F
 , kh1 and kh2 are respective Hert-

zian contact stiffness and kt1 and kt2 are tooth stiffness of first 
and second tooth pairs and are given by

Here, p and g represent pinion and gear, and i = 1,2 repre-
sent the first and second tooth pair, respectively.

Now, for crack case, when the first tooth (Fig. 4a) and 
subsequently, the second tooth (Fig. 4b) contains the crack, 
let the stiffness of tooth pair-1 be kc1 and tooth pair-2 be kc2 
respectively, then the equivalent stiffness can be written as 
[37]:

Here, lsr1c1 and lsr2c1 are the load-sharing ratios for the 
case when tooth pair-1 contains the crack and lsr1c2 and 
lsr2c2 are load-sharing ratios for the second case when tooth 
pair-2 has the crack and are related to the shared loads given 
by equations below:

(19)k =
k1k2

k2lsr
2
1
+ k1lsr

2
2

(20)
1

kt,i
=

1

kb,p,i
+

1

ks,p,i
+

1

ka,p,i
+

1

kb,g,i
+

1

ks,g,i
+

1

ka,g,i

(21)

kc =

⎧⎪⎨⎪⎩

kc1k2

k2lsr
2
1c1

+kc1lsr
2
2c1

for tooth pair 1 contains the crack

k1kc2

kc2lsr
2
1c2

+k1lsr
2
2c2

for tooth pair 2 contains the crack

⎫⎪⎬⎪⎭

(22)
lsr1c1 =

F1c1

F
, lsr2c1 =

F2c1

F
, lsr1c2 =

F1c2

F
, lsr2c2 =

F2c2

F

F1c1, F2c1, F1c2 and F2c2 are loads shared by tooth-1 and 
tooth-2 for two cases shown in Fig. 4a, b, respectively. The 
proposed model for obtaining load-sharing ratios for healthy 
and two crack cases is explained below.

Most of the previous works use the minimization of 
potential energy approach proposed by Xie et al. [17] for 
the determination of load-sharing ratios apart from the cor-
rection factor methods. We modify the optimization problem 
by introducing the compatibility condition. Apart from the 
potential energy to be minimum for equilibrium, the deflec-
tions of the two tooth pairs in contact must be equal without 

Fig. 4   Load sharing during 
double tooth pair engagement. 
a Crack in tooth1. b Crack in 
tooth 2

(b)(a)

F1c1

F2c1

1,1

1,2

Tooth 1

Tooth 2

Rigid gear body

Crack

F1c2

F2c2

1,1

1,2

Tooth 1

Tooth 2

Rigid gear body

Crack

Fig. 5   Sequential quadratic programming algorithm
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any transmission error. It results in a nonlinear constrained 
optimization problem.

Optimization problem:

The compatibility condition is obtained by equating the 
deflections δ1 and δ2 of tooth-1 and tooth-2, respectively. 
Hence, �2 − �1 = 0 , with �1 = �h1 + �t1 and �2 = �h2 + �t2 , 
wherein δh1 and δh2 are Hertzian contact deflections and δt1 

(23)
Minimize U =

F2
1

2k1
+

F2
2

2k2
subject to F1 + F2

= F, 0 ≤ F1 ≤ F and 0 ≤ F2 ≤ F

and δt2 are tooth deflections of tooth-1 and tooth-2, respec-
tively and are given by Eq. (24).

Therefore, the compatibility condition can be written as:

The optimization problem can be modified for the crack 
cases by substituting suitably the tooth stiffness for the first 
cracked tooth pair as kt1c and the second cracked tooth pair 
as kt2c in place of kt1 and kt2, respectively, in Eqs. (19), (21), 
(23) and (25). F1 and F2 can be appropriately replaced by 
F1c1, F2c1, F1c2 and F2c2. The above optimization problems 
are solved using the method described below in "Sequential 
Quadratic Programming".

Sequential Quadratic Programming

In this work, two problems involving minimization with 
nonlinear constraints have been proposed. One is to obtain 
the orientation of the proposed limiting line, and the other 
is to obtain the load-sharing ratios. Xie et al. [17] used the 
genetic algorithm to solve the linear constraint problem, 

(24)

�h1 =
1.275F0.9

1

E0.9W0.8
, �t1 =

F1

kt1
and �h2 =

1.275F0.9
2

E0.9W0.8
, �t2 =

F2

kt2

(25)
1.275F0.9

2

E0.9b0.8
+

F2

kt2
−

1.275F0.9
1

E0.9b0.8
−

F1

kt1
= 0

Fig. 6   3D finite element model 
of cracked gear. a FE mesh-
ing of overall gear drive. b 
Wedge elements near crack tip. 
c Smaller elements near tooth 
contact zone

(a)

(b) (c)

