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Abstract
Objective  Free vibration characteristics of the trapezoidal lattice sandwich composite panels are investigated based on a 
novel equivalent plate model.
Methods  The equivalent shear modulus and the relative density of the graded lattice core are assumed to be thickness-
dependent and these material properties are calculated based on the single-cell equivalence theory and the continuity assump-
tion. Under the framework of the higher-order shear deformation theory (HSDT), the unknown displacement functions are 
expressed in terms of standard Fourier series and auxiliary functions to avoid discontinuities on the edges of lattice sandwich 
plate. Artificial spring technique is utilized to simulate arbitrary boundary conditions and the unknown coefficients in the 
displacement functions are obtained by Rayleigh–Ritz variational method.
Results  The accuracy of the present method can be verified by comparing the obtained results with FEM results and those 
from literature. On this basis, a detailed parametric study concerning the effect of boundary conditions, aspect ratio a/b, tilt 
angle θ, and lamination schemes on the vibration frequencies of the trapezoidal lattice sandwich plate is also performed.

Keywords  Trapezoidal lattice plates · Analytical modelling · Sandwich composite structures · Non-uniform equivalent 
model · Vibration analysis

Abbreviations
C,S,E,F	� Clamped, Simply support, Elastic, 

Free boundary conditions
x,y,z	� Coordinates axes
Ku, Kv, Kw, Kx, Ky	� Spring stiffness coefficients
a, b	� Short and long bases of the trapezoidal 

core, (m)
c	� Distance between adjacent lattice core, 

(M)
t0	� Thickness of lattice core, (M)
θ	� Tilt angle of the core, (°)
l1, l2	� Length and width of a single cell, (m)
hf, hc	� Thickness of panel and core, (m)
La, Lb	� Length and width of sandwich panels, 

(m)

H	� Total thickness of sandwich panels, 
(M)

E1	� Modulus of elasticity of the face 
sheets, (GPa)

G	� Equivalent shear modulus, (GPa)
ρ, ρc, ρ0	� Relative density, core density, the 

density of face sheets, (kg/m3)
M, N	� Truncation numbers

Introduction

Lattice sandwich structures have drawn increasing attention 
in aerospace, vehicle marine, and other engineering fields 
due to their excellent properties such as light weight, high 
strength, high stiffness, high heat dissipation, outstanding 
design and multifunctional characteristics [1–3]. The graded 
lattice structures have excellent structural properties due to 
the changing configuration and properties of the lattice in 
space [4]. The graded lattice structure is connected stably, 
with the advantages of high modularity and strength under 
small strains, as well as layer-by-layer performance enhance-
ment under large strains [5]. Currently, the mechanical 
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properties [6] and preparation [7] of metal lattice sandwich 
structures with different topology cores have been widely 
studied, but their vibration, damping, and heat-insulating 
panel properties still need to be further explored.

Great research efforts have been devoted to the equiva-
lent methods for sandwich panels, shells and beams with 
lattice, honeycomb and corrugated core. Beiranvand and 
Hosseini [8] investigated the free vibration of a simply sup-
ported beam based on a new geometrically model. The free 
vibration characteristics of sandwich beam with honeycomb-
corrugation hybrid cores were studied with the help of the 
homogenization method by Zhang et al. [9]. Lou et al. [10] 
investigated the free vibration of lattice sandwich beams by 
employing an equivalence model. Han et al. [11] investi-
gated the free vibration characteristics of CFRC lattice-core 
sandwich cylinder by using the energy method. Zhong et al. 
[12] studied the time- and frequency- domain vibration char-
acteristics of enhanced pyramid lattice sandwich panels by 
an equivalent downscaling method. Kwak et al. [13] investi-
gated the free vibration of the graded arbitrary quadrilateral 
panels based on a new MLST shape function. Li et al. [14] 
studied the nonlinear free vibration characteristics of graded 
honeycomb sandwich cylindrical shells by adopting the mul-
tiple scales method.

