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Abstract
Background  This paper proposes the study of the visco-hyperelastic behavior of a rubber sample. This rubber, coded as the 
BX rubber sample, is simultaneously loaded and subjected to linear vibrations.
Methods   A multiplicative non-separable variables law of the Nashif has been used to model the behavior that depends 
on both stretch and frequency. This method allows splitting the intricately combined test performed jointly on both stretch 
and frequency. On the one hand, we use Young’s complex modulus E∗(�) calculated from the experimental data, and on 
the other hand, the hyperelastic characteristics E(�) of the same material obtained from the experimental tensile curve. The 
hyperelastic phenomenological Gent–Thomas model and the hyperelastic molecular Flory–Erman model are used to evaluate 
the combined complex modulus E∗(�,�).
Results  We obtain results that go in the physical sense, i.e, Young’s modulus increases when the material is stretched, while 
the damping decreases.

Keywords  Visco-hyperelastic · Hyperelastic · Vibration · Multiplicative model · Combined modulus

Introduction

The elastomers belong to the great family of polymers and 
indicate today generally all rubbers, natural or synthetic. 
Because of their energy-dissipating nature, these mate-
rials are used more in the field of the vibration mechan-
ics [1–6] and large deformation [7–12], more specifically 

in the suppression of noise and vibrations and also in the 
calculations of structures using elastomers. Generally, 
the mechanical behavior of rubber-like materials depends 
either on the frequency or the temperature, or even on the 
stress applied. Thus, the behavior law is sometimes defined 
in quasi-static mode or the dynamic mode. In quasi-static 
mode, these materials can undergo large deformations and 
return to their initial form without permanent deformation 
[13–16]. In dynamics, elastomeric materials exhibit a fre-
quency and time behavior having the characteristics of a 
spring [17]. The study of elastomer’s behavior in large defor-
mations under a dynamics regime remains less known and 
developed. The most well-known and cited research works 
in this area are the works of [1, 18, 19]. The expression of 
the constitutive law of this complex study is defined by two 
approaches. The first approach is given by Padovan [18]. It 
is a theory based on the summation of the effects of the vari-
ous deformations, i.e., Small vibrations and hyperelasticity. 
The second approach is that given by Nashif, Jones, and 
Henderson [1]. This approach consists of separating the vari-
ables, i.e., separating the frequencies of the extensions. Tibi 
Beda et al. [20] used the second approach to study the linear 
vibrations of a structure subjected to large static deforma-
tion. In their work, they used in the constitutive law the two 
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following strain energy models: Mooney energy [21] and 
Gent–Thomas energy [22]. In their results, they showed that 
the preload stiffens the elastomer materials but reduces their 
damping property. However, this result gives no information 
on the molecular behavior of the chain network of the mate-
rial used. Moreover, these two phenomenological models 
used do not study the displacement of the junction points 
between the chains during the applied stresses.

To complete the previous results given by [20], we use 
the molecular Flory–Erman model [23] to Characterize the 
loaded rubber-like materials subjected to linear vibrations. 
After recalling the behavior laws in linear viscoelasticity for 
the determination of the Young complex modulus and the 
loss factor, the formulation of the constitutive hyperelastic 
models used are given in the next section; the equations of 
the hyperelastic behavior are briefly summarized under the 
title hyperelastic uniaxial behavior; under the title behavior 
laws for the combined complex modulus and combined loss 
factor, the equations of linear viscoelasticity coupled with 
the hyperelastic models are detailed; in the section identifi-
cation of the mechanical parameters, the least square method 
for identification of the material parameters is described; 
afterward, the results; finally, the conclusion summarizes 
the concluding remarks.

Linear Vibration Behavior Law: Expression 
of the Modulus E(!) and Loss Factor �(!)

