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Abstract
Purpose The primary objective of this work is to analyze the effect of different system parameters on the resonance frequency 
of the linear rotor system. The effect of internal damping on the stability of the system is also investigated and a critical 
frequency ratio separating the stable and unstable regions is obtained.
Methods A continuous rotor system is modeled by considering some critical factors, like the gyroscopic and rotary inertia effects 
of disc and shaft cross-sections, internal damping, large shaft deformation, and restriction to shaft axial motion at the bearings. The 
bearings are replaced by spring-dashpot systems along both horizontal and vertical directions. The governing partial differential 
equations (PDE’s) for the vibrations of the disc along the horizontal and vertical directions are derived by employing Hamilton's 
principle. The governing equations are then reduced to a set of ordinary differential equations (ODEs) using the method of modal 
projection. The large deformation, restriction to axial motion of the shaft, and the nonlinear stiffness of the end springs yield 
nonlinearities in the system governing equations. However, only the linear system is considered in this paper.
Results and Conclusion The parameters in the dimensionless form of the governing equations are functions of some independ-
ent variables. These independent variables, on the other hand, are associated with the material and geometrical properties 
of the rotor system. The effect of the independent parameters on the system dynamics is analysed wherein the variation of 
the dependent parameters is also monitored. An appropriate design of a rotor system can be achieved through a methodical 
analysis, like the one this study addresses.

Keywords Extended Hamilton's principle · Method of modal projection · Campbell diagram · Internal damping · 
Gyroscopic effect

List of Symbols
Md  Mass of disk
L  Length of shaft
A  Cross sectional area of shaft
�  Density of shaft material
e  Eccentricity of disk mass center away 

from the geometric center
Idx  Mass moment of disc about hori-

zontal ( X -) direction (disk radial 
direction)

Idy  Polar mass moment of inertia of disk 
( Y ⇒ axial direction of the disk)

I = AR2

s
  Area moment of inertia of shaft 

cross-section
Rs  Radius of gyration of shaft 

cross-section
L1
(

l1
)

  Dimensional (dimensionless) disk 
position on shaft from left end 
bearing

Ψ1(y)  1St orthonormal mode shape
t(�)  Dimensional (dimensionless) time
U(Y , t)(u(y, �))  Dimensional (dimensionless) dis-

placement of disk along X - direction
W(Y , t)(w(y, �))  Dimensional (dimensionless) dis-

placement of disk along vertical ( Z -) 
direction
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�xand�y  Rotational displacements about 
horizontal and vertical directions, 
respectively

T   Total kinetic energy of the rotor 
system

V   Total strain energy of the shaft
re(= e∕L)  Dimensionless eccentricity ratio
rm
(

= �AL∕Md

)

  Dimensionless mass ratio
r = Rs∕L  Dimensionless radius of gyration
rg = I∕AL2 = r2  Shaft geometric parameter
rf (= Ω∕Υ)  Dimensionless frequency ratio
Ω  Spin speed of the rotor
Υ =

√

EI∕
(

�AL4
)

  Natural frequency of shaft
rdx

(

= Idx∕�AL
3
)

  Mass moment of inertia of the disc 
about x-axis

rdy
(

= Idy∕�AL
3
)

  Mass moment of inertia of the disc 
about y-axis

�n  Undamped natural frequency (dimen-
sionless) of the rotor system

G  Dimensionless gyroscopic coefficient
me  Effective mass
q0  Amplitude of excitation 

(dimensionless)
�  Dirac delta function
Cex(cex)  Dimensional (dimensionless) damp-

ing constant due to air resistance in 
horizontal direction

Cez(cez)  Dimensional (dimensionless) damp-
ing constant due to air resistance in 
vertical direction

C1(c1)  Dimensional (dimensionless) viscous 
damping constant of left bearing

C2(c2)  Dimensional (dimensionless) viscous 
damping constant of right bearing

Ci(ci)  Dimensional (dimensionless) internal 
damping coefficient

μxandμz  Dimensionless damping factor in 
horizontal and vertical direction, 
respectively

μi  Internal Damping factor
K11(k11)  Dimensional (dimensionless) linear 

spring coefficient along X - direction
K21(k21)  Dimensional (dimensionless) linear 

spring coefficient along Z - direction
K13(k13)  Dimensional (dimensionless) 

non-linear spring stiffness along 
X - direction

K23(k23)  Dimensional (dimensionless) 
non-linear spring stiffness along 
Z - direction

Introduction

Rotating machinery such as turbines, compressors, and pumps 
are extensively used in various sectors like energy generation, 
power transmission, etc. Unavoidable eccentricity between 
the center of mass of the disc away from the center of rota-
tion causes unwanted vibrations in high-speed rotating sys-
tems, resulting in unsafe working conditions as well as the 
depreciation of expensive equipment and infrastructure. 
These vibrations in rotating machinery may also lead to cata-
strophic fatigue failure. Many researchers attempt to identify 
an approach that can effectively control vibrations in the rotor 
system to avoid unwanted failure and minimize the energy loss. 
This can somewhat be achieved at the preliminary stages of 
design of a rotating system. An extensive analysis is performed 
in this paper to understand the effect of different parameters 
on the system response. The parameters in the rotor system 
modelled in this paper are functions of geometrical and mate-
rial properties. Hence, the system vibrations can be related to 
these geometrical and material properties which, on the other 
hand, will help to achieve an effective design to minimize the 
amplitude of vibrations of the rotating system.

The literature consists of preliminary investigations on both 
linear and nonlinear rotor dynamics [1–5]. Several models are 
available in the literature for analysis of rotor system vibra-
tions. They can be categorized into: (i) continuous model 
[6–28], and (ii) discrete or lumped parameter model [29–48]. 
In the lumped parameter model, inertia of the shaft is neglected 
in comparison to the inertia of the disc. The restoring force 
of the shaft is considered either a linear [45] or a nonlinear 
function [6, 7, 32, 34, 43, 47] of displacement of the disc. The 
bearing clearance is also assumed to provide a restoring force 
[5, 31, 39, 43, 47, 48]. Different models for the gyroscopic 
effect [29–32, 34, 35, 38, 40, 43, 45], hydrodynamic forces 
in the journal bearings [32, 43], internal damping [32, 33, 35, 
43–48], etc., are available in the literature which can be con-
veniently used for the analysis of a discrete rotor system.

There is a considerable number of literatures on the 
analysis of continuous rotor systems [6–28] wherein the 
inertia of the shaft is also considered along with the iner-
tia of the disc. In the continuous model, the governing 
equations of the shaft-rotor system are first derived in the 
form of partial differential equations (PDE’s) either by 
using Lagrange’s principle [3, 9, 12, 23] or Hamilton’s 
principle [6, 11–15, 18, 21, 49–51]. Several important 
factors, like the large beam deflection [13–15], rotary 
inertia [11, 13, 14, 19, 22, 23], internal damping [6, 7, 
23–26], etc., can be incorporated in the continuous system 
model. The transformation of the governing PDEs into a 
set of ODEs can be achieved by either Galerkin method 
[6, 18, 21], or Raleigh–Ritz method [3, 9, 11, 16, 23], 
or any other dimensionality reduction technique. In this 
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paper, a continuous rotor system is modelled by consider-
ing the effect of rotary inertia and gyroscopic moment of 
the disc and shaft cross sections, internal damping, large 
beam deflection and constraints to shaft’s axial motion 
at bearings. The PDE’s governing the system vibrations 
are obtained using Hamilton’s principle for which the 
energy terms are derived by following the reference [3]. 
One of the novelties of this work is the reduction of PDEs 
to ODEs by Galerkin type method of modal projection 
using orthonormal mode shapes of a beam supported by 
Kelvin–Voigt model at both ends [22, 28].

