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Abstract
Purpose The purpose is to obtain precise expressions of physical fields using the appropriate non-dimensional variables 
and normal mode analysis.
Methods Based on the Lord–Shulman (L-S) theory and taking into account gravitational influences as well as temperature-
dependent features, the fundamental equations for a nonlocal thermoelastic solid are developed.
Results When a nonlocal thermoelastic media is swapped out for a thermoelastic one, this approach still holds true. Compari-
sons are done between the outcomes obtained and those expected for various nonlocal parameter values and for an empirical 
material constant. Additionally, comparisons are done between the outcomes for various gravity field values.
Conclusion The nonlocal parameter plays a big part in how the physical fields are distributed. The distributions of the physi-
cal fields are significantly influenced by the gravity field.

Keywords Gravity field · Lord–Shulman theory · Internal heat source · Nonlocal parameter

List of symbols
�ij  Component of stress tensor
ekk  Dilation
eij  Components of strain tensor
�ij  Kronecker delta
�  Mass density
CE  Specific heat at constant strain
�, �  Elastic constants
t  Time
ui  Components of displacement vector
K  Thermal conductivity
Q  Internal heat source
�0  Thermal relaxation time
�  = a0 e0 Is the elastic nonlocal parameter
T   Thermal temperature
T0  Reference temperature, ||

|

(
T − T0

)
∕T

||
|
≺ 1 , 

� = T − T0
�t  Linear thermal expansion coefficient, 

� = ( 3� + 2� )�t,

�0, �0, �0  Constants of material

�0  Empirical material constant
u(z)  Amplitude of the function u (x, z, t)
m  Complex time constant,
a  Wavenumber in the x− direction
V0  Velocity of a moving internal heat source
Q0  Magnitude of an internal heat source

Introduction

The equation of heat conduction is of the parabolic form, 
predicting infinite speeds of propagation for heat waves, and 
does not contain any elastic terms, according to the classi-
cal uncoupled theory of thermoelasticity. In order to solve 
the problem inherent in the traditional uncoupled hypoth-
esis, Biot [1] defined the coupled thermoelasticity theory. 
To resolve this contradiction, a generalized theory with a 
finite speed of heat transfer in elastic solids (the hyperbolic 
heat transport equation) has been developed in recent years. 
Lord and Shulman (L–S) [2] provided this generalization 
theory, also referred to as the extended thermoelasticity 
theory, which only has one thermal relaxation time param-
eter. The first- and second-time derivatives of the strain are 
included in the Lord and Shulman energy equation. They 
considered a new law of heat conduction instead of the law 
of Fourier. Based on their theory, the linear correlation 
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between temperature and heat flux includes temperature rate 
and thermal rates. According to this theory, the tempera-
ture propagation speed is finite due to the hyperbolic heat 
equation. Actually, as well known, the term “generalized” 
usually refers to thermodynamic theories based on hyper-
bolic (wave-type) heat equation, so that, a finite propagation 
speed for thermal signal is admitted. The generalized ther-
moelasticity has drawn extensive attention due to its appli-
cations in diverse fields, such as earthquake engineering, 
nuclear reactor design, and high-energy particle accelera-
tors. Youssef [3] developed an isotropic elastic material with 
temperature-dependent mechanical and thermal properties 
that has a generalized thermoelasticity with the L–S theory. 
Bagri and Eslami [4] provide a one-dimensional generalized 
thermoelasticity model of a disk based on the L–S theory. 
L–S theory and linked theory were developed by Othman 
and Said [5, 6] to investigate the effects of rotation and a 
magnetic field on fiber-reinforced thermoelastic media. The 
L–S theory has lately been established in numerous studies 
covering a wide range of topics [7–17].