Crack 

S

R

T, 

Contact 

Driven 
Driving 

Table 1   Gear parameters

Pinion Gear

Number of teeth 36 36
Module 1.5 1.5
Pressure angle 20

◦

20
◦

Modulus of elasticity 2.1 × 105 N∕mm2 2.1 × 105 N∕mm2

Poisson's ratio 0.3 0.3

Fillet radius 0.1 mm 0.1 mm

Hub radius 12 mm 12 mm

Torque 10,000 N mm 10,000 N mm
Gear width 15 mm 15 mm
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which is not suitable for the proposed problem here. A more 
appropriate technique, like a sequential quadratic program-
ming (SQP) algorithm, is adopted here to solve the two opti-
mization problems. Only the procedure for solving the first 
problem is presented here for the sake of brevity. Necessary 
parameters can be changed suitably to solve the second prob-
lem. The objective of the optimization problem formulated is 
to find �, �s that minimizes f

(
�, �s

)
 subject to g

(
�, �s

)
= 0 . 

The Lagrangian function [41] of the problem L(�, �s, �) can 
be expressed as:

Here, � is the vector of multipliers of equality con-
straint. If we denote �k =

(
�, �s

)T  , the Lagrangian 
function of the current problem can be written as 

(26)L(�, �s, �) = f
(
�, �s

)
+ �g

(
�, �s

)T

L
(
�k, �k

)
= f

(
�k
)
+
(
�k
)T
g
(
�k
)
. The quadratic program-

ming (QP) sub-problem can be constructed by Taylor series 
approximation [41] as:

Here, λk is the Lagrangian multiplier associated with this 
QP. ∇ is the operator for partial derivative. H is the Hes-
sian matrix of the Lagrangian function. Solving the Eq. (27) 
results in a solution vector d = θ − θk. The solution converges 
when the vector d is less than the relative tolerance of 0.0001 
and when Karush–Kuhn–Tucker (KKT) criteria [41] are sat-
isfied. In this problem, �k =

(
� �s

)T . The flow chart of the 
SQP algorithm to solve the nonlinear constraint problem is 

(27)
Minimize ∇L

(

�k, �k
)T + 1

2
dTHL

(

�k, �k
)

d over d

=
(

� − �k
)

∈ ℝ2 subject to g
(

�k
)

+ ∇g
(

�k
)Td = 0

Fig. 7   Mesh stiffness calculation flow diagram using modified limiting line
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depicted in Fig. 5. A more detailed description of SQP can 
be found in reference [41].

Finite Element Method for Tooth Stiffness 
Evaluation

FE method has been used as an efficient and accurate tool 
for calculating time-varying mesh stiffness in spur gears. A 
three-dimensional model of spur gear with tooth crack, as 
shown in Fig. 6, is established here to calculate the tooth 
stiffness. The gear body is defined as rigid by assigning a 

modulus of elasticity more than ten times that of the tooth 
material. For formation of a straight crack in ABAQUS, 
a partitioning strategy is used. The partitioning surface is 
defined as a seam so that nodes on crack surfaces do not 
interact with each other. Crack is then created, and crack 
front and crack propagation direction are selected along 
the seam. Contour integral method [42] is used to simu-
late the crack. Partitioning near the crack tip (Fig. 6b) 
is done to decrease the element size. Near the crack tip, 
wedge elements (Fig. 6b) are formed, whereas, outside the 
first contour, hexahedral C3D8 elements with swept mesh-
ing technique are used. Element sizes near the contact teeth 
(0.05 mm) and near crack front (0.01 mm) are chosen to be 
very small (Fig. 6b, c) in comparison with global element 
size of 1.2 mm.

A quasi-static approach is employed to determine the 
time-varying tooth stiffness. Gears are rotated gradually to 
simulate different mesh positions. Contacts between mesh-
ing tooth pairs are defined with a penalty approach for four 
tooth pairs shown in Fig. 6a. The driven gear is kept fixed, 
and the driving gear is subjected to a torque T (Fig. 6b). The 
gear parameters are listed in Table 1. The torsional deflec-
tion (θ) is obtained at the hub surface of the driven gear. The 

Fig. 8   Mesh stiffness com-
parison between FEM and 
analytical methods (straight and 
parabolic limiting line) for crack 
levels. a 0 and 10%, b 40 and 
50% for 20° crack angle
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Table 2   Percentage difference 
using different analytical 
methods

Crack 
depth 
(%)

Difference 
(%) = kfem−kanalytical

kfem
× 100

Tian Liu et al.

0 0.78 0.78
10 0.35 0.56
40 14.2 13.46
50 20.3 18.4

(a) (c)(b)

y = 521.74x + 378.19x
+ 15.814x 2.0904

0
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40

0% 10% 20% 30% 40% 50%

y = 830.08x + 695.54x
77.249x + 2.6123

0% 10% 20% 30% 40% 50%

y = 501.83x + 342.09x
+ 19.742x 1.0261

0% 10% 20% 30% 40% 50%

Fig. 9   Variation of orientation of modified limiting line with crack depth for crack angle. a 10°, b 20° and c 30°
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rectilinear stiffness (k) can be calculated for various mesh 
positions using the equation given below [43]:

The time-varying tooth stiffness is calculated for various 
straight-line cracks of different depths and orientations.