The sources of nonlinearities in a rotor system model are: 
(i) the large deflection of the shaft [13–15], (ii) restriction 
to axial motion of the shaft at the bearings [3, 13–15], (iii) 
restoring force due to bearing clearance [5, 31, 32, 39, 43, 
47], (iv) hydrodynamic forces in journal bearings [33, 44], 
etc. The effect of the geometric nonlinearities due to the 
large deflection of the shaft is negligible for small amplitude 
vibrations. In many practical cases, the effect of nonlineari-
ties is negligibly small and the linear systems might provide 
reasonably accurate results. A lot of work on the analysis of 
linear systems are available in literatures [20, 22, 28, 45]. 
Analysis of the linear rotor system is essential to determine 
the effect of system parameters on the frequency response 
curves [22, 28], phase angle plot [22], critical speeds [20, 28, 
45], forward and backward whirling motion [20, 28, 45], etc.

The geometric nonlinearities are triggered for large 
amplitude of oscillations in a rotor system. The analysis of a 
nonlinear rotor system may lead to some interesting results, 
such as fluttering [26], multivalued solutions [13–15, 25, 28, 
37, 43, 47], subharmonic motion [30, 31, 35], quasiperiodic 
motion [16, 35], chaotic behaviour [16, 35], jump phenom-
ena [13–15, 25, 28, 35, 43, 47], Hopf bifurcation [31, 43, 
47], forward and backward whirling motion [18, 20, 28–31, 
34, 38, 40, 41, 49–51], multiple loops [43, 47], Spring hard-
ening [13–15, 28, 43, 48], etc. The study of linear and non-
linear rotor systems has distinct advantages, and both yields 
meaningful insights. Both analyses should be performed to 
have a better understanding of a rotor system. In this study, 
only the linear system is addressed, serving as a foundation 
for future analyses of the nonlinear system. The derivation 
of the continuous rotor system with the addition of various 
nonlinearities, as well as the effect of independent factors on 
the linear response, are discussed in this work.

The rest of the paper is organized as follows. In the 
section  "Mathematical Modeling", the mathemati-
cal model of the rotor system is derived. The analytical 
method for obtaining the closed form solutions and the 
analysis of free vibration of the rotor system is covered 
in the section "Exact Analytical Solution and Analysis of 
Free Vibrations" followed by results and discussions in 
the section "Results and Discussion". At the end, some 

conclusions about this present work are drawn and scopes 
for future work are presented.

Mathematical Modeling

The modelling of the rotor system and the derivation of the 
governing equations of motion are discussed in this section. 
The physical system is shown in Fig. 1 wherein a rigid disc is 
mounted on a flexible shaft supported by two bearings B1 and 
B2 . The flexibility of each of these two bearings is modelled by 
spring-dashpot systems along horizontal and vertical directions 
as shown in Fig. 1c and d. These springs at each bearing are 
assumed to be isotropic with cubic nonlinear stiffness. This 
cubic nonlinearity will result in the intended symmetric bend-
ing of the shaft in the X − Y and Z − Y planes [11]. The linear 
and nonlinear spring coefficients at bearing B1 are K11 and K13 , 
respectively, and at bearing B2 are K21 and K23 , respectively. 
Accordingly, the spring forces at bearings B1 and B2 along 
horizontal ( X− ) direction are FsX1 = K11U(0, t) + K13U

3(0, t) , 
and FsX2 = K21U(L, t) + K23U

3(L, t) , respectively, where 
U(Y , t) is the displacement of the shaft along X− direction. 
The centrifugal force due to the eccentricity ( e ) of the center 
of mass (G) away from the geometric center (S) induces vibra-
tions in the rotor system. The rotor system is modelled as a 
continuous system with the inclusion of several factors like 
(i) tilting motion of disc and shaft, (ii) gyroscopic effect of 
disc and shaft, (iii) internal damping, (iv) large deformation of 
shaft, and (v) restriction of shaft axial motion at the bearings. 
The partial differential equations governing the vibrations of 
the rotor system are derived by using the extended Hamilton’s 
principle. The energy terms needed in the extended Hamilton’s 
principle are obtained from [13–15]. The governing partial dif-
ferential equations are reduced to a set of ordinary differential 
equations by the method of modal projection. In what follows, 
each of these steps are discussed in separate sections (“Deriva-
tion of Governing Equations Using Hamilton’s Principle” and 
“Derivation of the Governing Ordinary Differential Equations 
by the Method of Modal Projection”) for proper understanding 
of the development of the mathematical model.

Derivation of Governing Equations Using Hamilton’s 
Principle

According to the Extended Hamilton’s principle,

where T  and V  are the total kinetic and potential energy of 
the rotor system, respectively, Wnc is the work done by the 
nonconservative forces and � represents the variation. The 
kinetic energy of the disc and the shaft are given by [13–15].

(1)∫
t2

t1

(

�T − �V + �Wnc

)

dt = 0,
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respectively, where U̇ =
𝜕U

𝜕t
 , Ẇ =

𝜕W

𝜕t
 , �x =

�W

�Y
 , �z = −

�U

�Y
 , 

�̇�x =
𝜕𝜃x

𝜕t
=

𝜕2W

𝜕t𝜕Y
 , and �̇�z =

𝜕𝜃z

𝜕t
= −

𝜕2U

𝜕t𝜕Y
 . The subscript L1 in 

(2a)

Td =Td1 + Td2 + Td3 + Td4

=
[

Md

2
(

U̇2 + Ẇ2) +
Idx
2
(

�̇2x + �̇2z
)

+IdyΩ�̇z�x +MdΩe
(

U̇ cosΩt − Ẇ sinΩt
)]

L1
,

(2b)

Ts = Ts1 + Ts2 + Ts3

=
L
∫
0

�I
2
(

�̇2x + �̇2z
)

dY +
L
∫
0

�A
2
(

U̇2 + Ẇ2)dY

+
L
∫
0
2�IΩ�̇z�xdY ,

Eq. (2a) indicates that the quantities U̇ , Ẇ  , �x , �z , �̇�x , and 
�̇�z are evaluated at Y = L1 , which is the location of the disk 
on the shaft. The total kinetic energy of the rotor system is 
T = Td + Ts . Td1 refers to kinetic energy due to the transla-
tional motion of the disk, Td2 refers to kinetic energy due to 
the rotational motion of the disk, Td3 refers to the gyroscopic 
effect of the disk, Td4 refers to the centrifugal force acting on 
the disk, Ts1 refers to kinetic energy of the shaft in bending, 
Ts2 refers to the rotary inertia of the shaft, and Ts3 refers to 
the gyroscopic effect of the shaft.

The strain energy of the shaft (Vsh) and spring (Vsp) are 
given by [13–15]

Fig. 1  Schematic representation of a disk rotating on a flexible shaft, b rotor eccentricity, c bearing B
1
 (Left), and d bearing B

2
 (Right)
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respectively, where � is the Dirac delta function. The first 
and second integrals in Eq. (3a) are the strain energy of 
the shaft with the second integral being associated with 
the higher order deformation of the shaft. The third inte-
gral is the strain energy due to the constraint to axial 
motion of the shaft at the bearings. As mentioned earlier, 
both the bearings at Y = 0 and Y = L are considered to 
be flexible and are replaced by springs with nonlinear 
stiffness. Moreover, the stiffness of the two bearings are 

(3a)

Vsh = ∫
L

0

EI

2

{

(

��x

�Y

)2

+

(

��z

�Y

)2
}

dY

+ ∫
L

0

EA

2

(

1

4
�4
x
+

1

4
�4
z
+

1

2
�2
x
�2
z

)

dY

+ ∫
L

0

EA

4L

(

∫
L

0

(

�2
x
+ �2

z

)

dY

)

(

�2
x
+ �2

z

)

dY,

(3b)

Vsp = ∫
L

0

{

1

2
K
11

(

U2 +W
2
)

+
1

4
K
13

(

U4 +W
4
)

}

�(Y)dY

+ ∫
L

0

{

1

2
K
21

(

U2 +W
2
)

+
1

4
K
23

(

U4 +W
4
)

}

�(Y − L)dY,

assumed to be different. The potential energy due to the 
deformation of the springs at the supports are given by 
Eq. (3b).