Secgin and Kara [15] investigated the stochastic vibra-
tion characteristics of the composite plate based on a proba-
bilistic methodology. Zhang et al. [16] studied the nonlin-
ear vibration characteristics of the FG-CNTRC plates by 
employing meshless method. Banerjee et al. [17] used the 
first-order shear deformation theory to study the free vibra-
tion response of composite conical shell. Saiah et al. [18] 
applied the extended Halpin–Tsai approach to investigate 
the vibration characteristic of GRNC laminated panels. 
Raza et al. [19] proposed a novel computational algorithm 
for investigating the vibration characteristics of functionally 
graded panels. Liu et al. [20] used the separation method 
to study the vibration of three-phase composite panels. Li 
et al. [21] studied the vibration response of metallic sand-
wich plates with Hourglass lattice cores. Zhou et al. [22] 
proposed a theoretical method to study the free and forced 
vibration characteristics of simply supported Z-reinforced 
sandwich structures. The vibration characteristics of novel 
multilayer sandwich beams was researched with the help of 
the deformation energy based method by Li et al. [23].

Based on the aforementioned literature review, it is evi-
dent that there are currently numerous studies focusing on 
conventional equivalence methods and dynamic models 
for sandwich lattice structures. However, the methods for 
predicting the vibration characteristics of novel trapezoidal 
lattice plates are relatively rare. In present research, a new 
equivalent model is proposed to study the free vibration of 
the trapezoidal lattice sandwich composite panels based 
on the single-cell equivalence theory and the continuity 

assumption. An improved higher-order shear deformation 
theory is applied to derive strain energy, spring potential 
energy, and kinetic energy of the trapezoidal lattice sandwich 
panels, before the eigenvalue equation is obtained using the 
Rayleigh–Ritz method. Finally, the effect of boundary condi-
tions, aspect ratio a/b, thickness, tilt angle θ, and lamination 
schemes on the vibration frequencies is studied in detail.

Theoretical Formulations

Trapezoidal Lattice Sandwich Composite Panels

A graded lattice sandwich composite panel with length La, 
width Lb and constant thickness h in the Cartesian coordinate 
system (x‐y‐z) has been illustrated in Fig. 1. The upper and 
lower panels, as well as the core material, are all made of 
carbon fiber-reinforced composite laminates. It is assumed 
that the lattice core is well bonded to the panels without 
relative sliding. The lattice core consists of many sets of 
symmetric trapezoidal laminates, assuming the size of the 
unit cell can be neglected compared to the overall dimen-
sions. The specifications for the 1-direction and 2-direction 
of the panels and core material are as shown in Fig. 1. In this 
study, the artificial spring technique is used to simulate the 
arbitrary boundary conditions [24–26]. Three linear springs 
and two rotational springs are distributed along the edges of 
the physical middle surface. The values of spring stiffness 
coefficients can vary from zero to infinity, and the classical 
boundary conditions (such as simply supported, clamped, 
free boundary conditions) and elastic boundary conditions 
can be represented with the combinations of these linear and 
rotational springs.

Equivalent Model of the Trapezoidal Lattice 
Sandwich Composite Panels

The representative volume element (RVE) is firstly estab-
lished to obtain the material parameters of the equivalent 
plate, as shown in Fig. 2. The upper panel and lower panel 

Fig. 1   A trapezoidal lattice sandwich composite panel
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have the same thickness of hf, while the core thickness is hc. 
Normally, traditional lattice core with uniform cross-sec-
tions can be considered to have the same material properties 
throughout the thickness direction, and this can help to sim-
plify the traditional lattice sandwich panels into sandwich 
panels with uniform isotropic cores. However, for trapezoi-
dal lattice cores, it is assumed that the material properties 
of the core material vary with thickness, making the equiva-
lent core material similar to functionally graded materials. 
Therefore, in order to obtain the equivalent properties of 
trapezoidal cores, a small thickness segment dz is taken for 
analysis, as shown in Fig. 2.

Relative Density of the Lattice Core

To obtain the thickness-dependent relative density of the 
core material, a representative volume element with a thick-
ness of dz is analyzed, as shown in Fig. 3. The relative den-
sity of the core material can be expressed as the ratio of 
the mass of the core material to the volume of the entire 
representative volume element.

From the geometrical relationship, the relative density of 
the trapezoidal lattice core ρc can be obtained:

where V1, V are the volume of the core material and that of 
the RVE. z represents the thickness coordinate and ρ0 is the 
density of the CFRP panel.