Results and Discussion

Various gear parameters displayed in Table 1 are utilized to 
obtain the tooth stiffness using FE and analytical methods. 
For FE results, the methodology explained in "Proposed Tooth 
Stiffness Model for Cracked Case" is adopted. Gear flexibility 
is negated by assuming a large value of elastic modulus to the 
gear body. Cracks are assumed to propagate from the fillet 
region of the pinion tooth in straight paths (Fig. 1). Assuming 
a theoretical full length crack to be symmetrical [27] about the 
tooth midline, the crack depth (q) can be expressed as percent-
age with respect to the full length crack (qf).

The crack length upto the tooth midline corresponds to 
a crack level of 50% irrespective of the crack orientation. 

(28)k =
T

r2
b
�

Percentage crack length =
q

qf
× 100

Results for five different health conditions of 0, 10, 20, 
40 and 50% crack levels for three different crack orienta-
tions of 10°, 20° and 30° are obtained. FE simulations 
are carried out in ABAQUS CAE environment. For a 
particular health condition, as discussed above, gears 
are gradually rotated to obtain the torsional deflections, 
and they are further used in Eq. (28) to obtain the time-
varying tooth stiffness. The analytical tooth stiffness for 
healthy gear is obtained using Tian's method [13] using 
Eqs. (1) to (6) given in "Traditional Time-Varying Tooth 
Stiffness Model for Cracked Tooth". To model the crack 
using existing methods, Tian's straight limiting line [13] 
and Liu et al.’s parabolic limiting curve [37, 38], as dis-
cussed in "Straight Limiting Line" and "Parabolic Limit-
ing Line", respectively, are adopted. The tooth stiffness 
obtained using conventional limiting line methods is com-
pared with FE results in "Comparison of Tooth Stiffness 
Using FEM and Traditional Method". The orientation of 
the modified limiting line is determined by solving the 
minimization problem as depicted in Eqs. (16) and (17) 
using the sequential quadratic programming algorithm 
explained in "Sequential Quadratic Programming". To 
thoroughly define the MLL for each crack configura-
tion, only one FE simulation is performed at a particular 
gear meshing position. The same MLL is used to deter-
mine the mesh stiffness for other mesh positions for that 
crack configuration. Variation of the orientation of the 
new limiting line with respect to different crack levels is 

Fig. 10   Variation of orientation 
(θ) of limiting line with crack 
depth percentage for increasing 
crack angle
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studied in "Determination of Orientation of the Proposed 
Limiting Line". The orientation of MLL is curve fitted 
for a few crack percentages. The polynomial fitted curve 
is later used to obtain orientation at other crack levels. 
Now, as the MLL is completely defined for a particular 
configuration, it is used to calculate the tooth stiffness 
during double tooth pair contact. The load sharing is first 
determined, and the proposed method is verified using FE 
method and the existing analytical method in "Verifica-
tion of Load-Sharing Ratios During Double Tooth Pair 
Meshing". Finally, the time-varying tooth stiffness is 
obtained using the proposed method, and the results are 
compared with the FE and existing methods. A complete 
flow diagram for time-varying tooth stiffness calculation 
is given in Fig. 7.

Comparison of Tooth Stiffness Using FEM 
and Traditional Method

This section compares the time-varying tooth stiffness 
obtained with the results obtained by FE method with Tian's 
straight-line method [13] and Liu et al.'s parabolic curve 
[38].

Stiffness for healthy gear and three crack depths of 10, 40 
and 50% for 20° crack angles are compared in Fig. 8. The 
percentage difference using various methods is shown in 
Table 2. The deviation of stiffness using the analytical and 
FE methods is minimal (less than 1%) for lower crack levels 
of 0 and 10%. However, with higher crack levels of 40 and 
50%, deviations of stiffness using the traditional limiting line 
(straight) are 14 and 20%, respectively, as compared to FE 
method. Mohammed et al. [36] established similar results 
with higher crack levels. Liu et al.'s parabolic curve method 
only slightly improves the tooth stiffness at the higher crack 
levels compared to the straight limiting line. Therefore, for 
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Fig. 11   Load sharing ratios during first cracked tooth pair for various crack levels. a 0% crack, b 20% crack, c 40% crack, d 50% crack
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higher crack levels, both straight line and parabolic curve 
methods fail to calculate mesh stiffness accurately.