The variation in work done by the nonconservative forces 
are given by [16, 21, 27, 28]

where Cex and Cez are the external damping coefficients along 
horizontal and vertical directions, respectively. These exter-
nal damping are caused by the resistance of the surrounding 
fluid (air or steam) on the rotor system. They are assumed 
to be viscous in nature for the simplicity of analysis. The 
bearings are considered to be isotropic with damping coef-
ficients C1 and C2 for the left (at Y = 0 ) and right (at Y = L ) 
bearings, respectively.

Substitution of Eqs. (2)–(4) into Eq. (1) leads to the par-
tial differential equations governing the vibrations of the 
rotor system along horizontal and vertical directions as

(4)

�Wnc = ∫
L

0

(

Cex

�U

�t
�U + Cez

�W

�t
�W

)

dY

+ ∫
L

0

C
1

(

�U

�t
�U +

�W

�t
�W

)

�(Y)dY

+ ∫
L

0

C
2

(

�U

�t
�U +

�W

�t
�W

)

�(Y − L)dY,

(5a)

�A
�2U

�t2
+ EI

�4U

�Y4
+Md

�2U

�t2
�L1

− Idx
�

�Y

(

�3U

�t2�Y
�L1

)

+ IdyΩ
�

�Y

(

�2W

�t�Y
�L1

)

−�I
�4U

�t2�Y2
+ 2�IΩ

�3W

�t�Y2
−

EA

2

�

�Y

{

�U

�Y

(

(

�U

�Y

)2

+
(

�W

�Y

)2
)}

−
EA

L

�2U

�Y2

L∫
0

(

(

�U

�Y

)2

+
(

�W

�Y

)2
)

dY +
(

K11U + K13U
3
)

�(Y) +
(

K21U + K23U
3
)

�L

+Cex

�U

�t
+ C1

�U

�t
�(Y) + C2

�U

�t
�L + CiI

�5U

�Y4�t
+ ΩCiI

�4W

�Y4
= MdΩ

2esinΩt�L1 , and

(5b)
�A �2W

�t2
+ EI �

4W
�Y4 +M

d

�2W
�t2

�L1 − Idx
�
�Y

(

�3W
�Y�t2

�L1

)

− IdyΩ
�
�Y

(

�2U
�t�Y

�L1

)

−�I �4W
�t2�Y2 − 2�IΩ �3U

�t�Y2 − EA
2

�
�Y

{

�W
�Y

{

( �U
�Y

)2
+
( �W
�Y

)2}}

−EA
L

�2W
�Y2 ∫

L

0

(

( �U
�Y

)2
+
( �W
�Y

)2)

dY +
(

K11W + K13W3)�(Y) +
(

K21W + K23W3)�L

+Cez
�W
�t

+ C1
�W
�t

�(Y) + C2
�W
�t

�L + CiI
�5W
�Y4�t

− ΩCiI
�4U
�Y4 = MdΩ2ecosΩt�L1 ,
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respectively, where �L1 = �
(

Y − L1
)

 , and �L = �(Y − L) . 
Note the difference between the symbols � (in Eq. (1)) and 
� ; the first one is used to represent the variation and the sec-
ond one for the Dirac delta function. Also note that the last 
two terms associated with Ci in Eqs. (5a) and (5b) are the 
bending moments due to the strain rate dependent internal 
damping along X and Z axes, respectively [23–26]. Introduc-
ing the dimensionless parameters.

u =
U

L
 , y = Y

L
 , w =

W

L
 , � = Υt  , Υ =

√

EI

�AL4
 , l1 =

L1

L

,rm =
�AL

Md

 ,  rdx =
Idx

�AL3
 ,  rdy =

Idy

�AL3
 ,  re =

e

L
 ,  rf =

Ω

Υ
 , 

rg =
I

AL2
=

AR2
s

AL2
= r2,k11 =

K11L
3

EI
 , k21 =

K21L
3

EI
 , k13 =

K13L
2

MdΥ
2
 , 

k23 =
K23L

2

MdΥ
2
 , cex =

CeXL

MdΥ
 , cez =

CeZL

MdΥ
 , c1 =

C1

MdΥ
 , c2 =

C2

MdΥ
 , 

ci =
CiI

MdΥL
3
,

the governing Eq. (5) are reduced to the dimensionless 
forms as

(6a)

(

rm + �l1

)�2u

��2
+ rm

�4u

�y4
− rmrdx

�

�y

(

�3u

��2�y
�l1

)

+ rmrdyrf
�

�y

(

�2w

���y
�l1

)

− rgrm
�4u

��2�y2

+2rmrgrf
�3w

���y2
−

rm

2rg

�

�y

(

�u

�y

(

(

�u

�y

)2

+

(

�w

�y

)2
))

−
rm

rg

�2u

�y2 ∫
L

0

(

(

�u

�y

)2

+

(

�w

�y

)2
)

dy+

(

k
11
rmu + k

13
u3
)

�(y) +
(

k
21
rmu + k

23
u3
)

�
l
+ cex

�u

��
+ c

1

�u

��
�(y) + c

2

�u

��
�l

+ci
�5u

�y��
+ rf ci

�4w

�y4
= rerf

2
sin

(

rf �
)

�l1
, and

(6b)

(

rm + �l1

)�2w

��2
+ rm

�4w

�y4
− rmrdx

�

�y

(

�3w

��2�y
�l1

)

− rmrdyrf
�

�y

(

�2u

���y
�l1

)

− rmrg
�4w

��2�y2

−2rmrgrf
�3u

���y2
−

rm

2rg

�

�y

(

�w

�y

(

(

�u

�y

)2

+

(

�w

�y

)2
))

−
rm

rg

�2w

�y2 ∫
L

0

(

(

�u

�y

)2

+

(

�w

�y

)2
)

dy

+
(

k
11
rmw + k

13
w3

)

�(y) +
(

k
21
rmw + k

23
w3

)

�
l
+ cez

�w

��
+ c

1

�w

��
�(y) + c

2

�w

��
�l

+ci
�5w

�y��
− rf ci

�4u

�y4
= rerf

2
cos

(

rf �
)

�l1
,

where the following scaling property of the Dirac delta 
function is used: �(y) = L�(Y).  These dimensionless equa-
tions are reduced to a set of ordinary differential equations 
by applying the method of modal projection in the section 
"Derivation of the Governing Ordinary Differential Equa-
tions by the Method of Modal Projection".

Derivation of the Governing Ordinary Differential 
Equations by the Method of Modal Projection

In this section, the partial differential Eq. (6) governing the 
vibrations of the rotor system are reduced to a set of ordi-
nary differential equations (ODEs) by the method of modal 
projection. Following the Galerkin type method of modal 
projection, the solution of the partial differential Eq. (6) is 
assumed in the variable separation form as

Fig. 2  Comparison of mode shapes of a beam with springs attached at both ends with that for a simply supported beam (SSB)
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where Ψi(y) is the ith orthonormal mode shape of a reduced 
system consisting of a beam supported by springs at the 
ends. For motion along x-direction, the beam is subjected to 
the boundary conditions: �

2u

�y2

|

|

|y=0
= 0 , �

3u

�y3

|

|

|y=0
= −k11u , 

�2u

�y2

|

|

|y=1
= 0 , and �

3u

�y3

|

|

|y=1
= k21u . The boundary conditions for 

motion along z-direction is obtained by replacing u by w in 
these expressions. The ith orthonormal mode shape Ψi(y) is 
obtained as [22]

w h e r e  C
2
= p3

i

(

sinhpi − sinpi
)

∕
(

2k
11
sinhpi + p3

i

(

cospi − coshpi
))

 . The eigenvalue pi can 
be determined from the following characteristic equation

Imposing the conditions k11 → ∞ , and k21 → ∞ for hard 
bearings in Eq. (9) leads to

This is the characteristic equation for a simply supported 
beam (SSB). The ith eigenvalue obtained from Eq. (10) is 
pi = i� . The mode shape Ψi(y) satisfy the following ortho-
normality conditions

The arbitrary constant C1 in Eq. (8) is rendered unique 
through the normalization scheme ∫ 1

0
Ψ2

i
(y)dy = 1 . The 

expression for this constant C1 obtained using the software 
package “MAPLE” is long and not shown in this paper.