The Equivalent Shear Modulus

It is assumed that only shear deformation is considered for the 
lattice core [27] [28]. It is assumed that there is a shear load p 
applied at the nodes of the pyramidal single cell (see Fig. 4), 
causing a displacement of δ in the x direction. Similarly, in 
the representative volume element with a thickness of dz, the 
upper and lower surfaces of RVE are subjected to a pair of 
shear forces p. It can be assumed that the lattice core in the 
RVE has the same width and it is taken for the force analysis, 
as shown in Fig. 4(b).

Based on geometric relationships and force equilibrium, 
we have:

(1)�c(z) =
V1

V
�0 =

2t0

l1l2
(
a − b

hc
z +

a + b

2
)�0

(2)
p

2
= Fa cos �

(3)� =
Δl

cos �

Fig. 2   Schematic illustration of 
a representative volume element 
of the trapezoidal lattice panel
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Fig. 3   The representative volume element of the lattice core

Fig. 4   a A graded cell under 
shear load; b Loading analysis 
on a single trapezoidal plate
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The axial force in one trapezoidal lattice under shear load 
is:

At this point, the shear strain and shear stress of the single 
cell are:

This leads to a trapezoidal lattice core shear modulus of:

where the correction factor � = hl2a
2∕(t3

0
c) is related to the 

geometric configuration of the trapezoidal lattice core.

Mathematical Model of the Trapezoidal Lattice 
Sandwich Composite Panels

The displacement fields are constructed based on the higher-
order shear deformation theory:

where u0, v0 and w0 denote the linear displacements of the 
middle surface of the plate. φx, φy are the cross-sectional 
rotations about the y and x directions, and f(z) are Reddy 
shear strain functions [29].

The relationship between strain and displacement can be 
expressed as follows:

(4)� =
Δl

l
=

sin �Δl

dz

(5)Fa = E1�t0wl(z) = E1�t0(
a − b

hc
z +

a + b

2
)

(6)� =
�

dz

(7)� =
p

l1l2

(8)G =
�

��
=

2E1 sin � cos �
2t0

�l1l2
(
a − b

hc
z +

a + b

2
)

(9)
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The resultant force and moment for the composite lat-
tice sandwich panels are given as follows:

where Ni, Mi and Si, are the total force and moment result-
ants. It is noted that due to the lattice core material being 
equivalent to isotropic material, G45 in Eq. (11) is equal to 0.

It is assumed that only bending deformation is consid-
ered for the top and bottom panels and only shear deforma-
tion is considered for the lattice core [27] [28]. Therefore, 
the stiffness coefficients are defined as:

The strain energy Us of the composite lattice sandwich 
panels are expressed as:

Substituting Eq. (10) into Eq. (13), the differential form 
of the strain energy can be rewritten as:
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The boundary spring potential energy Usp can be given as:

Moreover, the kinetic energy T of the composite lattice 
sandwich panels can be determined:

where the mass inertias (I0, I1, I2, I3, I4, I5, I6) are defined as:

The Lagrangian energy function L of the sandwich com-
posite lattice panels can be obtained as:

In order to simulate the arbitrary boundary conditions, 
the improved Fourier series displacements are used to elimi-
nate discontinuities of the displacements and their deriva-
tives at the structural boundaries [25, 30]. The displacement 
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2
0 + kwyaw

2
0 + kxya�

2
x + kyya�

2
y

]

y=a

⎫

⎪

⎬

⎪

⎭

dxdz

(16)

T = 1
2 ∭ V�(z)

[

(

u,t
)2 +

(

v,t
)2 +

(

w,t
)2
]

dV

= 1
2 ∫

a
0 ∫

b
0

⎡

⎢

⎢

⎢

⎢

⎢

⎣

I0
(

u2
0,t
+ v2

0,t
+ w2

0,t

)

− 2I1
(

u0,tw0,x,t
+ v0,tw0,y,t

)

+2I2
(

u0,t�x,t + v0,t�y,t
)

−2I3
(

w0,x,t�x,t + w0,y,t�y,t
)