Determination of Orientation of the Proposed 
Limiting Line

As discussed in the last section, both the existing methods 
fail to model the crack accurately for higher crack levels; 
therefore, the modified limiting line (MLL) is incorporated 
to calculate the tooth stiffness of the gear pair. The modified 
limiting line is chosen as an oblique straight line (Fig. 3) 
in accordance with the discussions made for the cantilever 
problem in "Proposed Tooth Stiffness Model for Cracked 
Case". So, the orientation (θ) of the limiting line is of para-
mount importance, which is determined by the approach out-
lined in "Formulation of Minimization Problem for Deter-
mination of Orientation of Modified Limiting Line". The 
objective function formed in Eq. (17) with the nonlinear 
constraint (Eq. (18)) is solved using the sequential quadratic 
programming algorithm described in Fig. 5. The lower and 
upper bounds of θ are suitably selected. Figure 9a–c dis-
play the variation of θ against various crack depths for three 

different crack angles of 10°, 20° and 30°, respectively. A 
polynomial fit is obtained with respect to crack depths. The 
R-squared values for each orientation are above 90%.

Moreover, the curve fitting equations displayed in Fig. 9 
can be employed to obtain θ for various other crack levels 
for specific crack angles. Figure 10 shows the variation of 
orientation of limiting line with respect to crack percentage 
and orientations. The variation of blue to red color denotes 
an increase in limiting line angle. The orientation of MLL 
tends to increase with increase in crack percentage for all 
crack angles. The value of θ at lower crack levels tends to 
rise slightly with increasing crack angle, but as crack pro-
gresses, the rate of increase of θ with respect to crack orien-
tation decreases. At 50% crack level, the value of θ decreases 
from 10° to 30° crack angle. The reason may be attributed to 
the increase in unloaded zone area towards the gear base due 
to the slant nature of crack path at higher crack angles. With 
lesser crack levels, the above phenomenon has little influ-
ence. As approximate equations for θ are available for vari-
ous crack angles, the tooth stiffness can be obtained for any 
crack level between 0 to 50%. Now, the analytical method 
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Fig. 12   Load sharing ratios during second cracked tooth pair for various crack levels. a 0% crack, b 20% crack, c 40% crack, d 50% crack
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can be incorporated for various gear contact positions to 
calculate the time-varying tooth stiffness.

Verification of Load‑Sharing Ratios During Double 
Tooth Pair Meshing

The accuracy of load sharing is important for accurate deter-
mination of tooth stiffness in gears. Contact ratio greater 
than one ensures that there is variation in tooth contact. In 
the present study, variation of tooth contact between single 
and double tooth pairs occurs due to a contact ratio of 1.693. 
The contact loads using FE method are obtained by request-
ing the contact forces for relevant surfaces in the history 
output request in ABAQUS CAE platform. The analytical 
contact loads are obtained using the method established 
by Xie et al. [17] and the proposed method that introduces 
the compatibility condition as outlined in "Tooth Stiffness 
During Double Tooth Pair Meshing". Results are compared 
in Figs. 11 and 12 for various crack depths for 10° crack 

orientation. The pinion rotation angle is from tooth base to 
addendum.

The total contact load is approximately 394.14 N, corre-
sponding to a 10 Nm torque. As the gears rotate, the cracked 
tooth moves from first tooth pair to second tooth pair posi-
tion (Fig. 4). Figure 11 displays the shared loads during the 
position when crack is within the first tooth pair. The con-
tact loads tend to decrease slightly for the first tooth, with a 
marginal increase in contact load for the second tooth. This 
is because the weakened tooth shares lesser load than the 
healthy tooth. This fact is also true for the second scenario 
when the crack is within the second tooth pair.

There is a reduction in shared load for the second tooth 
(cracked) and an increase for the first tooth, which is the 
healthy now. The discussions above for both scenarios estab-
lish the fact that the load-bearing capacity of a cracked tooth 
always reduces, and more load is shared by the healthy tooth. 
With an increase in crack depths from 0 to 50%, there is 
more reduction in shared load by the faulty tooth for both 
the cases (Figs. 11a–d, 12a–d). This also hints at the nature 
of mesh stiffness variation for the faulty and healthy tooth, 
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Fig. 13   Mesh stiffness comparison for different methods for crack angle of 10° for various crack levels of a 10%, b 20%, c 40% and d 50%
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which will be discussed later. The proposed method for load-
sharing calculation matches well with the existing method 
and FE method. However, the computational time is lesser 
for the proposed scheme (37.701483 s) compared with the 
existing method (58.211 s) in MATLAB platform. This is 
because the sequential quadratic programming searches for 
a local minimum, whereas the genetic algorithm used by 
Xie et al. [17] searches for a global minimum. The proposed 
scheme works well with the compatibility conditions.