The orthonormal mode shape for the first mode ( Ψ1(y) ) is 
plotted in Fig. 2 for different values of spring constants and 
compared with that for a simply supported beam (SSB). The 
bearings are assumed to be identical ( k11 = k21 ) in Fig. 2a. 
As a result, the mode shape is symmetric about y = 0.5 . 
In Fig. 2b, the stiffness of the bearings differs causing the 
symmetry of the mode shape about y = 0.5 to break down. 
As shown in Fig. 2, the curve for Ψ1(y) for the beam with 
springs at both ends gradually approaches the mode shape 
curve for the simply supported beam and the difference is 
hardly noticeable for k11 = k21 = 6000 . It is to be noted that 

(7)u(y, �) =

n
∑

i=1

Ψi(y)ui(�), andw(y, �) =

n
∑

i=1

Ψi(y)wi(�),

(8)Ψi(y) = C1

[

(

sinpiy + sinhpiy
)

+ C2

(

cospiy + coshpiy −
2k11

p3
i

sinhpiy

)]

.

(9)
p6
i

(

1 − cospicoshpi
)

+ p3
i

(

k
11
+ k

21

)

(

cospisinhpi − sinpicoshpi
)

+ 2k
11
k
21
sinpisinhpi = 0.

(10)sinpi = 0.

(11)
∫

1

0

Ψi(y)Ψj(y)dy = �ij, and∫
1

0

Ψi

d4Ψj

dy4
dy = ∫

1

0

Ψj

d4Ψi

dy4
dy = p4

i
�ij.

the natural frequency for the first mode of vibrations for a 
SSB obtained from Eq. (10) is p1 = � . Also, the orthonormal 
mode shapes for a SSB can be obtained as Ψi(y) =

√

2sinpiy.

To derive the governing ODEs, solutions (7) are first sub-
stituted into Eq. (6). The resulting equations are multiplied 
by the jth mode shape Ψj(y) and integrated over the domain 
[0, 1]. The governing ODEs are then obtained by applying 
the orthonormality conditions (11). For the first mode of 
analysis ( i = j = 1 ), the ODEs are obtained as

where the primes ( ′ ) denote derivative with respect to the 
dimensionless time � and

(12a)
u��
1
+ �xu

�

1
+ Grfw

�

1
+ �2

n
u
1
+ �irf w1

+
(

(� + �)u3
1
+ �u

1
w2

1

)

= q
0
sin

(

rf �
)

,

(12b)
w��
1
+ �zw

�

1
− Grf u

�

1
+ �2

n
w
1
− �irf u1

+
(

�w
1
u2
1
+ (� + �)w3

1

)

= q
0
cos

(

rf �
)

,

(13a)
�x,z =

(

ceq
)

x,z
∕me,

(

ceq
)

x,z
= cex,ez + cip

4

1
+ c1

(

Ψ1(0)
)2

+ c2
(

Ψ1(1)
)2
,

(13b)

�i = cip
4

1
∕me,

�2

n
=

rm

me

(

p4
1
+ k11

(

Ψ1(0)
)2

+ k21
(

Ψ1(1)
)2
)

,

q0 =
Ψ1(l1)

me

rer
2

f
,

(13c)
me =

(

rm + t4 − Drrdxrm
(

t5 − t6
)

− Srrgrmt1
)

,

� = −
rm

merg

(

3

2
t3Lb + Srat1t2

)

,

(13d)

G =
rm

me

(

Dgrdy(t5 − t6) + 2Sgrgt1
)

, � = k13
(

Ψ1(0)
)4

+ k23
(

Ψ1(1)
)4
,

(13e)

t1 = ∫
1

0

�1

d2Ψ1

dy2
dy, t2 = ∫

1

0

(

dΨ1

dy

)2

dy,

t3 = ∫
1

0

Ψ1

(

dΨ1

dy

)2(
d2Ψ1

dy2

)

dy,

t4 = Ψ2

1

(

l1
)

,

t5 = Ψ1

(

l1
) d2Ψ1

dy2

|

|

|

|

|y=l1

, t6 =
d

dy

(

Ψ1

dΨ1

dy

)

|

|

|

|

|y=l1

.
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In Eq. (13c), the terms Dr and Sr are associated with 
the rotary inertia of the disc and shaft, respectively. Simi-
larly, the terms Dg and  Sg in Eq. (13d) are associated with 
the gyroscopic effects of the disc and shaft cross-sections, 
respectively. Moreover Lb is associated with the large 
beam deflection criterion, and Sra is associated with the 
effect of restricting the shaft axial motion at the bearings. 
These terms may take a value of either 1 or 0 depending 
on whether the related effect is considered in the analy-
sis or not, e.g., Dr = 1 if the disc rotary is considered in 
the analysis, and Lb = 0 if the large beam defection crite-
rion is not considered in the analysis. The expressions for 
t1 to t6 in Eq. (13e) are obtained using the software pack-
age “MAPLE”. They are long and are not presented in this 
paper.

The nonlinearities in the rotor system governed by 
Eq. (12) are associated with the parameters � and� . The 
large beam deflection and the shaft's confinement to axial 
motion are two elements that contribute to the nonlineari-
ties related to� . The parameter � is a function of the cubic 
stiffness of the bearings ( k13 andk23 ). A rotor system asso-
ciated with such nonlinear terms show some interesting 
results, like multiple solutions, jump phenomena, multiple 
loops, etc. [11, 13–15, 28, 43, 47]. The system parameters 
like�,�,G , etc., are treated as independent in many litera-
tures [31, 38]. However, it is clear from Eqs. (12) and (13) 
that these parameters depend on the material and geometric 
properties of the rotor system. Arbitrarily choosing these 
parameters ( �,�,G , etc.) may yield some undesired system 
dynamics.

In many practical applications, the deflection of the 
shaft may not be large enough and the shaft may move 
freely inside the bearings along axial direction. On top of 
that, if hard bearings are used, the nonlinearities may not 
be triggered. The system dynamics can then be predicted 
from the analysis of the linear system only (considering 
� = 0 and � = 0 ). The analysis of the linear system is 
much easier compared to that for the nonlinear system 
as an exact analytical solution can easily be obtained. 
Moreover, the primary resonance condition of a linear 
system can easily be predicted. Considering all these 
important factors, a separate study is conducted in this 
paper on the analysis of a linear system for the continu-
ous rotor model developed in this section. We primarily 
focus on the influence of different system parameters 
on the natural frequency of the continuous rotor system. 
The stability of the rotor system is additionally discussed 
in relation to the impact of internal damping. The exact 
analytical solution of the linear system is derived in the 
next section.

Exact Analytical Solution and Analysis 
of Free Vibrations

The exact closed form solutions of the linear system are 
first obtained in this section. The governing equations of 
the linear system obtained by substituting � = 0 and � = 0 
in Eq. (12) is written in the matrix form as

where � is a 2 × 2 identity matrix and

where q0 = �rer
2

f
 , and Im

(

eirf �
)

 
(

= sin
(

rf �
))

 and Re
(

eirf �
)

 
(

= cos
(

rf �
))

 are the imaginary and real parts of eirf � , respec-
tively. The solution of the linear system is first obtained for 
the excitations �̃1Im

(

eirf 𝜏
)

 and �̃2Re
(

eirf 𝜏
)

 . Applying the 
principle of superposition, the solutions of Eq. (14) are 
finally obtained as [2]

where

(14)����� + ���� + ��� = �̃1Im
(

eirf 𝜏
)

+ �̃2Re
(

eirf 𝜏
)

,

(15)

�� =

{

u1
w1

}

,� =

[

𝜇x Grf
−Grf 𝜇z

]

,

� =

[

𝜔2

n
𝜇irf

−𝜇irf 𝜔2

n

]

,

�̃1 =

{

q0
0

}

, �̃2 =

{

0

q0

}

,

(16a)u1(�) = u11(�) + u12(�) = U1sin
(

rf � − �x

)