The nonlocal theory of elasticity was used to study appli-
cations in nano-mechanics including lattice dispersion of 
elastic waves, wave propagation in composites, disloca-
tion mechanics, fracture mechanics, surface tension fluids, 
etc. Eringen [18] was interested in material bodies whose 
actions at any interior location depended on the conditions 
at all other sites within the body. The impact of harmoni-
cally fluctuating heat on FG nanobeams was demonstrated 
by Zenkour and Abouelregal [19] within the framework of a 
nonlocal two-temperature thermoelasticity theory. Yu et al. 
[20] examined size-dependent generalized thermoelasticity 
using Eringen's nonlocal model. In the context of the nonlocal 
theory, Ebrahimi et al. [21] examined the wave propagation 
properties in magneto-electro-elastic nanotubes while taking 
the shell model into consideration. The axisymmetric vibra-
tional behavior of a size-dependent circular nano-plate with 
functionally graded material with different types of bound-
ary conditions was investigated by Shariati et al. [22]. The 
authors Acharya and Mondal [23], Roy et al. [24], Zenkour 
[25], Bachher and Sarkar [26], Abouelregal and Mohammed 
[27], Zhou and Li [28], Kaur et al. [29], Gupta et al. [30], Said 
[31], Atta et al. [32], Yahya et al. [33], and Abouelregal et al. 
[34] have all published studies on nonlocal thermoelasticity.

Any study on the propagation waves in generalized ther-
moelasticity materials can be significant in structural engineer-
ing, geophysics, and seismology. Such a study becomes more 
realistic if the presence of gravity could be considered. In this 
study, a nonlocal thermoelastic solid with a moving internal 
heat source will be developed. Discussions covered location, 
temperature-dependent characteristics, and influences of the 
gravitational field. With the use of normal mode analysis, 
precise solutions to the physical field are obtained. The L–S 
theory was discussed in relation to the issue.

The Description of the Problem

A nonlocal thermoelastic solid that is affected by gravity 
field and has a moving internal heat source in the half-space 
( x ≥ 0 ) . The surface of the half-space is subjected to a ther-
mal shock which is a function of x and z. Thus, all quantities 
are independent of y. The dynamic displacement 
u = (u, 0, w), v = 0,

�

� y
= 0 .

The constitutive equations as presented by Hetnarski and 
Eslami [35] and Eringen [36]:

The heat conduction equation as Lord and Shulman [2]

The equation of motion

where F1 = � g
� w

� x
,F2 = 0,F3 = −� g

� u

� x
.

According to Said [37]:

The case of the temperature-independent modulus of elas-
ticity if �0 = 0.

When Eqs. (1) and (4) are introduced in Eq. (3), we obtain

We define the non-dimension variables as follows for 
convenience:

When Eqs. (7) are introduced in Eqs. (2), (5), and (6), 
we obtain

(1)
(

1 − �2 ∇2) �ij = � ekk �ij + 2� eij − � � �ij ,

(2)
K ∇2𝜃 =

(
1 + 𝜏0

𝜕

𝜕t

)
𝜌CE �̇� + 𝛾T0

(
1 + 𝜏0

𝜕

𝜕t

)
ė −

(
1 + 𝜏0

𝜕

𝜕t

)
Q.

(3)𝜌 üi = 𝜎ji, j + Fi,

(4)
� = �0 (1 − �0T0) , � = �0 (1 − �0T0) , � = �0 (1 − �0T0) .

(5)

� (1 − �2∇2) ü = (1 − �0T0)
(

(�0 + 2�0)
�2u
� x2

+(�0 + �0)
�2w
� x � z

+ �0
�2u
� z2

− �0
� �
� x

)

+ �g (1 − �2∇2) � w
� x

,

(6)

� (1 − �2∇2) ẅ = (1 − �0T0)
(

(�0 + 2�0)
�2w
� z2

+(�0 + �0)
�2u

� x � z
+ �0

�2w
� x2

− �0
� �
� z

)

− �g (1 − �2∇2) � u
� x

.