+ I4
(

�2x,t + �2y,t
)

+ I5w2
0,x,t

⎤

⎥

⎥

⎥

⎥

⎥

⎦

dxdy

(17)

(
I0, I1, I2, I3, I4, I5, I6

)
= ∫ h∕2

−h∕2

[
1, z, f (z), zf (z), f 2(z), z2

]
�(z)dz

(18)L = Us + Usp − T

functions of the composite lattice sandwich plates can be 
expressed as the follows:

(19a)
u0(x, y, t) =

−1
∑

m=−2

−1
∑

n=−2
A1
mn sin(�mx) sin(�ny) +

−1
∑

m=−2

N
∑

n=0
A2
mn sin(�mx) cos(�ny)

+
−1
∑

n=−2

M
∑

m=0
A3
mn cos(�mx) sin(�ny) +

M
∑

m=0

N
∑

n=0
A4
mn cos(�mx) cos(�ny)

(19b)

v0(x, y, t) =
−1
∑

m=−2

−1
∑

n=−2
B1
mn sin(�mx) sin(�ny)

+
−1
∑

m=−2

N
∑

n=0
B2
mn sin(�mx) cos(�ny)

+
−1
∑

n=−2

M
∑

m=0
B3
mn cos(�mx) sin(�ny)

+
M
∑

m=0

N
∑

n=0
B4
mn cos(�mx) cos(�ny)

(19c)

w0(x, y, t) =
−1
∑

m=−2

−1
∑

n=−2
C1
mn sin(�mx) sin(�ny)

+
−1
∑

m=−2

N
∑

n=0
C2
mn sin(�mx) cos(�ny)

+
−1
∑

n=−2

M
∑

m=0
C3
mn cos(�mx) sin(�ny)

+
M
∑

m=0

N
∑

n=0
C4
mn cos(�mx) cos(�ny)

(19d)

�x(x, y, t) =
−1
∑

m=−2

−1
∑

n=−2
D1
mn sin(�mx) sin(�ny)

+
−1
∑

m=−2

N
∑

n=0
D2
mn sin(�mx) cos(�ny)

+
−1
∑

n=−2

M
∑

m=0
D3
mn cos(�mx) sin(�ny)

+
M
∑

m=0

N
∑

n=0
D4
mn cos(�mx) cos(�ny)

(19e)

�y(x, y, t) =
−1
∑

m=−2

−1
∑

n=−2
E1
mn sin(�mx) sin(�ny)

+
−1
∑

m=−2

N
∑

n=0
E2
mn sin(�mx) cos(�ny)

+
−1
∑

n=−2

M
∑

m=0
E3
mn cos(�mx) sin(�ny)

+
M
∑

m=0

N
∑

n=0
E4
mn cos(�mx) cos(�ny)
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where λm = mπ/a, λn = nπ/b, M and N represent the num-
ber of truncations. In addition,Ak

mn
,Bk

mn
,Ck

mn
,Dk

mn
 and Ek

mn
 

(k = 1,2,3,4) denote the coefficients of two-dimensional 
Fourier series.

Moreover, by substituting Eqs. (14), (15), (16), (19a), (19b), 
(19c), (19d) and (19e) into Eq. (18) and solving for the partial 
derivatives of the Lagrange energy function L with respect 
to the unknown coefficients, the following expression can be 
obtained:

The system of governing equations is expressed in form of 
eigenvalue equation:

where q = [Ak
mn
,Bk

mn
,Ck

mn
,Dk

mn
,Ek

mn
]T is the coefficient vec-

tor, the stiffness matrix K and the mass matrix M can be 
given as:

(20)
�L

��k

= 0,�k = Ak
mn
,Bk

mn
,Ck

mn
,Dk

mn
,Ek

mn

(21)(K − w2M)q = 0

(22)K =

⎡
⎢⎢⎢⎢⎢⎣

Kuu Kuv Kuw Kux Kuy

Kvu Kvv Kvw Kvx Kvy

Kwu Kwv Kww Kwx Kwy

Kxu Kxv Kxw Kxx Kxy

Kyu Kyv Kyw Kyx Kyy

⎤⎥⎥⎥⎥⎥⎦

(23)T =

⎡
⎢⎢⎢⎢⎢⎣

Tuu 0 Tuw Tux 0

0 Tvv Tvw 0 Tvy
Twu Twv Tww Twx Twy
Txu 0 Txw Txx 0

0 Tyv Tyw 0 Tyy

⎤⎥⎥⎥⎥⎥⎦

The natural vibration frequencies w and their correspond-
ing vector of coefficients [Ak

mn
,Bk

mn
,Ck

mn
,Dk

mn
,Ek

mn
]T can be 

obtained after solving the Eq. (21). Finally, by substitut-
ing these coefficients to Eqs. (19a), (19b), (19c), (19d) and 
(19e), the mode shapes can be determined. The flow chart 
of the current procedure is shown in Fig. 5.

Numerical Results and Discussion

The convergence and accuracy of the proposed method 
needs to be verified before conducting the kinetic charac-
terization. In this paper, the material properties for all arith-
metic examples are: E1 = 150 GPa, E2 = 10 GPa, μ12 = 0.3, 
μ21 = μ12E1/E2, ρ = 1500 kg/m3 without otherwise specified. 
Assuming the Poisson's ratio for the trapezoidal lattice core 
of 0.3. In addition, the non-dimensional frequency param-
eter Ω = wL2

a
∕h

√
�0∕E2 is used for discussion. In order to 

minimize research variables, uniform unidirectional plies 
were employed for the upper laminate, lower laminate, and 
trapezoidal lattice core, denoted as A-B-C. For instance, 
the lamination scheme 90–0-90 signifies the orientation of 
the upper and lower laminates at 90 degrees, and the core 
material at 0 degrees. The orientation of the 0-degree plies 
for each panel is indicated as depicted in Fig. 1. The arbi-
trary boundary conditions can be achieved by setting various 
stiffness values of the linear and rotational artificial springs 
[31]: (1) Free BC: Ku = Kv = Kw = Kx = Ky = 0, (2) Clamped 
BC: Ku = Kv = Kw = Kx = Ky = 1014, (3) Simply-supported BC 
(x = 0, x = La): Ku = Kx = 0, Kv = Kw = Ky = 1014, (4) Simply-
supported BC (y = 0, y = Lb): Kv = Ky = 0, Kx = Kw = Kx = 1014, 
(5) Elastic BC (E1): Ku = Kv = Kw = 108, Kx = Ky = 1014, (6) 
Elastic BC (E2): Ku = Kv = Kw = 1014, Kx = Ky = 108, (7) Elas-
tic BC (E3): Ku = Kv = Kw = Kx = Ky = 108.

Fig. 5    Flow-chart for the cur-
rent procedure
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Convergence and Validation

In this section, the convergence of the model is first assessed 
by calculating and comparing the dimensionless frequen-
cies at different truncation numbers M and N, as shown in 
Table 1. The truncated values range from 2 × 2 to 20 × 20. 
The geometric parameters of the sandwich lattice plates 
under CCCC boundary condition are listed: La = 0.9 m, 
Lb = 0.9 m, h = 0.012 m, θ = 60°, and the lamination scheme 
is 0–0-0. It can be seen from Table 1 that the dimensionless 
frequency of each order tends to stabilize as the truncation 
value increases. Therefore, in order to meet the requirements 
of the accuracy and the computational efficiency, the trunca-
tion value in this paper is M = N = 10.

In order to verify the accuracy of the proposed model 
for the composite sandwich panels, the present results are 
compared with those in the available literature, as shown 
in Table 2. The geometrical and material properties are 
used [32]: a = 1.83  m, b = 1.22  m, hs = 4.06 × 10−4  m, 
hc = 0.0064 m. For face layers: E1 = E2 = 68.9 GPa, ν12 = 0.30, 

ρs = 2.77 × 103  kg/m3. For core layer: G13 = 0.134  GPa, 
G23 = 0.052 GPa, ρc = 0.122 × 103 kg/m3. The results are 
compared with the experimental results and analytical solu-
tions proposed by Raville et al. [32], Chandrashekhar et al. 
[33] and Nayak et al. [34]. It can be seen that the obtained 
results are closer to the experimental and analytical results 
provided by Raville et al. [32].