,

(16b)w1(�) = w11(�) + w12(�) = W1cos
(

rf � − �z

)

,

(17a)
U1sin�x =

q0

Δ
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Δr
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z12
)

r
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(

z22
)

i

)

+ Δi

(

(
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)

r
+
(

z12
)

i

)]

,

(17b)
U1cos�x =

q0
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)

r
+
(

z12
)
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)

i
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(

z12
)

r
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,

(17c)
W1sin�z =

q0

Δ
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(

z12
)

r
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(

z11
)
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)
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)

r
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(

z12
)

i
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,

(17d)
W1cos�z =

q0

Δ
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Δr

(

(

z11
)

r
+
(

z12
)

i

)

+ Δi
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(

z11
)

i
−
(

z12
)

r
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,

Δ = Δ2

r
+ Δ2

i
,

(17e)
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(

z11
)

r

(

z22
)

r
−
(

z11
)

i

(

z22
)

i
+
(

z12
)2

r
−
(

z12
)2

i
,

Δi =
(

z11
)

r

(

z22
)

i
+
(

z11
)

i

(

z22
)

r
+ 2

(

z12
)

r

(

z12
)

i
,

(17f)

(

z11
)

r
=
(

z22
)

r
= �2

n
− r2

f
,
(

z11
)

i
= rf�x,

(

z22
)

i
= rf�z,

(

z12
)

r
= �irf ,

(

z12
)

i
= r2

f
G,
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To plot the Campbell diagram, it is necessary to first 
derive the expression for the damped natural frequency. 
Equations governing the free vibrations are obtained in 
matrix form from Eq. (14) as

The solution of Eq. (18) can be assumed in the form as 
�̃ =

(

u1 w1

)T
=
(

u10 w10

)T
e�� = �̃0e

�� . Substitution of 
this assumed solution in Eq. (18) leads to

where � =

[

�2 + �x� + �2
n

Grf � + �irf
−Grf � − �irf �2 + �z� + �2

n

]

 . For nontrivial 

solutions of �̃0 ( u10 , and w10 ), the determinant of matrix � 
should be zero ( |�| = 0 ). This leads to a quartic equation of 
� as

(17g)

U1 =

√

(

U1sin�x

)2
+
(

U1cos�x

)2

,�x = tan−1

(

U1sin�x

U1cos�x

)

,

(17h)

W1 =

√

(

W1sin�z

)2
+
(

W1cos�z

)2
,�z = tan−1

(

W1sin�z

W1cos�z

)

.

(18)��̃
�� + ��̃� + ��̃ = 0.

(19)��̃0 = 0,

The roots of Eq. (20) are obtained numerically. Two sets 
of complex conjugate roots are obtained for the set of param-
eters chosen for the analysis. The imaginary parts of the 
roots correspond to the damped natural frequency. These 
are used to plot the Campbell diagrams to be discussed in 
the next section.

A closed form solution for the damped natural frequency 
can be determined for a special case of equal damping 
along horizontal and vertical directions ( �x = �z = � ). For 
�x = �z = � , Eq. (18) can be represented in terms of a com-
plex variable �(�) = w1(�) + iu1(�) as

Substituting the solution of the form of � = �0e
�� in 

Eq. (21) yields

To separate the real and imaginary parts, � is written in 
terms of complex number form as

Substituting Eq. (23) into Eq. (21) and separating the real 
and imaginary parts leads to two equations which are solved 
to get

(20)
�4 +

(

�x + �z

)

�3 +
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�x�z + 2�2

n
+ G2r2
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r2
f
= 0.

(21)��� + ��
�

+ �2

n
� + iGrf �

�
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� + �2

n
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(23)� = �r + i�i.

(24a)
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+
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f

�
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2
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2
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Grf
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−
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− G2r2
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�

+
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�
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2
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.

Table 1  Independent parameters and its values

Independent parameter cex , and cez c1 , and c2 ci re rm

Value 0.00085 0.08 0 0.0001 0.1

Independent parameter rdx rdy r k11 k21

Value 0.05 0.1 0.1 500 500
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These expressions are obtained by imposing the condi-
tion that �r and �i are real numbers. It is to be noted that �i 
is the damped natural frequency of the linear system (18). 
Moreover, the solution of (18) is stable for a negative value 
of �r . Positive value of �r will lead to an exponentially 
growing solution. Imposing the condition for stable solu-
tion ( �r ≤ 0 ) leads to

w h e r e  �o =
(

ce + c1
(

Ψ1(0)
)2

+ c2
(

Ψ1(1)
)2
)

∕me  , 
ce = cex = cez . Hence, the solution of Eq. (19) is unstable 
(exponentially growing) for frequency ratios above the criti-
cal value 

(

rf
)

c
 . Solution of Eq. (21) is the homogeneous 

solution of Eq. (14) for �x = �z = � . As a consequence, the 
response of the rotor system governed by Eq.  (14) (for 
�x = �z = � ) will be unstable for rf >

(

rf
)

c
 . Since 

(

rf
)

c
= ∞ 

for �i = 0 , the rotor system will always be stable in the 
absence of internal damping.

If the gyroscopic effect is neglected ( G = 0 ), the critical 
frequency ratio is reduced to

Further, if all the external damping effects are neglected 
( �o = 0),

All the relevant and important results are discussed in 
the next section. In most of the cases, the rotor system 

(25)rf ≤ (

rf
)

c
,
(

rf
)

c
=

(

�i+�o

�i

)

�n

√

1 −
(

�i+�o

�i

)

G

,

(26)
(

rf
)

c
=

(

�i + �o

�i

)

�n.

(27)
(

rf
)

c
= �n.

dynamics are analyzed through the frequency response and 
phase angle plots.

Results and Discussion

In this section, the effects of different system parameters on 
the vibration characteristics of the rotor system are analyzed. 
The critical parameters in the equations governing the vibra-
tions of the linear system (Eq. (12) with λ = 0 , � = 0 ) are: 
internal damping factor ( �i ), damping factors ( μx , μz ), 
undamped natural frequencies ( �x , �z ), gyroscopic coeffi-
cient ( G ), the amplitude of excitation ( q0 = �rer

2

f
 ), and the 

effective mass ( me ). Damping factors ( μx , μz ) are functions 
of the external damping coefficients ( cex , cez ), internal damp-
ing coefficient ( �i ), and the damping coefficients of the bear-
ings ( c1 , c2 ). These parameters depend on other system 
parameters, like the eccentricity ratio ( re ), mass ratio ( rm ), 
mass moment of inertia of the disc about x-axis ( rdx ), polar 
moment of the disc about y-axis ( rdy ), radius of gyration ( r ), 
end spring stiffness ( k11 , k21 ), etc. Henceforth, for conveni-
ence, the first set of parameters ( �x , �z , G , q0 , me , μx , μz , �i ) 
will be called as the dependent parameters and the second 
set of parameters ( c1 , c2 , cex , cez , ci , re , rm , rdx , rdy , r , k11 , k21 ) 
as the independent parameters. Moreover, the system 
dynamics are also affected by the gyroscopic effects of the 
disc and shaft associated with the terms Dg and Sg , respec-
tively, and the rotary inertia of the disc and shaft associated 
with the terms Dr and Sr , respectively.

A set of independent parameters listed in Table 1 are 
used in the forthcoming analysis. Most of these parameters 
are taken from the references [13–15, 23–26, 39, 43]. Inde-
pendent parameters different from these values are speci-
fied at the caption of each figure. In most of the cases, the 

Fig. 3  Time response and phase plane plots in horizontal direction. Parameters: Table 1, ci = 0.0000085,and l
1
= 0.2
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system dynamics are analyzed from the frequency response 
diagrams and phase angle plots. In frequency response dia-
grams, the amplitude of oscillation at the middle of the shaft 
( Um = Ψ1(0.5)U1,Wm = Ψ1(0.5)W1 ) is plotted with respect 
to the dimensionless frequency ( rf  ). For the set of parameter 
values chosen for this work, the maximum deflection at the 
middle of the shaft is restricted below 0.1 times the length of 
the shaft. This is considered as the small deflection criterion 
for the present study. The maximum deflection can further 
be reduced by selecting the eccentricity ratio ( rf  ) appropri-
ately without compromising the qualitative results of the 
rotor system. Based on the small deflection criterion, the 
nonlinearities in the rotor system can be neglected.