(x′, z′, �′, u′,w′) = 1
l0

(x, z, �, u, w), g′ =
l0
d20

g, (t′, �0′) =
d0
l0

(t, �0),

�′ =
�0 �

(�0 + 2�0)
,Q′ =

� 0 Q
(�0 + 2�0)

, �′ij =
�ij

�0 (1 − �0T0)
,

(7)l0 =

√
K

�CE T0
, d0 =

√(
�0 + 2�0

)
(1 − �0T0)

�
.



6451Journal of Vibration Engineering & Technologies (2024) 12:6449–6455 

Normal Mode Analysis

The following normal modes can be used to decompose 
the solution of the physical variables under consideration:

Introducing Eqs. (11) in Eqs. (8)–(10), we obtain

where D = d
dz
, N1 = �2m2 + �0 (1−�0T0)

� d20
, N2 = a2 + m2(1 + a2�2), 

N3 = g (1 + a2�2),  N4 = 1,  N5 = �2m2 + 1, 
N6 =

�0 (1−�0T0)

� d2
0

a2 + m2(1 + a2�2), 

N7 =
�2
0
T0 d0 l0

K (�0+2�0)
m (1 + m�0),  N8 =

�CE d0 l0

K
m (1 + m �0), 

N9 =
Q0 V0l

2
0

K
(1 + m �0), N10 = N8 + a2.

By solving Eqs. (12)–(14), we obtain

The bound solution of Eq. (15) is:

Similarly,

(8)
(1 − �2∇2) ü = �2u

� x2
+ (1 − �0T0)

(

�0 + �0

� d20

�2w
� x � z

+
�0

� d20

�2u
� z2

)

− � �
� x

+ g (1 − �2∇2) � w
� x

,

(9)
(1 − �2∇2) ẅ = (1 − �0T0)

(

�0

� d20

�2w
� x2

+
�0 + �0

� d20

�2u
� x � z

)

+ �2w
� z2

− � �
� z

− g (1 − �2∇2) � u
� x

,

(10)
∇2� =

�CE d0 l0
K

(

1 + �0
�
�t

)

�̇ +
�2 T0 d0 l0
K (� + 2�)

(

1 + �0
�
�t

)

ė

−
l20
K

(

1 + �0
�
�t

)

Q.

(11)
(

u,w, �, �ij
)

(x, z, t) =
(

u∗,w∗, �∗, �∗
ij

)

(z) exp (mt + i a x) ,

Q = Q∗ exp(m t + i a x), Q∗ = Q0V0,

(12)

(
N1 D

2 − N2

)
u∗ + ia

(
−g �2D2 + A1D + N3

)
w∗ − ia N4 �

∗ = 0,

(13)
ia
(
g �2D2 + A1D − N3

)
u∗ +

(
N5 D

2 − N6

)
w∗ − N4D �∗ = 0,

(14)ia N7u
∗ + N7Dw∗ +

(
N10 − D2

)
�∗ = N9,

(15)
(
D6 − C1D

4 + C2D
2 − C3

)
u∗(z) = −

iaN4N6N9

C0

.

(16)u∗(z) =

3∑

j=1

Mj exp(−kjz) +
iaN4N6N9

C0C3

.

(17)w∗(z) =

3∑

j=1

H1j Mj exp(−kjz) +
a2N3N4N9

C0C3

,

Using the above equations, we get

where k2
j
( j = 1, 2, 3 ) are the roots of the characteristic 

equation:( k6 − C1k
4 + C2k

2 − C3 = 0 ).

The Boundary Conditions

In the physical problem, we should suppress the positive 
exponentials that are unbounded at infinity. To get the 
parameter Mn (n = 1, 2, 3) , the initial and regularity condi-
tions are used to solve the present problem at z = 0, are

a. Thermal boundary condition that the surface of the 
half-space is subjected to a thermal shock

(18)�∗(z) =

3∑

j=1

H2j Mj exp(−kjz) +
a2N2

3
N9 − N2N6N9

C0C3

.