To further demonstrate the accuracy and correctness of 
the proposed method, the comparison of the non-dimen-
sional frequencies with vibration modes in the same direc-
tion is also given in Table 3. The geometric parameters of 
the trapezoidal lattice sandwich panels under simply-sup-
ported boundary condition are given: La = 0.9 m, Lb = 0.9 m, 
h = 0.012 m, θ = 60°, and the lamination scheme is 0–0-0. 
The results are obtained based on the present method and 
FEM. It shows that the maximum error between the present 
method and the FEM model is around 6%. Considering the 
highly anisotropic nature of the fiber-reinforced lattice core 
and the results can also prove the accuracy of the present 
method.

Table 4 shows the variation in the first eight vibration fre-
quencies of the composite lattice sandwich panels with vari-
ous boundary conditions and different geometric constants. 
The geometric constants used in this case are: h = 0.012 m, 
θ = 60°, and the lamination scheme is 0–0–0. The results 
show that the vibration frequencies of the composite lat-
tice sandwich panel with a/b = 2 is the highest among all 
cases. This is because the layup at this point determines 
the maximum bending stiffness in the length direction and 
corresponds to the maximum intrinsic frequency. It is worth 
noting that the vibration frequencies for the composite lattice 
sandwich panels under the boundary condition of CCCC are 
the highest and the vibration frequencies for the composite 
lattice sandwich panels under the boundary condition of 
E1E2E1E2 are always higher than those under the bound-
ary condition of SSSS irrespective of the aspect ratio a/b. 
This indicates that the frequency of the trapezoidal lattice 
panel is positively correlated with the boundary stiffness 

Table 1   Convergence of 
frequency parameters of the 
trapezoidal lattice sandwich 
composite panels

M × N Mode number

1 2 3 4 5 6

2 × 2 2.864 9.144 11.354 21.937 24.622 40.341
4 × 4 2.855 4.327 6.840 8.006 13.694 16.076
6 × 6 2.782 4.152 5.704 5.882 6.652 7.959
8 × 8 2.757 4.074 5.520 5.717 6.422 7.666
10 × 10 2.746 4.032 5.457 5.654 6.334 7.562
12 × 12 2.740 4.007 5.430 5.620 6.207 7.495
14 × 14 2.735 3.993 5.415 5.599 6.274 7.440
16 × 16 2.732 3.999 5.429 5.585 6.259 7.457
18 × 18 2.730 3.996 5.423 5.573 6.250 7.433
20 × 20 2.728 3.989 5.418 5.561 6.244 7.416

Table 2   Non-dimensional vibration frequency for the composite 
sandwich panels in Hz

Mode Exp. [32] Ref. [32] Ref. [33] Ref. [34] Present

1 - 23 23.59 23.63 23.32
2 45 45 45.84 46.1 44.75
3 69 71 73.09 74.2 71.28
4 78 80 84.14 86.19 80.49
5 92 91 94.03 96.36 92.49

Table 3   Non-dimensional 
frequencies of sandwich plates 
with trapezoidal lattice core

f1 f2 f3

Present 2.746 4.032 5.654
FEM 2.765 4.325 6.064
Error (%) 0.68 6.77 6.76
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coefficient. In addition, it is clear that the aspect ratio a/b 
becomes more sensitive to the frequency changes as the 
mode order increases.

The effects of the lamination schemes on the first five 
non-dimensional frequencies of the composite lattice sand-
wich panels with different boundary and geometric con-
ditions are shown in Table 5. The geometric constants of 
composite lattice sandwich panels with different lamination 
schemes (90–0–90, 45–0–45 and 45–90–45) are used as 
follows: a = 0.9 m, b = 0.9 m, h = 0.012 m. The tilt angle θ 
varies from 30° to 60° and the interval angle of a step is 15° 
in the study. From the figure, it can be seen that the vibra-
tion frequencies of the composite lattice sandwich panels 
decrease with the tilt angle θ. And the vibration frequencies 
of the composite lattice sandwich panels under the boundary 
condition of CCCC are the highest irrespective of tilt angle 
θ and lamination scheme. Besides, the vibration frequen-
cies of lattice sandwich panels with 45–0–45 lamination 
scheme are the highest and the those with 45–90–45 are the 

lowest. Based on the above analysis, it means that the vibra-
tion frequencies of the composite lattice sandwich panels 
strongly depend on the boundary conditions and geometrical 
parameters.