The analytical expressions derived for the horizontal and 
vertical displacements (Eqs. (16)) are verified by comparing 
the time-displacement and phase-plane plots obtained from 
Eqs. (16) with those obtained from the numerical simula-
tion of the governing Eqs. (14). For both the horizontal and 
vertical oscillations, the analytical results match exactly with 
the numerical results. The horizontal direction results are 
presented shown in Fig. 3.

In most of the literatures on rotor dynamics, the damping 
along horizontal and vertical directions ( �x = �z = � ) are 
considered to be the same [22, 23, 28, 43]. Some research-
ers, though, analyzed the effect of different amount of damp-
ing ( �x ≠ �z ) on the vibrations of rotor system [39]. As the 
bearings are considered to be isotropic in this study, the 

Fig. 4  Frequency response and phase angle plots in horizontal and vertical direction. Parameters: a, b Table  1 and l
1
= 0.3 , cez = 0.085 , 

c
2
= 0.02 , c, d Table 1, cex = cez = 0.0085 and l

1
= 0.3
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only source of difference in damping is to consider two dif-
ferent values for external damping coefficients ( cex ≠ cez ). 
It is explained in the section "Exact Analytical Solution 
and Analysis of Free Vibrations" how in the special case 
of equal damping ( �x = �z = � ), the two equations along 
the horizontal and vertical directions (Eq. (12) with � = 0 , 

� = 0 ) are written as a single equation (Eq. (21)) in terms of 
a complex variable. This shows that the system responses 
along horizontal and vertical directions will differ only in 
case of different amount of damping ( �x ≠ �z ) along these 
two directions. For the choice of equal amount of damping 
( �x = �z = � ), the system becomes isotropic and the system 

Fig. 5  Campbell diagrams a corresponding to the plots in Fig. 4a and b, b corresponding to the plots in Fig. 4c, d

Table 2  Values of dependent 
parameters for different values 
of independent parameters

Figs. no. Independent Parameters Dependent Parameters

G � me μx = μz q0 × 10
−4

(

rf
)

r
Up = Wp

rm = 0.5 − 0.415 7.324 1.537 0.00613 29.51 7.311 0.0554
6 rm = 0.8 − 0.504 8.761 2.040 0.00474 32.04 8.769 0.0662

rm = 1.2 − 0.572 10.04 2.697 0.00352 34.15 10.04 0.076
r = 0.1 − 0.053 2.667 1.440 0.00665 5.634 2.667 0.0362

7a r = 0.2 − 0.089 2.694 1.467 0.00653 5.643 2.694 0.0365
r = 0.3 − 0.147 2.741 1.513 0.00633 5.665 2.741 0.0372
rdx = 0.05 − 0.053 2.667 1.440 0.00665 5.635 2.666 0.0362

7b rdx = 0.08 − 0.052 2.650 1.457 0.00657 5.497 2.651 0.0357
rdx = 0.12 − 0.051 2.628 1.480 0.00647 5.321 2.627 0.0356
k21 = 100 − 0.0087 2.239 1.899 0.00681 3.531 2.237 0.0030

8a k21 = 500 − 0.0089 2.189 2.042 0.00095 3.262 2.186 0.0217
k21 = 6000 − 0.0091 2.178 2.071 0.00069 3.207 2.177 0.0294
l1 = 0.2 , 0.8 − 0.144 3.569 0.890 0.0107 12.19 3.569 0.0270

8b l1 = 0.3 , 0.7 − 0.053 2.667 1.440 0.00665 5.635 2.667 0.0362
l1 = 0.5 − 0.008 2.189 2.042 0.00469 3.262 2.189 0.0441
Dg = 1 , Sg = 1 − 0.0530 2.667 1.440 0.00665 5.635 2.667 0.0362

9a Dg = 1 , Sg = 0 − 0.040 2.649 1.440 0.00665 5.559 2.649 0.0359
Dg = 0 , Sg = 1 − 0.012 2.612 1.440 0.00665 5.405 2.612 0.0354
Dg = 0 , Sg = 0 0 2.595 1.440 0.00665 5.335 2.595 0.0351
Dr = 1 , Sr = 1 − 0.0530 2.667 1.440 0.00665 5.635 2.667 0.0362

9b Dr = 0 , Sr = 1 − 0.0534 2.676 1.410 0.00679 5.790 2.676 0.0363
Dr = 1 , Sr = 0 − 0.0540 2.696 1.430 0.00670 5.795 2.696 0.0365
Dr = 0 , Sr = 0 − 0.0545 2.705 1.401 0.00684 5.955 2.705 0.0367
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dynamics along these two directions become identical. This 
is verified from the frequency response diagrams and phase 
angle plots in Figs. 4.

The two peaks in the frequency response diagram for 
different amount of damping along the horizontal and ver-
tical directions ( μx = 0.00106 , μz = 0.0594 ) are marked in 
Fig. 4a. These resonance frequencies are further verified 
from the Campbell diagram plotted in Fig. 5a. To plot this 
Campbell diagram, Eq. (20) is first solved for � for differ-
ent values of excitation frequency rf  . The imaginary part 
of � is the damped natural frequency fr , which is plotted 
in Fig. 5a with respect to rf  . The higher damping along 
vertical direction causes a noticeable reduction in peak 

amplitude of oscillations at second resonance frequency 
rf =

(

rf
)

r2
= 2.665.

The phase angle �z for horizontal oscillations changes 
suddenly from positive to negative near the first resonance 
frequency 

(

rf
)

r1
 as shown in Fig. 4b. Contrary to that, the 

sudden change in phase angle �x for vertical oscillations 
is from negative to positive near 

(

rf
)

r1
 . The amplitude of 

oscillations and phase angles along horizontal and verti-
cal directions become indistinguishable for same amount 
of damping ( μx = μz = 0.0066 ) as shown in Fig. 4c and d.  
Moreover, only one resonance peak is observed from the 
frequency response diagram. The presence of single reso-
nance frequency is further verified from the Campbell dia-
gram shown in Fig. 5b.

Fig. 6  a Frequency response plots, and b Phase angle plots for different values of rm . Parameters: Table 1, cex = cez = 0.0085 , and l
1
= 0.2

Fig. 7  Frequency response plots for different values of r and rdx . Parameters: Table 1, cex = cez = 0.0085 , and l
1
= 0.3 , a rdx = 0.05 , b Table 1
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Equal amount of damping ( cex = cez , c1 = c2 ) is consid-
ered for the forthcoming analysis wherein the effect of other 
system parameters on the dynamics of the rotor system is 
studied through frequency response and phase angle plots. 
As the vibration characteristics along horizontal and vertical 
directions become identical for equal amount of damping, 
only one set of results are plotted.

The values of the dependent parameters ( �x , �z , G , q0 , 
me , μx , μz , �i ) as well as the damped natural frequency (reso-
nance frequency 

(

rf
)

r
 ) associated with rest of the figures are 

listed in Table 2 for effective analysis of the results.
The amplitude-frequency and phase angle plots for dif-

ferent values of mass ratio rm (= �AL∕Md ) are shown in 
Fig. 6. It is observed from Fig. 6 that the system reso-
nant frequency increases with the increase of rm . Also, the 
peak amplitude at resonance increases with the increase 
of rm . It is noticed from the values of different parameters 
listed in Table 2 that the effective mass me of the system 
is larger for higher values of rm. However, the magnitude 
of the gyroscopic coefficient G , the undamped natural fre-
quency � and amplitude of excitation q0 increases with the 
increase of rm , even though me appears in the denominator 
of the expressions of G , � and q0 (Eqs. (13c) and (13d)). 
This results in higher values of the damped natural fre-
quency 

(

rf
)

r
 of the system as the value of  rm is increased. 