(19)�∗
zz
(z) =

3∑

j=1

H3j Mj exp(−kjz) − C4,

(20)�∗
xz
(z) =

3∑

j=1

H4jMj exp(−kjz) + C5,

C0 = g2a2�4 − N1N5 ,C1

= 1
C0

⎧

⎪

⎨

⎪

⎩

2gN3a2�2 + g2a2�4N10 + A2
1a

2 − N1N4N7 − N1N6 − N2N5−

N1N5N10

⎫

⎪

⎬

⎪

⎭

,

C2 =
1
C0

⎧

⎪

⎨

⎪

⎩

2gN10N3a2�2 + 2A1a2N4N7 + A2
1a

2N10 + N2
3a

2 − N2N4N7−

N2N6 − N10N1N6 − N2N5N10 − a2N4N5N7

⎫

⎪

⎬

⎪

⎭

,

C3 =
1
C0

{

N10N2
3a

2 − N2N6N10 − a2N4N6N7
}

,

C4 =
N4N9(1 − �0T0)

(

�0 a2N6 + (�0 + 2�0)(a2N2
3 − N2N6)

)

�0 C0C3(1 + �2a2)
,

C5 =
i a3N3N4N9 (1 − �0T0)

C0C3(1 + �2a2)
,

H1j =
N1k3j − g a2�2k2j + (a2A1 − N2) kj + N3a2

i a
(

g �2k3j + (A1 − N5)k2j − N3kj + N6

) ,

H2j =
N1k2j − N2 + ia (N3 − A1kj − g �2k2j ) H1j

i a N4
,

H3j =
(1 − �0T0)

[

i a �0 − ( �0 + 2�0)
(

kj H1j + N4H2j
) ]

�0 (1 + �2a2 − �2k2j )
,

H4j =
(1 − �0T0) (i a H1j − kj)

1 + �2a2 − �2k2j
.
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b. Mechanical boundary condition that the surface of the 
half-space is subjected to mechanical force

c. Mechanical boundary condition that the surface of the 
half-space is traction-free

where f1, f2 are constants and f (x, t), G(x, t) are arbitrary 
functions.

We can find the following using Eqs. (18)–(20) in Eqs. 
(21)–(23):

By solving the aforementioned system in Eq. (24), we 
obtain

We determine the values of the coefficients Mj(j = 1, 2, 3) 
by applying the inverse of the matrix approach of Eq. (25).

Validation and Applications

In the context of the L–S theory, we consider the numerical 
results for the physical constants as follows to compare the 
results for a nonlocal thermoelastic half-space solid with a mov-
ing internal heat source under the influence of the gravity field:

(21)� = f1f (x, t),

(22)�zz = −f2 G(x, t),

(23)�xz = 0,

(24)

3∑

j=1

H2jMj = f1 ,

3∑

j=1

H3jMj = −f2 + C4,

3∑

j=1

H4jMj = −C5.

(25)
⎛
⎜
⎜
⎝

M1

M2

M3

⎞
⎟
⎟
⎠
=

⎛
⎜
⎜
⎝

H21 H22 H23

H31 H32 H33

H41 H42 H43

⎞
⎟
⎟
⎠

−1
⎛
⎜
⎜
⎝

f1
C

4
− f2

−C
5

⎞
⎟
⎟
⎠
.

Figures 1, 2, 3 and 4 display the vertical displacement 
distribution w, thermodynamic temperature distributions 
�, and the stress components �zz, �xz for the nonlocal ther-
moelastic media with different values of the gravity field g . 
Figure 1 depicts the variation of vertical displacement dis-
tribution w begins with positive values. Values of w decrease 
in the range 0 ≤ z ≤ 10 . With increasing the value of the 
gravity field g, values of w decrease. Figure 2 shows that 
the variation of thermodynmic temperature � begins with 
a positive value and obeys the boundary conditions. Val-
ues of � start with increasing attain their maximum values 
and then decrease. With increasing the value of g, values of 
� decrease. Figure 3 introduces that the variation of stress 