Verification of Time‑Varying Tooth Stiffness

In this section, the tooth stiffness obtained using the pro-
posed method is verified using FE results. In addition, 
the proposed method is compared with the existing Tian's 
straight line [13] and Liu et al.'s [38] parabolic curve method. 
The tooth stiffness for traditional straight limiting line and 
parabolic limiting line are calculated as described in "Tra-
ditional Time-Varying Tooth Stiffness Model for Cracked 
Tooth". The orientation of the limiting line obtained for a 
particular gear meshing position during single tooth pair is 
used to obtain the tooth stiffness during other gear mating 
positions. Load sharing during double tooth pair contact is 
determined by solving Eqs. (23) and (25). Further, the mesh 
stiffness is obtained using Eqs. (19) and (21) described in 
“Tooth Stiffness During Double Tooth Pair Meshing”. Fig-
ure 6 describes the complete workflow of time-varying tooth 

stiffness evaluation. Figures 13 and 14 show the comparison 
of time-varying tooth stiffness using various methods for 
two different crack orientations of 10° and 30°, respectively. 
The stiffness reduction is more during the second tooth pair 
contact, which can be explained by the fact that the reduction 
of shared load is higher with higher pinion rotation angles 
(Figs. 11, 12).

The pinion rotation angle is calculated from base to tooth 
addendum. With 10% crack level Fig. 13a for 10° crack 
angle, the existing methods and the proposed method match 
well with the FE results. With higher crack percentages of 
20, 40 and 50% in Fig. 13b–d, respectively, the deviation of 
the traditional straight line and parabolic curve method from 
the actual stiffness gradually increases.

Figure 14 depicts the mesh stiffness for 30° orientation 
crack. At higher crack levels around the 40–50% crack level 
(Fig. 14a, b), the parabolic curve approach deviates slightly 
less than the stiffness derived from the straight limiting line. 
At 10% crack depth, the outcomes are comparable to the 
stiffness obtained at 10° crack angle, and the deviations are 
lesser from the FE method. Nevertheless, the proposed tech-
nique demonstrates improved agreement in all crack situa-
tions considered above. Using a parabolic limiting line, as 
suggested by Liu et al., only marginally improves the stiff-
ness calculation at higher crack levels.

Figure 15 depicts a comparison of the mesh stiffness for 
three crack angles for two distinct crack percentages. The 

Fig. 14   Mesh stiffness com-
parison for different methods for 
crack angle of 30° for various 
crack levels of a 10%, b 20%, c 
40%, d 50%
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proposed method (Fig. 15a, c) and the FE method (Fig. 15b, 
d) provide comparable results. The decrease in orientation of 
crack reduces the stiffness more at the 50% crack level com-
pared to the 10% level. As the crack is steeper, the more is 
the tooth stiffness reduction. The rationale for the aforemen-
tioned phenomena is that a larger load-bearing zone occurs 
when the crack angle is greater, resulting in a decline in 
stiffness for the same crack percentage.

The quantification of deviation of various methods can 
be done by obtaining the errors. For all the three crack ori-
entations and crack levels considered here, the maximum 
deviation occurs at the highest pinion rotation angle. The 
pinion rotation angle is taken from base of pinion to its tip. 
The maximum percentage error is calculated at the highest 
pinion rotational angle using the Eq. (28) below:

Figure 16a–c compare the greatest percentage error while 
utilizing the standard limiting line, the proposed limiting 

(29)Error (%) =
TVMSFEM − TVMScurrent method

TVMSFEM
× 100

line, and the parabolic limiting curve, respectively. The 
inaccuracy at greater crack levels is rather considerable for 
the straight-line method. For the parabolic curve approach, 
the inaccuracy decreases marginally when the proportion 
of cracks increases by over 15%. The greatest error for the 
proposed method is less than 5%

Dynamic Response

In the preceding section, the time-varying meshing stiffness 
of spur gear for various crack configurations was verified 
using FE method and discussed. The contribution of TVMS 
for different crack scenarios on dynamic response will be 
addressed. The 6 degrees of freedom lumped parameter 
model for single-stage spur gear is shown in Fig. 17, which 
includes the lateral and torsional degrees of freedom, respec-
tively. As the responses in the x-directions are only transient 
responses without any external forces, the vibration in that 
direction is omitted from the present model.

(b)(a)

(c) (d)

Fig. 15   Mesh stiffness comparison for different crack angles. a Proposed method (10% crack), b FE method (10% crack), c proposed method 
(50% crack), d FE method (50% crack)
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The gear assembly model considers the meshing stiffness 
(kt) and damping (ct) of the gear pair along with torsional 
stiffness and damping of input (kcp, ccp) and output (kcg, ccg) 
shaft couplings. The bearings provide stiffness (kbp, kbg) and 
damping (cbp, cbg) along the line of action at pinion and gear 
locations. y1 and y2 represent the vibrations of pinion and 
gear in y-direction. m1 and m2 denote the masses of pinion 
and gear, respectively. Im, I2, I3, Ib and θm, θ1, θ2, θb are the 
inertias and torsional deflections of motor, pinion, gear and 
the load, respectively.