The expression for μ ( = μx = μz ) are inversely propor-
tional to me (Eqs. (13a) and (13b)) and consequently, their 
values decrease with the increase of rm . This results in 
higher values of peak amplitude at resonance at higher 
values of rm and q0 is increases with the increase of rm . 
Physically, the higher values of rm causes the system stiff-
ness to increase causing the damped natural frequency to 
increase and the peak amplitude at resonance increases due 
to reduction in damping factor μ . The asymptotic values of 

the phase angle ( � ) are 0◦ and 180◦ as rf → 0 and rf → ∞ , 
respectively, with the sharp change in � happening near 
the resonance frequency as shown in Fig. 6b. In all the 
forthcoming analysis, the nature of phase angle plots is 
similar to Fig. 6b. As, no new information is obtained 
from the phase angle plots, they are not included for the 
subsequent analysis.

The effect of the radius of gyration r (dimensionless) 
of the shaft cross-section on the system response is shown 
in Fig. 7a. Exactly as in the case of mass ratio rm , the 
values of the parameters |G| (magnitude of G ), � , q0 , and 
me increase and the values of the parameters μx , and μz 
decrease with the increase of r . The qualitative nature of 
the frequency–response curves for different values of r 
shown in Fig. 7a which is similar to Fig. 6a plotted for 
different values of rm ; the resonance frequency and the 
peak amplitude at resonance increase as the value of r is 
increased. The damping factors have more influence on the 
peak amplitude at resonance than the excitation amplitude 
q0.

The impact of the dimensionless mass moment of inertia 
of the disc about x-axis ( rdx = Idx∕�AL

3 ) on the frequency 
response curves is shown in Fig. 7b. The parameter rdx 
appear in the expression for me given by Eq. (13c). With 
increasing rdx , the value of the parameter me increases which 
results in lower magnitudes of G , � , μx , μz and qo . As an out-
come, the resonance frequency as well as the peak amplitude 
at resonance reduces for higher values of rdx as shown in 
Fig. 7b. The influence of rdx is contrary to the trend revealed 
by mass ratio rm and radius of gyration r as shown in Figs. 6a 
and 7a.

The bearings at the end of the shaft are replaced by linear 
springs and damper (Kelvin–Voigt model) along horizontal 

Fig. 8  Frequency response plots for different values of k
21

 and l
1
 . Parameters: cex = cez = 0.0085 , a l

1
= 0.5 , and b Table 1
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and vertical directions. They directly influence the mode 
shape Ψ1 shown in Fig. 2 as well as the natural frequency p1 . 
Other parameters of the rotor system governed by Eq. (14) 
are influenced through Ψ1 and p1 . Figure 8a depicts the influ-
ence of the support spring stiffness k21 on the frequency 
response plots. The stiffness of left-end bearing (bearing 
B1 ) is kept constant at k11 = 500 while obtaining the three 
frequency response curves for three different values of k21 
in Fig. 8a. The overall stiffness of the system decreases for 
higher values of k21 resulting in lower resonant frequen-
cies. The excitation amplitude q0 and the damping factor μ 
decrease with the increase of k21 (Table 2) yielding the peak 
amplitude at resonance to increase as shown in Fig. 8a. It 
is to be mentioned here that the right-end bearing (bear-
ing B2 ) can be considered a rigid one for k21 = 6000 . When 

k11 = k21 = 100 , the mode shape is symmetric about l1 = 0.5 
(refer Fig. 2). As the disc is installed at the middle of the 
shaft ( l1 = 0.5 ), the gyroscopic parameter G = −0.0089 in 
Table 2 for k11 = k21 = 500 is entirely due to the gyroscopic 
effect of the shaft. As the stiffness of bearing B2 is increased, 
the symmetry of the mode shape about l1 = 0.5  is lost. The 
gyroscopic effect of the disc increases with the increase of 
k21 which is manifested in the increasing value of |G| . Maxi-
mum value of |G| is achieved for a rigid bearing at B2.

Figure  8b depicts the effect of l1 on the frequency 
response and phase angle plots. The parameter l1 specifies 
the position of the disc from left-end of the support (from 
bearing B1 ). If the disc is at the center of the shaft (l1 = 0.5) , 
the gyroscopic and rotary inertia effects of the disc associ-
ated with the terms Dg and Sg , respectively, are zero 

Fig. 9  Frequency response plots for different values of Dg , Sg , Dr & Sr . Parameters: Table 1 and l
1
= 0.3 . a Dr = Sr = 1 , b Dg = Sg = 1

Fig. 10  a Frequency response and b �r versus rf  for different values of ci . Parameters: Table 1, and l
1
= 0.2
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( Dgrdyrm
(

t5 − t6
)

= 0 , Drirdxrm
(

t5 − t6
)

= 0 ). This leads to 
the largest effective mass ratio ( me = 2.042 ) and smallest 
magnitude of gyroscopic coefficient ( |G| = 0.008 ) for 
l1 = 0.5 as shown in Table 2. The value of the gyroscopic 
coefficient ( G = −0.008 ) is entirely due to the gyroscopic 
effect of the shaft. The final consequence is the lowest reso-
nance frequency for l1 = 0.5 as shown in Fig. 8b. As the disc 
is moved away from the middle of the shaft and towards one 
of the bearing supports ( l1 is either decreased or increased), 
the magnitude of G is increased and me is decreased leading 
to higher values of resonance frequencies. Because of the 
symmetry of the mode shape function Ψ1(y) about y = 0.5 , 
the frequency response curves would be identical for l1 = 0.3 
and l1 = 0.7 (or l1 = 0.2 and l1 = 0.8 ). This can also be 
explained mathematically. In the expressions for me and G 
given by Eqs. (13c) and (13d), respectively, all the terms 

except t5 − t6 = −
(

dΨ1

dy

)2
|

|

|

|y=l1

 and t4 = Ψ2

1
(l1) remain the 

same while l1 is varied. Now, because of the symmetry of the 

curve Ψ1(y) about y = 0.5 , 
(

dΨ1

dy

)2
|

|

|

|y=0.3

=
(

dΨ1

dy

)2
|

|

|

|y=0.7

 , and 

Ψ2

1
(0.3) = Ψ2

1
(0.7) . Consequently, the magnitudes of me and 

G will be the same leading to the identical frequency 
response curves for l1 = 0.3 and l1 = 0.7 . As the disc 
approaches the support, the values of q0 , μx , μz , and μin drop, 
which causes the amplitude peaks to decrease.

The influence of disc and shaft gyroscopic effects is illus-
trated in Fig. 9a. It is mentioned earlier that the terms asso-
ciated with Dg and Sg are the gyroscopic effects of the disc 
and the shaft, respectively. The gyroscopic coefficient G = 0 
when both these effects are neglected ( Dg = Sg = 0 ). The 
consequence is the lowest resonance frequency as shown in 
Fig. 9a. On the other hand, the magnitude of G ( = 0.0530 ) 
as well as the resonance frequency is the maximum for 
Dg = Sg = 1 . The effective mass me is independent of the 
gyroscopic terms. Consequently, the resonance frequency 
(

rf
)

r
 and the amplitude of excitation q0 remains unaltered. 

However, the damping factor μ remains the same for all the 

Table 3  Parameter values for different values of internal damping coefficient

Fig. no. Control parameters G � me μx = μz μi q0 × 10
−4

(

rf
)

r

(

rf
)

c
Up = Wp

ci = 0.000075 − 0.144 3.569 0.890 0.00977 0.00759 12.19 3.569 3.900 0.0297
10 ci = 0.00008 − 0.144 3.569 0.890 0.01020 0.00810 12.19 3.569 3.850 0.0282

ci = 0.000085 − 0.144 3.569 0.890 0.01071 0.00861 12.19 3.569 3.803 0.0269

Fig. 11  Time responses for different values of rf  . Parameters: Table 1, �i = 0.000085 , l
1
= 0.2 , a–c rf = 2.5 , d–f rf = 3.806 and g–i rf = 4
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values of Dg and Sg . The outcome is the higher resonance 
frequency and the peak amplitude at resonance for higher 
values of the gyroscopic coefficient. The gyroscopic effect 
of the shaft appears to have a greater influence in increasing 
the resonance frequency and peak amplitude at resonance 
compared to the gyroscopic effect of the disc.