In the representation of the behavior of the viscoelastic 
material, the history of the loading is taken into account 
from the earliest to the present moment. In the case of short-
memory viscoelastic materials, only the short time interval 
between the time of observation and the time of loading 
is taken into account. The modeling of the linear behavior 
viscoelastic of elastomers by the fractional operators with 
derivative is an approach that interests the rheologists more 
and more, because it requires a low number of parameters 
[2–6]. Thus, the formulation of the Complex modulus and 
loss factor can be done by using the real parameters. This 
is how Bagley and Torvik [2] proposed the model below 
defined by Eq. 1:

With �o =
1

�o

 and �1 =
1

�1

(1)E∗(�) = Eo

1 + (i�o�)
�

1 + (i�1�)
�

�o and �o represent the cutoff frequencies. Eo, �o, �1 , � 
and � represents the rheological parameters. Tibi Beda and 
Yvone Chevalier [24] propose that � = � , because:

•	 if 𝛼 > 𝛽 : 

 this has no sense in physics.
•	 if 𝛼 < 𝛽 : 

 this has also no sense in physics.
•	 if � = � : 

 this a real number, which physically has a sense.
Therefore, Eq. 1 then becomes

let us put

With (i)� = cos(
��

2
) + isin(

��

2
) , we obtain

By developing equation above, we get:

From Eq. 3, we obtains the modulus:

lim
�→∞

E∗(�) = Eo

1 + (i�o�)
�

1 + (i�1�)
�
= +∞,

lim
�→∞

E∗(�) = Eo

1 + (i�o�)
�

1 + (i�1�)
�
= 0,
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1 + (i�o�)
�

1 + (i�1�)
�
= Eo(

�o

�1

)� ,

(2)E∗(�) = Eo

1 + (i�o�)
�

1 + (i�1�)
�

E∗(�) = Eo

1 + (i)�(�o�)
�

1 + (i)�(�1�)
�

E∗(�) = Eo

1 + (cos( ��2 ) + isin( ��2 ))(�o�)�

1 + (cos( ��2 ) + isin( ��2 ))(�1�)�

= Eo

(1 + (cos( ��2 ) + isin( ��2 ))(�o�)� )(1 + (cos( ��2 ) − isin( ��2 ))(�1�)� )

(1 + cos( ��2 )(�1�)� )2 + (sin( ��2 )(�1�)� )2
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1 + (�o�)
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Within the framework of this work, we will use the data 
estimate from discrete function of Young modulus and the 
loss factor on rubber sample BX [25].

Constitutive Hyperelastic Models

Phenomenological Gent–Thomas Model

Gent and Thomas [22] proposed the following empirical strain 
energy function which involves only two material parameters:

Where K1 and K2 represents the material parameters, and I1 
and I2 the invariants defined by:

and

Molecular Flory–Erman Model

Flory and Erman [23] developed a model based on junction 
points between chains are constrained to move in a restricted 
neighborhood due to other chains. Thus, this constrained chain 
model is given by Eq. 9

Where

(6)W = K1(I1 − 3) + K2ln
I2

3

(7)I1 = �
2

1
+ �

2

2
+ �

2

3
,

(8)I2 = �
2

1
�
2

2
+ �

2

1
�
2

3
+ �

2

2
�
2

3

(9)

W =1
2
�kT

3
∑

j=1

(

�2j − 1
)

+ 1
2
�kT

3
∑

j=1

(

N
�
[Bj + Dj − ln(1 + Bj) − ln(1 − Dj)]

)

(10)Bj = k2
�j

2 − 1

(�j
2 + K)2

(11)Dj = k�j
2

�j
2 − 1

(�j
2 + K)2

(12)� =
N

2

k is a measure of the strengths of the constraints and � is the 
cyclic rank of a network, K the Boltzmann’s constant, T is 
the absolute temperature and N is the chain density.

Hyperelastic Uniaxial Behavior

The uniaxial behavior of rubber-like materials is given by 
the Eq. 13:

Where W is the strain energy function, �n the nominal stress 
and � the stretch; �1 = � , and �2 = �3 =

1√
�

 . This law can be 
rewritten in the strain invariants-based by Eq. 14:

In uniaxial traction, the expressions of the invariants I1 and 
I2 become: I1 = �

2 +
2

�
 and I2 = 2� +

1

�2
.

The relative uniaxial behavior law can be rewritten with 
Gent–Thomas model and Flory–Erman model.

Using the Phenomenological Gent–Thomas Model

Using the Molecular Flory–Erman Model

With

(13)�n = �
�W

��

(14)�n = 2(� −
1

�2
)(
�W

�I1
+

1

�

�W

�I2
)

(15)�n = 2(� −
1

�2
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�

2�3 + 1
)
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(
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1

�2
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A

2
+
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3∑
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(
�Bj

��
+

�Dj

��

−
1

1 + Bj

�Bj

��
−

1

1 + Dj

�Dj

��

)]
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= k2
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1
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To simplify the calculations, we set in the following

Combined Modulus E(�,!) and Combined 
Loss Factor �(�,!)