The effect of aspect ratios on the first four vibration pat-
tern of the lattice sandwich plate with a = 0.9 m, h = 0.012 m, 
θ = 60° and SSSS boundary condition is also investigated, 
as shown in Fig. 6. The lamination scheme is 0–0–0. From 
Fig. 6, it can be seen that for the square plate, the 2nd and 
3rd order vibration patterns are similar and just the vibra-
tion frequencies are different. For the cases of a/b = 0.5 and 
a/b = 2, there is mainly a difference between the third and 
fourth orders, which is mainly due to the different elastic 
modules of the upper and lower composite panels in the x 
and y directions. This indicates that the aspect ratio and the 
fiber orientation have a great influence on the vibration pat-
tern of the lattice sandwich panels.

Figure 7 shows the effect of the boundary conditions and 
the tilt angle θ on the frequency parameters of the composite 

Table 4   Variation in the 
vibration frequency for the 
composite lattice sandwich 
panels with various boundary 
conditions and geometric 
constants

Mode number

Boundary constraints a/b 1 2 3 4 5 6 7 8

CCCC​ 1 2.746 4.032 5.457 5.654 6.334 7.562 7.601 9.210
0.5 2.351 2.727 3.279 3.984 4.744 5.090 5.448 5.708
2 4.219 6.456 7.954 9.517 10.300 12.558 12.584 13.736

SSSS 1 2.184 3.445 4.271 4.977 5.092 6.307 6.694 7.635
0.5 1.768 2.184 2.768 3.448 4.051 4.196 4.271 4.624
2 3.445 5.092 6.680 7.806 8.175 10.245 10.646 11.534

E1E2E1E2 1 2.738 4.025 5.418 5.650 6.295 7.532 7.598 9.190
0.5 2.343 2.718 3.271 3.977 4.738 5.061 5.409 5.704
2 4.212 6.415 7.950 9.497 10.209 12.528 12.556 13.727

Table 5   The first five frequency 
parameters for the composite 
lattice sandwich panels with 
various boundary, geometric 
conditions and lamination 
schemes

θ (°) Mode [90 0 90] [45 0 45] [45 90 45]

CCCC​ SSSS CCCC​ SSSS CCCC​ SSSS
30 1 3.294 2.769 3.290 3.284 1.601 1.596

2 4.971 4.398 5.301 5.306 2.631 2.631
3 6.225 5.101 5.714 5.716 3.441 3.445
4 6.987 6.179 7.082 7.082 3.739 3.731
5 7.358 6.315 8.242 8.243 5.034 5.038

45 1 3.228 2.699 3.217 3.202 1.588 1.577
2 4.856 4.283 5.186 5.191 2.612 2.619
3 6.127 4.997 5.606 5.610 3.427 3.429
4 6.823 6.044 6.933 6.921 3.717 3.709
5 7.229 6.149 8.091 8.088 5.010 5.012

60 1 2.746 2.184 2.696 2.690 1.506 1.499
2 4.029 3.443 4.353 5.864 2.489 2.485
3 5.460 4.273 4.849 5.870 3.340 3.337
4 5.646 4.972 5.870 7.030 3.574 3.572
5 6.335 5.092 7.028 7.556 4.850 4.850
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lattice sandwich panels (a = 0.9 m, b = 0.9 m, h = 0.012 m). 
The lamination schemes are 0–0-0 and the tilt angle θ is 
varied from 45° to 75°. According to Fig. 7, it is observed 

that the frequency parameters decrease as the tilt angle θ 
increases, and the trends of the frequency curves with dif-
ferent vibration modes are similar. In addition, there is a 

Fig. 6   Mode shapes for the 
composite lattice sandwich 
panels with various aspect ratios 
under the boundary condition of 
the SSSS