Figure 9b shows the effect of disc and shaft rotary inertia 
effects ( Dr and Sr ) on the rotor system responses (amplitude 
and phase angle). The rotary inertia terms associated with  
Dr and Sr appear in Eq. (13c) in the expression of effective 
mass me . It is to be noticed from Eq. (13) that the excita-
tion amplitude q0 , gyroscopic coefficient G , and undamped 
natural frequency � are all inversely proportional to me . In 
absence of the rotary inertia effects of the disc and shaft 
( Dr = Sr = 0 ), the value of me ( = 1.401 ) is the lowest and 
the magnitude of G is the highest. This leads to the high-
est resonance frequency as shown in Fig. 9b. Furthermore, 
q0 is found to be the highest ( = 5.955 ) resulting in highest 
peak amplitude at resonance for Dr = Sr = 0 . On the other 
hand, highest value of me and lowest magnitude of G are 
obtained for Dr = Sr = 1 . This leads to the lowest resonance 
frequency for Dr = Sr = 1 . Lowest excitation amplitude q0 
results in the lowest peak amplitude of oscillation at reso-
nance for Dr = Sr = 1 . As in the case of gyroscopic effects, 
the shaft rotational inertia has greater influence in increasing 
the resonance frequency in comparison to the disc rotational 
inertia.

It is to be noted that all the aforementioned results are 
obtained without any internal damping ( ci = 0 ). It is shown 
in the section "Exact Analytical Solution and Analysis of 
Free Vibrations" that the response of the rotor system is 
always stable for ci = 0 . However, a small amount of inter-
nal damping may cause instability of system response for 
frequency ratios beyond a critical value ( rf ≥ (

rf
)

c
 ). This is 

verified in the forthcoming analysis.
The three frequency response curves shown in Fig. 10a 

are plotted for three difference values of internal damping 
coefficients. For effective analysis of the influence of internal 
damping on the system responses, the dependent parameters 
are listed in Table 3. It is observed from Table 3 that the 
gyroscopic parameter ( G ), undamped natural frequency ( � ), 
effective mass ratio ( me ), amplitude of excitation ( q0 ), and 
the resonance frequency ( 

(

rf
)

r
 ) are all independent of ci . 

However, the damping factor μ ( = μx = μz ), and the inter-
nal damping factor μi increases with the increase of ci . This 
causes the peak amplitude at resonance to decrease with the 
increase of ci as shown in Fig. 10a. The range of frequen-
cies corresponding to the stable solutions decreases with 
the increase of ci . This is evident from the decreasing value 
of 

(

rf
)

c
 with the increase of ci . These critical values of rf  

separating the stable and unstable solutions for free vibra-
tions are further verified by plotting the real part of the roots 
( �r ) with respect to rf  . This plot is shown in Fig. 10b which 

depicts the change of sign of �r from negative to positive as 
the frequency ratio rf  is increased beyond the critical value 
(

rf
)

c
 . Clearly, the homogeneous solution of Eq. (14) is stable 

for rf ≤
(

rf
)

c
 and unstable for rf >

(

rf
)

c
.

The responses of the rotor system (Eq. (14)) in the sta-
ble region ( rf <

(

rf
)

c
 ), unstable region ( rf >

(

rf
)

c
 ), and 

at the stability boundary ( rf =
(

rf
)

c
 ) are investigated in 

Fig. 11 for ci = 0.000085 . The critical frequency ratio cor-
responding to ci = 0.000085 is 

(

rf
)

c
= 3.806 . The time-

displacement response of Eq. (14) for rf = 2.5 <
(

rf
)

c
 is 

shown in Fig. 11a. This is a combination of homogene-
ous and particular solutions of Eq. (14). The frequencies 
of homogeneous and particular solutions superimpose 
causing the modulation at the initial phase as shown in 
Fig. 11b. As 𝛽r < 0 , the homogeneous solution die out over 
time yielding a single periodic motion corresponding to 
the particular solution as shown in Fig. 11c. Since �r = 0 
for rf = 3.803 =

(

rf
)

c
 , the homogeneous solution never 

dies out. Consequently, the time-response of the system 
is always modulated as shown in Fig. 11d–f. However, 
the mean amplitude of oscillations will remain constant 
at steady state. On the other hand, the mean amplitude 
of oscillation increases unboundedly for rf = 4 >

(

rf
)

c
 as 

shown in Fig. 11g–i. This homogeneous solution is unsta-
ble for rf = 4 because of positive value of �r . This causes 
the unbounded time-displacement response of the rotor 
system depicted in Fig. 11g–i.

Conclusion

A systematic investigation of a continuous rotor model was 
performed in this paper to analyse the effect of different 
parameters on the natural frequency and stability of the 
system. The rotor system was modelled with the inclusion 
of several critical factors like the rotary inertia and gyro-
scopic effects of both shaft and disc, internal damping, 
large deformation of shaft, and restriction to shaft axial 
motion. The bearings on the two sides of the shaft were 
considered to be isotropic and were replaced by spring-
dashpot systems along horizontal and vertical directions. 
The PDEs governing the system vibrations, derived from 
Hamilton's Principle, were reduced to a set of ODEs using 
the method of modal projection. As the paper is mainly 
focused in exploring the effect of different system param-
eters on the resonance frequency, only the linear system 
was analysed.

The effect of various independent parameters on the 
nature of vibrations of the linear rotor system were ana-
lyzed both numerically and analytically. These independ-
ent parameters are associated to the material and geo-
metrical properties of the rotor system and connected to 
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the governing ODEs through the effective mass ratio ( me ) 
and gyroscopic coefficient ( G ). The dependent parameters, 
tabulated as functions of the independent parameters, were 
used for the effective analysis of the results. This methodi-
cal analysis, which connects the system dynamics to the 
material and geometric properties of the rotor system, 
could result in a suitable design.

The system becomes isotropic with identical responses 
along horizontal and vertical directions for equal amount 
of damping along these directions. The resonant frequency 
was observed to increase with the increase of mass ratio 
( rm ), radius of gyration ( r ), and the end spring stiffness 
( k11 , k21 ). On the other hand, the resonance frequency 
decrease with the increase of the mass moment of iner-
tia of the disc about x-axis ( rdx ). While the gyroscopic 
effects of the disc and shaft tend to increase the resonance 
frequency, the rotary inertia of the disc and shaft tend to 
decrease the resonance frequency.

The stability of the rotor system mainly depends upon 
the internal damping parameter ( μi ). A strain rate depend-
ent internal damping model was used in this paper. Ana-
lytical expression for a critical frequency ratio ( 

(

rf
)

c
 ) cor-

responding to the stability boundary separating the stable 
and unstable regions was obtained. This critical value of 
rf  was further verified by analysing the time responses of 
the rotor system for rf <

(

rf
)

c
 , rf =

(

rf
)

c
 , and rf >

(

rf
)

c
 . 

For rf <
(

rf
)

c
 , the response was observed to reach a sin-

gle periodic steady-state over time. A modulating time 
response was obtained for rf =

(

rf
)

c
 . This is the conse-

quence of superposition of homogeneous and particular 
solutions. For rf >

(

rf
)

c
 , the system is unstable and the 

time-response grows monotonically.
There is a lot of scope to extend the present work. The 

rotor system with nonlinearities arising from the large defor-
mation of shaft, restriction to shaft axial motion, and nonlin-
ear spring in place of bearings can be considered for future 
analysis. The feasibility of getting a same/different solution 
with nonlinear springs at the supports showing force–deflec-
tion relations similar to the Hertzian contact at ball bearings 
can be examined in future. One may try to derive a different 
mode shape function from a different set of boundary condi-
tions obtained from the boundary terms which appear during 
the application of the Hamilton’s principle. Another scope 
for future work could be the use of hydrodynamic bearings 
instead of ball bearings.
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