The motion equations are derived [27] using Newton’s 
second law.

(30)

m1
d2y1
dt2

= kt(rb1�1 − rb2�2 − y1 + y2)

+ ct

(

rb1
d�1
dt

− rb2
d�2
dt

−
dy1
dt

+
dy2
dt

)

− kbpy1 − cbp
dy1
dt

(31)

m2ÿ2 = kt(rb1�1 − rb2�2 − y1 + y2)
+ ct(rb1�̇1 − rb2�̇2 − ẏ1 + ẏ2)
− kbgy2 − cbgẏ2

(32)

I1�̈1 = kcp(�m − �1) − ccp(�̇m − �̇1)

− rb1
[

kt(rb1�1 − rb2�2 − y1 + y2)
+ct(rb1�̇1 − rb2�̇2 − ẏ1 + ẏ2)

]

(33)

I2�̈2 = −kcg(�2 − �b) − ccg(�̇2 − �̇b)

+ rb2
[

kt(rb1�1 − rb2�2 − y1 + y2)
+ct(rb1�̇1 − rb2�̇2 − ẏ1 + ẏ2)

]

(34)Im𝜃̈m = Tm − kcp(𝜃m − 𝜃1) − ccp(𝜃̇m − 𝜃̇1)

(35)Ib𝜃̈b = −Tb + kcg(𝜃2 − 𝜃b) + ccg(𝜃̇2 − 𝜃̇b)
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The differential equations of motion for the single-
stage gear system require that the mesh stiffness is pro-
vided in continuous equation form. The Fourier series 
is used to fit the TVMS obtained. Fast Fourier Trans-
form is used to obtain the frequency components with 
the corresponding amplitudes. Further, they are used to 
generate the mesh stiffness curve. Figure 18 shows the 
comparison of the Fourier fitted curve with the original 

curve for crack configuration of 50% depth and 10° crack 
angle. For the pinion having 36 teeth, the mesh stiffness 
is shown here for one complete revolution of pinion at 
1000 RPM speed. A good fit is obtained with around 2401 
number of frequency values.

The time-varying mesh stiffness damping (ct) is taken 
proportional to kt and the proportionality constant is calcu-
lated as 2.2447 × 10−6 s for a damping ratio of 0.07 using 
the method prescribed in Ref. [13]. The parameters given in 
Table 3 and suitable initial conditions are substituted into the 
differential equation for rotational speed of 1000 RPM. The 
differential equations of motion (Eq. (30) to (35)) are solved 
by a variable step, variable order solver based on numerical 
differentiation, popularly known as ODE 15 s in MATLAB 
and dynamic response of the gear pair during healthy and 
faulty states are obtained.

Figure 19 shows both the time domain and frequency 
domain responses of the acceleration signal in vertical 
direction (y-direction in Fig.  17) at the pinion location 
for various fault states. The healthy response is shown in 
Fig. 19a. The frequency spectrum shows the peaks at gear 
meshing frequency (fm = 600 Hz) and its harmonics. The 
maximum amplitude occurs at 7th harmonic. The advent of 
crack induces sidebands around the gear meshing frequency 
and its harmonics at frequencies Nfm ± nf  . Where f is the 
rotational frequency, which is around 16.67 Hz for an input 
speed of 1000 RPM, N represents the harmonics of gear 
mesh frequency, and n is a whole number. This transforms as 
peaks at the rotational period in the time domain signal. At 
20% crack level (Fig. 19b), sidebands are less prominent at 
the 7th harmonics as compared to 50% crack level (Fig. 19c). 
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Fig. 17   Single stage gear box model [20]

Fig. 18   Fourier series approximation of the original mesh stiffness 
using analytical method for 50% crack depth and 10° crack angle

Table 3   Parameters of gear-rotor system for dynamic simulation

Gear assembly property Symbol Value

Mass of pinion/gear m1/m2 0.2327 kg
Mass moment of inertia of motor Im 0.0021 kg m2

Mass moment of inertia of load Ib 0.0105 kg m2

Mass moment of inertia of pinion/
gear

I1/I2 9.6454 × 10−5 kg m2

Input motor torque Tm 11.9 Nm
Braking torque Tb 11.9 Nm
Radial stiffness of bearing kb 6.56 × 107 N/m
Radial damping of bearing cb 1.8 × 105 Ns/m
Torsional stiffness of shaft coupling kc 4.4 × 104 Nm/rad
Torsional damping of shaft coupling cc 5 × 105 Nms/rad
Input frequency f 16.67 Hz
Gear meshing frequency fm 600 Hz
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Also, the peak amplitude in time domain signal is higher for 
50% crack level as compared to 20% crack level.