To determine the combined complex modulus, we will base 
the study on three independent experiments: uniaxial tension 
test to evaluate material tangent modulus E(�) , linear uniaxial 
vibrations test to determine the dynamic modulus E(�) and 
loss factor �(�) . Thus, we consider the multiplicative law and 
center our study on incompressible materials under simple ten-
sion. These independent experiences and results will allow the 
evaluation of the combined modulus E(�,�) and combined 
loss factor �(�,�) dependent on both frequency and stretch. 
These equations are required for comparing the theoretical 
model with experimental data.

Expression of the Tangent Modulus E(�)

The logarithmic definition of the Hencky’s variations [26] 
leads to relation:

Where, � represent stretch and � the linear deformation.
The Young modulus E (tangent) is equal to:

where � is the stress (see Hooke’s law).
For a fixed frequency � , one obtains the tangent Young 

modulus by the relation:

(19)D1 = k�2
�
2 − 1

(�2 + K)2

(20)

D2 = D3 = k�2
2

�2
2 − 1

(�2
2 + K)2

= k�3
2

�3
2 − 1

(�3
2 + K)2

=
k

�2

1

�2
− 1

(
1

�2
+ K)2

(21)A =
1

2
�kT =

1

4
NkT

Log� = �

E =
d�

d�

This quantity depends on both the stretch � and the fre-
quency � , so E≡E(�,�)

Expression of the Combined Modulus E(�,!)

The constitutive law taking in account both � and � is pro-
posed by Nashif [1] This theory stipulates that: if a sample 
of preloaded elastomer is vibrated linearly (subjected to a 
large static deformation: extension), the stress can be fac-
tored into a function of vibration frequency and a function 
of the extension. Considering Ferry’s hypothesis [1] separat-
ing the variables � and � , and taking advantage of the study 
of combined statistical and dynamic characteristics Nashif, 
Jones and Henderson adopted as a law of behavior:

Therefore

where � is the linear vibration frequency and � the extension 
caused by the preload. F(�) is a function to be determined, 
which depends on the hyperelastic model used and G(�) a 
function which depends on the vibration frequencies.

E(�,!) and �(�,!) Expressed with Gent–Thomas Model

Using the
Gent–Thomas strain energy, Nashif’s law is written in uni-

directional traction:

Substituting Eq. 25 into Eq. 24, the expression for Young’s 
modulus is

Let’s put:

and

(22)E =
d�

dLog�
= �

d�

d�

(23)�(�,�) = F(�)G(�)

(24)E(�,�) = �
��(�,�)

��
= �

�F(�)

��
G(�).

(25)�(�,�) = 2(�2 −
1

�
)(K1 + K2

�

2�3 + 1
)G(�)

(26)E(�,�) = 2(K1(2�
2 +

1

�
) + K2(

2 + �
3

1 + 2�3
))G(�)

(27)g1(�) = 2(2�2 +
1

�
)
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Eq. 26 is then written

Applying the correspondence principle [17], we obtains:

and

In Eq. 31, the term �1(�) can be neglected by the assump-
tions of Ferry [17] and Nashif [1]. Indeed, by removing 
the static load, i.e by making the extension tend towards 
unity, we must be able to find the characteristics in the linear 
dynamic regime of the material. Which means, see [20]

and

From Eqs. 27, 28, 29, 30, 31, 32, and 33 we deduce

(28)g2(�) = 2(
2 + �

3

1 + 2�3
)

(29)E(�,�) = (K1g1(�) + K2g2(�))G(�)

(30)
E∗(�,�) =

(
K1[1 + j�1(�)]g1(�) + K2[1 + j�2(�)]g2(�)

)
G(�)

(31)�(�,�) =
{K1g1(�)�1(�) + K2g2(�)�2(�)}G(�)

K1g1(�) + K2g2(�)

(32)lim
�→1

E(�,�) = E(�)

(33)lim
�→1

�(�,�) = �(�)

(34)E(�) = 2(3K1 + K2)G(�)

From Eqs. 34 and 35, we get

The combined Young modulus and loss factor using the 
Gent–Thomas model are then the following:

E(�,!) and �(�,!) Expressed with Flory–Erman Model

Using the Flory Erman strain energy, Nashif’s law is written 
in unidirectional traction

(35)�(�) =
K2�2(�)

3K1 + K2

G(�)

(36)G(�) =
E(�)