�0 = 7.76 × 1010 N m−2, �0 = 7.78 × 1010 N m−2,

� = 8954 kg ×m−3, a = 0.5, T0 = 293K,

CE = 383.3 J kg−1 K−1 , �t = 2.78 × 10−3 K−1,

�0 = 0.3 s, f1 = 0.5, f2 = 1.5;K = 386 w m−1 K−1 s−1,

m = m0 + i�,m0 = −0.3, � = −0.3, Q0 = 3K,

V0 = 0.5m s−1, x = −0.5, t = 0.5 s .
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Fig. 1  Vertical displacement distribution w for different values of the 
gravity field
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component �zz begins with a negative value and satisfies 
the boundary conditions. Values of �zz increase in the range 
0 ≤ z ≤ 10 . With increasing the value of g, values of �zz 
increase. Figure 4 depicts that the variations of stress com-
ponent �xz begin from a zero value at z = 0 and satisfy the 
boundary conditions. With increasing the value of g, values 
of �xz decrease.

Figures 5 and 6 display the horizontal displacement com-
ponents u and thermodynamic temperature distributions � for 
the nonlocal thermoelastic media with different values of an 
empirical material constant �0. Figure 5 depicts that the variation 
of horizontal displacement distribution u starting with positive 
values. Values of u decrease attain their minimum values in the 
range 0 ≤ z ≤ 3 and then increase in the range 3 ≤ z ≤ 10 . With 
increasing the value of �0, values of u increase and then decrease. 
Figure 6 depicts that the variation of thermodynamic tempera-
ture � starting with a positive value. Values of � decrease in the 
range 0 ≤ z ≤ 10 . With increasing the value of �0, values of � 
increase and then decrease.

Figures 7 and 8 display the horizontal displacement com-
ponents u and stress component �xz distributions for the 

thermoelastic media with different values of a nonlocal param-
eter �. Figure 7 depicts that the variation of horizontal displace-
ment distribution u starting with decreasing to reach its maxi-
mum values and then increases. The increasing of the value of 
� causes decreasing values of u and then increases. Figure 8 
depicts that the variations of stress component �xz begin from 
a zero value and obey the boundary conditions. The values of 
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Fig. 4  Distribution of stress component �
xz

 for different values of the 
gravity field
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Fig. 5  Horizontal displacement distribution u for different values of 
an empirical material constant
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Fig. 6  Thermal temperature distribution � for different values of an 
empirical material constant
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�xz attain their minimum values in the range 0 ≤ z ≤ 0.5, then 
increase attain their maximum values in the range 0.5 ≤ z ≤ 4, 
and again decrease. The increasing of the value of � causes 
decreasing values of �xz. Figures 9 and 10 display 3D distribu-
tions of the non-dimensional thermal temperature � and stress 
component �xz. These figures are very important to study the 
dependence of these physical quantities on the vertical compo-
nent of distance.

Conclusion

The present theoretical results may provide interesting informa-
tion and a mathematical foundation for working on the subject, 
because the increasing interest in the theory of thermoelastic-
ity has many applications in such diverse fields as geophysics, 
acoustic wave damping in a magnetic field, machine element 
design of such equipment as heat exchangers, boiler tubes, 
nuclear devices emitting electromagnetic radiations, the devel-
opment of magnetometers that are high in sensitivity and are 
super-conducting, the engineering of electrical power, plasma 
physics, etc. The new generalized nonlocal thermoelasticity 
model predicts novel characteristics for temperature, displace-
ment, stresses, and strain. The conversations that have been held 
have led to the following conclusions:

a. The nonlocal parameter plays a big part in how the phys-
ical fields are distributed.

b. The distributions of the physical fields are significantly 
influenced by the gravity field.

c. This impression supports the notion that the L–S theory 
is unquestionably a theory of generalized thermoelastic-
ity.

d. The physical fields are significantly impacted by the 
temperature-dependent characteristics.

e. The physical fields are significantly impacted by the ver-
tical distance.

f. Even if a nonlocal thermoelastic medium is switched out 
for a thermoelastic one, the technique is still valid.
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