In Fig. 19, the sidebands are prominent at higher crack 
levels only. So, to get a more significant influence of the 
crack on sidebands, the frequency spectrums are obtained 
for various input speeds. Figure 20 shows the 3d plot for the 
frequency spectrum for various input speed ranging from 
800 to 1500 RPM. The family of sidebands is more signifi-
cant at 1100 RPM, 1200 RPM and 1300 RPM. However, the 
peak acceleration shifts towards lower harmonics at higher 
speeds. Apart from the frequency domain characteristics, 
the time domain statistical indicators play a vital role in fault 
diagnosis using vibration monitoring. In the succeeding sec-
tion, the influence of crack on such indicators is discussed.

Influence of Crack on Time Domain Statistical Indicators

In this section, various time-domain statistical parameters like 
rms, skewness, crest factor and kurtosis are obtained from the 
residual signal. The time domain indicators [26] are briefly 
explained by Eqs. (36), (37), (38), (39). In the equations below, 
N is the number of data points, xi is the amplitude at the ith 
point of the signal, and x is the mean value of the signal.

(36)RMS =

√√√√ 1

N

N∑
i=1

(
xi − x

)2

(37)
Skewness =

N∑
i=1

�
xi − x

�

(N − 1)�3

Fig. 19   Dynamic response at 
pinion in time and frequency 
domain for various crack levels. 
a Healthy, b 20%, c 50% at 
1000 RPM input speed
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To obtain the statistical indicators, two methods have 
been utilized, which are explained below.

Method 1 Each of the statistical indicators can be 
obtained for healthy and fault cases. Percentage difference 
is calculated using the formula below (Eq. (40)).

Herein, If is the indicator of faulty response, Ih represent 
the indicator for the healthy response.

Method 2 The residual signal, representing the differ-
ence between faulty and healthy cases, contains informa-
tion about the severity of the crack. Figure 21 depicts the 
residual signal obtained for 10° crack angle for various 

(38)Kurtosis =
(1∕N)

∑N

i=1

�
x
i
− x

�4
�
(1∕N)

∑N

i=1

�
x
i
− x

�2�2

(39)Crest factor =
max(xi)

RMS

(40)Difference (%) =
If − Ih

Ih
× 100

crack levels. The peaks tend to increase as the crack level 
increases from Fig. 21a–d. In this method, the statistical 
indicators are obtained for the residual signals around the 
maximum amplitude zone.

Figure 22a displays the variation of the statistical indica-
tors for different crack levels using method 1. The skewness 
is overall the better performer among other indicators. The 
crest factor is the second-best parameter for detection of the 
fault. Both kurtosis and RMS perform badly using method 1.

The variation of statistical parameters using method 2 is 
shown in Fig. 22b. RMS is the best indicator using method 
2. All the other parameters fare very badly. The above two 
methods require that a healthy signal is available beforehand.

Conclusions

In this work, a modified limiting line is established to calcu-
late the gear mesh stiffness that can be utilized more gener-
ally for lower and higher crack levels. Gear body flexibility 
is not considered here for simplicity and to avoid any error 
due to gear body stiffness calculations. A minimization 

Fig. 20   Frequency spectrum 
for 50% crack level for different 
input speed
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Fig. 21   Residual response for various crack levels. a 10%, b 20%, c 40%, d 50%
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problem is formulated by comparing the analytical mesh 
stiffness of cracked spur gear with the finite element method 
at a particular gear orientation. The orientation of the new 
limiting line is obtained by solving the minimization prob-
lem using the sequential quadratic programming algorithm. 
Next, the orientation is used to obtain the mesh stiffness at 
other gear meshing points. Moreover, a compatibility condi-
tion is proposed in "Tooth Stiffness During Double Tooth 

Pair Meshing" in accordance with the existing minimization 
of potential energy approach for load sharing determination. 
SQP is used to solve the above optimization problem. Mesh 
stiffness is obtained for various crack levels and angles. The 
proposed method is compared with FE method, and other 
existing methods and results are analyzed for various crack 
configurations. Also, to have an overview of the contribution 
of crack on vibration, the dynamic responses are obtained, 
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and frequency and time domain analyses have been per-
formed. The following conclusions can be drawn:

•	 In practice, the mesh stiffness of a cracked gear is cal-
culated using a straight limiting line and a parabolic 
curve. The straight line generates significant inaccuracy 
at greater crack depths. In addition, the current research 
demonstrates that the shape of parabolic curve used in 
earlier studies does not significantly enhance the mesh 
stiffness estimations. The proposed model can more pre-
cisely predict the gear pair's mesh stiffness.

•	 The present semi-analytical method uses results from FE 
method to calculate the orientation of the new limiting 
line. However, it differs from the traditional FE methods 
by considering only one gear meshing position during 
single tooth pair contact for the calculation of orientation 
of limiting line. The same orientation is used to further 
to calculate mesh stiffness at other meshing points. So, 
number of FE simulations is lesser.