2(3K1 + K2)

(37)�2(�) =
(3K1 + K2)�(�)

K2G(�)

(38)E(�,�) =
K1g1(�) + K2g2(�)

2(3K1 + K2)
E(�)

(39)�(�,�) =
(3K1 + K2)g2(�)

K1g1(�) + K2g2(�)
�(�)

(40)

�(�,�) = A
(
�
2 + �

−1
)

+ A�

3∑
j=1

(
�Bj

��
+

�Dj

��
−

1

1 + Bj

�Bj

��
−

1

1 + Dj

�Dj

��

)
G(�)
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Substituting Eq. 40 into equation Eq. 24, the expression for 
Young’s modulus is:

With

Applying the correspondence principle [17], we obtain:

E(�,�) = A(h1(�) + h2(�))G(�)

(41)h1(�) =
(
2 �2 + �

−1
)
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h
2

(�) = �
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Neglecting expression �1(�) , Eq. 44 becomes

(43)
E∗(�,�) = {A[1 + j�1(�)]h1(�) + A[1 + j�2(�)]h2(�)}G(�)

(44)�(�,�) =
{Ah1(�)�1(�) + Ah2(�)�2(�)}G(�)

Ah1(�) + Ah2(�)
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By calculating the limits of E(�,�) and �(�,�) when � tends 
to 1, we deduce

(45)�(�,�) =
h2(�)�2(�)G(�)

h1(�) + h2(�)

From Eqs. 46 and 47 we get

The characteristics combined using the Flory–Erman model 
are then the following:

Identification of the Mechanical Parameters

We use experimental data from a rubber sample referenced 
by BX [25]. This data allows us to evaluate the characteris-
tics of hyperelastic models using the least squares method, 
and these models allow building the combined modulus 
and combined loss factor. The procedure of the identifica-
tion consists in making coincide a theoretical solution �n 
resulting from a model with the experimental data of sam-
ple BX rubber in simple tension represent by the couple 
of the point (�exp, �exp) . The least squares methods takes 

(46)E(�) = 3×A×G(�)

(47)�(�) = 5×10−7�2(�)G(�)

(48)G(�) =
E(�)

3A

(49)�2(�) =
�(�)

5×10−7G(�)

(50)E(�,�) =
h1(�) + h2(�)

3
E(�)

(51)�(�,�) =
h2(�)

5×10−7(h1(�) + h2(�))
�(�)

Table 1   Identification of the material parameters of the hyperelastic 
models by least squares method

Models Parameters Values Units

Gent Thomas K
1

0.127 MPa
K
2

0.300 MPa
Flory Erman A 0.395 MPa

k 0.0005 MPa

Fig. 1   Identification of the material parameters of the hyperelastic 
models: a Gent–Thomas model and b Flory–Erman model

Fig. 2   Combined elasticity modulus according to the hyperelastic models: a Gent–Thomas model and b Flory–Erman model
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Fig. 3   Combined elasticity modulus according to the hyperelastic models: a Gent–Thomas model and b Flory–Erman model

Fig. 4   Combined loss factor according to the hyperelastic models: a Gent–Thomas model and b Flory–Erman model

Fig. 5   Combined loss factor according to the hyperelastic models: a Gent–Thomas model and b Flory–Erman model



6039Journal of Vibration Engineering & Technologies (2024) 12:6031–6041	

1 3

into account the particular form of the reduced stress � . 
Thus, we mention in equations 52 and 53 below, the differ-
ent expressions of � obtained from the different nominal 
stresses:

where �G−T is the reduced stress according to the phenom-
enological Gent–Thomas model, and �F−E the reduced stress 
according to the molecular Flory–Erman model.

Identification of Gent–Thomas Model Parameters

Applying the least squares method to the Gent–Thomas 
model, we have:

With, < P2(𝜆) > the base of approximation and ⟨�1(�)⟩ , 
⟨�2(�)⟩ the generating function. Consequently, the param-
eters k1 and k2 are then given by the relation below:

While posing

We obtains

(52)�G−T = 2(K1 + K2

�

2�3 + 1
)

(53)

�F−E = 2

[
A

2
+

A�2

2(�3 − 1)

3∑
j=1

(
�Bj

��
+

�Dj

��

−
1

1 + Bj

�Bj

��
−

1

1 + Dj

�Dj

��

)]