1st mode 2nd mode 3rd mode 4th mode

a/b=2

1st mode 2nd mode 3rd mode 4th mode

=1.80 =2.22 =2.82 =3.51

=3.51 =5.16 =6.79 =7.92

a/b=1

1st mode 2nd mode 3rd mode 4th mode

a/b=0.5

=2.22 =3.51 =4.32 =5.07

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

45 50 55 60 65 70 75

ycneuqerF

θ

1st mode 2nd mode
3rd mode 4th mode

2

3

4

5

6

7

45 50 55 60 65 70 75

ycneuqerF

θ

1st mode 2nd mode
3rd mode 4th mode

2

3

4

5

6

7

45 50 55 60 65 70 75

ycneuqerF

θ

1st mode 2nd mode
3rd mode 4th mode

(a) (b) (c)

Fig. 7   The first four frequency parameters of the composite lattice sandwich panels with different boundary conditions and tilt angle θ: a SSSS; 
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small difference between the frequency curves of CE3CE3 
and those of E1E2E1E2, while the frequencies of lattice sand-
wich plate with SSSS boundary condition are the smallest 
among all boundary conditions.

Figure 8 shows the vibration frequencies of the composite 
lattice sandwich panels with the lamination schemes α-0-α 
and different boundary conditions. The fiber orientation α is 
varied from 0° to 180°. The results show that the frequency 
curves are symmetrical about 90 degrees and the trends of 
the frequency curves of each order are similar regardless of 
the boundary condition. When the boundary condition is the 
CCCC, the first and sixth order frequencies are insensitive to 
changes in fiber orientation, and the other order frequencies 
fluctuate with changes in fiber orientation. In addition, the 2nd, 
4th, and 5th order frequencies reach their maximum values and 
the 3rd order frequency reaches its minimum value when the 
angles are 45 and 135 degrees. When the boundary condition 
is the SCSC, only the first order frequencies are insensitive to 
changes in fiber orientation. Moreover, the 2nd, 4th, 5th, and 
6th order frequencies reach their maximum values and the 3rd 
order frequency reaches its minimum value when the angles 
are 45 and 135 degrees.

Conclusion

In this paper, a new equivalent method to predict thick-
ness-dependent shear modulus and density of trapezoi-
dal lattice composite cores, and the equivalent material 
properties are deduced based on the single-cell equiva-
lence theory and the continuity assumption. The novelty 
of this work is that the proposed equivalent method can be 
used to calculate the equivalent material properties which 
are gradually changed in the thickness direction, while 

traditional method usually limits to the lattice core with 
a uniform cross-section. The higher order shear deforma-
tion theory is adopted to derive the strain energy and the 
kinetic energy of the lattice sandwich plate. The admis-
sible displacement functions are expanded as improved 
Fourier series, and the unknown displacement coefficients 
are solved based on Rayleigh–Ritz method. The artificial 
springs are introduced to simulate the general boundary 
conditions. The main findings can be drawn as follows:

· The accuracy and convergence of the present method 
have been verified by comparing the obtained results with 
those of the literature and FEM ones. On this basis, the 
effects of boundary conditions, aspect ratio, tilt angle 
and lamination schemes on the vibration frequency are 
investigated.

· The comparative results illustrate that the effects of 
various geometric parameters and lamination schemes 
on the frequencies are significant, and the vibration fre-
quency of the composite lattice sandwich panel increases 
with the increase of the aspect ratios, boundary stiffness 
coefficients and tilt angles. In addition, the aspect ratio 
becomes more sensitive to the variation of high frequency.

· Regardless of the boundary conditions, the frequency 
curves are symmetric about 90 degrees, and the frequen-
cies of each order reach the maximum or minimum when 
the angles are 45 degrees and 135 degrees, respectively.

· The limitation of this study is that the current method is 
proposed for the sandwich plates with lattice core, which is 
not applicable to the those with honeycomb and corrugated 
core. In addition, future study would further investigate the 
effect of fiber orientation of composite lattice core and the 
distribution density of unit cell on the dynamic character-
istics (including the free and forced vibration) of the lattice 
sandwich composite plates and shells.

Fig. 8   Vibration frequency ver-
sus α for the composite lattice 
sandwich panels with different 
boundary conditions: a CCCC; 
b SCSC
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