•	 The accuracy of orientation of the new limiting line 
depends upon the accuracy of FE method at a particular 
gear contact position for various crack configurations. 
With increase in crack length, the orientation of the 
oblique line tends to increase, which shows that most of 
the unloaded zone is closer to the crack.

•	 The crack angle also affects the orientation of the modi-
fied limiting line; as the angle of the crack grows, so does 
the orientation of the line. However, the orientation tends 
to decrease marginally as the fracture angle increases 
with increasing crack depth.

•	 The proposed scheme for calculating load-sharing ratios 
during double tooth pair meshing validates well with the 
FE method and the existing method with an improvement 
in computational time.

•	 The proposed mesh stiffness calculation method is veri-
fied using the FE method and shows significant improve-
ments compared to traditional and parabolic limiting 
lines. The maximum percentage error of mesh stiffness 
calculation using the proposed method is less than 5% 
for crack levels up to 50%. In addition, as gear body 
and tooth stiffness calculations are separate, the present 
method can be applied in conjunction with the gear body 
flexibility.

•	 The dynamic responses show modulation of healthy signal 
when crack is introduced. Family of sidebands can be seen 
with increasing crack levels in frequency domain. Vari-
ous statistical indicators are obtained using two methods 
for various crack levels. One method shows the skewness 
and crest factor as the best indicators, whereas the other 
method, considering the residual signal, shows RMS as the 
best indicator.

Appendix A Example of a Cantilever Beam 
for Establishing the Modified Limiting Line

The existing tooth stiffness evaluation methods consider the 
gear tooth as a cantilever beam fixed at its base circle. In this 
section, a cantilever whose dimensions are comparable to 
those of a gear tooth is used to illustrate the limitations of 
the traditional limiting line, and a modified limiting line is 
introduced to address the flaw. A vertical load is applied at 
the free end (Fig. 23a) so that total potential energy is sum of 
only bending energy (Ub) and shearing energy (Us) given by 
Eq. (41).

Therefore, the expression for equivalent stiffness (k) 
can be written as follows:

Dimensions of the cantilever beam are chosen similarly 
to the dimensions of a gear tooth. Length (l) = 10 mm, 
width (b) = 10 mm, depth (d) = 5 mm, length (l1) = 8.5 mm 
(Fig. 23a).

A vertical crack is assumed to propagate in the beam. 
The portion between fixed end and crack position in 
Fig.  23a, b is assumed to be rigid. The dark strips in 
Fig. 23a, b represent the traditional and modified dead 
zones, respectively. So, any crack in the beam modifies 
moment of inertia Ix and area Ax at a distance x from 
Y-axis shown in Fig. 23a, b and expressions for Ix and Ax 
are given below in Eqs. (43), (44) and (45) for different 
cases case.

For cracked beam using traditional limiting line

For cracked beam using the modified limiting line,

(41)

Bending energy Ub =
F2

2kb
=

l

∫
0

M2
x dx

2EIx
,

Shearing energy Us =
F2

2ks
=

l

∫
0

1.2F2
x dx

2GAx

(42)
1

k
=

1

kb
+

1

ks

(43)For healthy beam Ix =
bd3

12
and Ax = bd

(44)I�
x
=

b(d − a)3

12
and A�

x
= b(d − a)
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Here, a is the crack length, θ is the orientation of the 
modified limiting line. Using the traditional limiting line, 
expressions for equivalent stiffness can be directly obtained 
by replacing I′

x
 and A′

x
 in place of Ix and Ax in Eqs. (9) and 

(10). The proposed limiting line requires that θ to be deter-
mined, which is calculated by equating the strain energy 
release ( ΔU ) (Eq. (46)) with the FE method.

For different crack depths, the cantilever is simulated 
in the ABAQUS CAE platform to obtain the strain energy 
release using the J-integral approach for different crack 
depths. A 3-D model is established where the free end is 
subjected to a force of 10 N. To avoid flexibility due to 
local deformation, the location near the point of applica-
tion of load (Fig. 24a) is assigned with modulus elastic-
ity, which is twenty times the modulus of elasticity of the 
material. The load is applied at the reference point that is 
coupled to the free end of the beam. Hexahedral elements 
of type C3D8 are used for meshing. Small elements are 
used near the application of load (Fig. 24b). Wedge ele-
ments with a median axis are selected at the crack front. 
Figure 24c, d show the stresses in MPa and deflections 
(δ) in mm. The stiffness is calculated using the formula 
k = F/δ. The stiffness is obtained for crack levels.
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(45)
I′′x =

{

b(d−a+x tan �)3

12
from J toK

bd3

12
fromK to L

}

and

A′′
x =

{

b(d − a + x tan �) from J toK
bd fromK to L

}

(46)

ΔU =

a cot �

∫
0

F2(l − x)2

2E

(

12
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− 12
bd3

)

dx

+

a cot �

∫
0
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2G

(
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