(54)⟨P2(�)⟩ = ⟨�1(�) = 1,�2(�) =
�

(2�3 + 1)
⟩

(55)
{

k1
K2

}
=

[
G11 G12

G21 G22

]−1 {
q1
q2

}

(56)Gij =

M∑
k=1

�i(�k)�j(�k)

(57)qi =

M∑
k=1

�i(�k)�G−T (�k)

(58)G11 = M

(59)G12 =

M∑
k=1

�k

(2�3
k
+ 1)

(60)G22 =

M∑
k=1

�
2

k

(2�3
k
+ 1)2

The estimated parameters of the Gent–Thomas model are 
recorded in Table 1

Identification of Flory–Erman Model Parameters

Applying
the least squares method to the Flory–Erman model, we 

have:

With, < P3(𝜆) > the base of approximation and ⟨�1(�)⟩ the 
generating function. We summarize the different parameters 
identified on the sample BX tests data by the least squares 
method in Table 1.

Result

Hyperelastic Behavior Modeling

The various values mentioned in Table 1, enable us to 
obtain Fig. 1.

In Fig. 1, one sees that all the two models present a 
very good accuracy with the uniaxial tensile data, the 
deformation being moderate, lower than 200% [27]. The 
two models give similar results [28], the Gent–Thomas 
is a phenomenological model while the Flory–Erman is 
a molecular one.

(61)q1 =

M∑
k=1

�nk

(�k − �
−2
k
)

(62)q2 =

M∑
k=1

�k�nk

(2�3
k
+ 1)(�k − �

−2
k
)

(63)

�
K1

K2

�
=

⎡⎢⎢⎣

M
∑M

k=1

�k

(2�3
k
+1)∑M

k=1

�k

(2�3
k
+1)

∑M

k=1

�
2

k

(2�3
k
+1)2

⎤
⎥⎥⎦

−1 ⎧
⎪⎨⎪⎩

∑M

k=1

�nk

(�k−�
−2
k
)∑M

k=1

�k�nk

(2�3
k
+1)(�k−�

−2
k
)

⎫
⎪⎬⎪⎭

(64)

⟨P3(�)⟩ = ⟨�1(�) =

�
� −

1

�2
+

3�
j=1

�
�Bj

��
+

�Dj

��

−
1

1 + Bj

�Bj

��
−

1

1 + Dj

�Dj

��

��
⟩
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Combined Modulus

2D Representation

Figure 2a, b shows predicted combined complex modulus 
of BX sample for different values of stretch in a large range 
of frequencies from about 100 Hz to 100 KHz. One remark 
that the combined complex modulus increase when stretch 
increase.

This result makes it possible to note that:when one makes 
linearly vibrate a sample BX of elastomer subjected to a 
great static deformation (extension), the combined elasticity 
modulus increases if the stretch � increases.

3D Representation

Figure 3a, b shows the storage modulus as continuous dou-
ble variables function of stretch and frequency.

In Fig. 3, one notes simultaneously the influence of the 
frequency and extension � on the modulus of elasticity 
E(�,�) . This module increases way continues and at the 
end one observes a strong rigidification of material BX.

Combined Loss Factor Modulus

2D Representation

Figure 4a, b shows predicted combined loss factor modulus 
of BX sample for different values of stretch in a large range 
of frequencies from about 100 Hz to 100 kHz.

One remark that, when one makes linearly vibrate a sam-
ple BX of elastomer subjected to a great static deformation 
(extension), the combined combined loss factor decrease if 
the stretch � increases.

3D Representation

Figure 5a, b shows the loss factor as continuous double 
variables function of stretch and frequency.

In Fig. 5, one notes simultaneously the influence of 
the frequency and extension � on the damping. damping 
decreases and material BX becomes less resilient.

Conclusion

We showed in this paper, the influence of the frequency 
of the linear vibrations and the nonlinear extension due 
to a static load on the combined characteristics of the 
sample BX elastomer. this study made it possible to 
show that when a sample of elastomer subjected to a 
hyperelastic deformation vibrates linearly its modulus of 

elasticity increases whereas its damping decreases. The 
phenomenological Gent–Thomas model and the molecular 
Flory–Erman model give the identical results in character-
izing the combined Young modulus and the loss factor. 
Moreover, the second originality of this work, is that it uses 
a law of behavior which saves the experimenter of the prob-
lems involved in the instrumental and experimental reali-
zation of the simultaneous tests in statics and dynamics.

Data availability  All relevant data are within the paper.
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