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Abstract
Purpose  Functionally Graded Materials (FGMs) are generally used in aerospace applications due to their high thermal resist-
ance, strength, and lightweight. During the service conditions of aircraft, these plate materials are subjected to transverse 
shear load and exhibit vibrational phenomena. Further, material uncertainty and geometrical irregularities (cracks/pores) 
can affect the natural frequency of the plate under flexural vibration. This paper presents a novel computational algorithm 
that combines the stochastic extended finite-element method and higher order shear deformation theory to analyze the free 
vibration properties of porous functionally graded plates with cracks.
Methods  The stochastic extended finite-element method employs the First-Order Perturbation Technique to analyze struc-
tural response under uncertainty and randomness in the material properties that influence the behavior of structures. Higher 
order shear deformation theory has been implemented for the plate kinematics to solve the considered computational model. 
Accuracy and robustness of the proposed computational approach were validated and presented for the considered problems 
with parametric studies (such as crack, porosity gradient index, material uncertainty, and various boundary conditions). 
Results  The obtained numerical results indicate that the non-dimensional natural frequency of porous functionally graded 
plates significantly decreases with a higher gradient index and larger cracks. Furthermore, it was observed that an increase 
in the covariance (standard deviation/mean) of material properties leads to a higher covariance in the natural frequency of 
the plate.

Keywords  Material uncertainty · FGMs · Crack · Porosity · Stochastic XFEM

Introduction

The development of advanced technology has necessitated 
the use of high-quality materials for cutting-edge applica-
tions. These requirements have led to the emergence of 
advanced composite materials, such as functionally graded 
materials (FGMs). FGMs differ from conventional fiber-
reinforced composites, because they do not have fibers and 
a matrix. Instead, FGMs are made by mixing two different 
materials, and their composition smoothly and continuously 
varies from one side to the other. This seamless transition 
results in a material without any discontinuity and eliminates 

inter-laminar stresses. Typically, FGMs are composed of 
ceramics and metals. The ceramic side can withstand high-
temperature or chemically aggressive environments, making 
FGMs ideal for heat shielding applications. In the 1980s, 
Japanese researchers pioneered the development of FGM 
materials for thermal insulation purposes. Initially, function-
ally graded materials found use in the nuclear and aerospace 
industries for heat shielding. Over time, their applications 
expanded to various other sectors, including electronic 
sensors, wear-resistant coatings, biomedical implants, and 
chemical plants. [1]

Fabricating functionally graded plates (FG plates) pre-
sents significant challenges and introduces uncertainty in 
material properties. This uncertainty stems from many 
involved parameters, ultimately leading to variations in 
material parameters, geometry, and boundary conditions. 
The inherent variability in material properties gives rise to 
randomness in the structural response [2]. Consequently, it 
becomes imperative to account for this material property 

 *	 Himanshu Pathak 
	 himanshu@iitmandi.ac.in

1	 Design Against Failure and Fracture Group, School 
of Mechanical and Materials Engineering, Indian 
Institute of Technology Mandi, VPO Kamand, Mandi, 
Himachal Pradesh 175075, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s42417-023-01223-w&domain=pdf
http://orcid.org/0000-0003-3820-815X


5850	 Journal of Vibration Engineering & Technologies (2024) 12:5849–5864

1 3

variability in the analysis to ensure safe design and struc-
tural integrity. The variability in Young’s modulus and Pois-
son’s ratio is recognized as uncertain material parameters 
in stochastic analysis. Over the last few decades, research-
ers have addressed the stochastic analysis of FGM plates 
by considering material randomness. For example, Rahman 
et al. [3] developed a probabilistic model for nonlinear frac-
ture mechanics problems within a finite element framework. 
Tomar and Zhou et al. [4] explored perturbation fracture 
analysis to understand the variations in constituent proper-
ties at the microscopic level. Nouy et al. [5] introduced an 
extended stochastic FEM (XFEM) for stochastic analysis. 
Chakraborty and Rahman et al. [6] conducted reliability 
analysis using stochastic multiscale models. Lal and Pale-
kar et al. [7] performed stochastic simulations of cracked 
plates by employing the second-order perturbation technique 
with XFEM. Khatri and Lal et al. [8] implemented a second-
order perturbation technique for analyzing stochastic crack 
growth.

Over the past decade, researchers have dedicated signifi-
cant efforts to analyzing the stochastic vibration responses of 
plates while considering randomness in material parameters. 
Among the probabilistic techniques employed, the First-
Order Perturbation Technique (FOPT) has garnered attention 
for its computational efficiency in stochastic simulations. For 
instance, Cha and Gu et al. [9] utilized FOPT to compute 
perturbed natural frequencies and compared the results with 
a deterministic approach. Shaker et al. [10] implemented a 
second-order perturbation technique into a finite element 
framework to investigate stochastic free vibrations. Yang 
et al. [11] applied FOPT to analyze the behavior of Function-
ally Graded (FG) plates under bending. Bhardwaj et al. [12] 
introduced a stochastic XIGA method for simulating crack 
growth in the FGM domain. Pathak et al. [13] employed a 
coupled FE-EFG method in a stochastic medium to simulate 
crack growth. Singh et al. [14] conducted stochastic simula-
tions to analyze the post-buckling behavior of plates. Lal 
et al. [15] utilized stochastic simulations to investigate frac-
ture and crack growth by employing FOPT. Talha and Singh 
[16] performed stochastic simulations to explore the buck-
ling behavior of FG plates in the presence of material ran-
domness. Jagtap et al. [17] performed stochastic simulations 
to investigate the nonlinear free vibrations of FG plates. Lal 
et al. [18, 19] employed a second-order perturbation tech-
nique (SOPT) to simulate cracked composite plates and 
determine the stochastic stress intensity factor. Talha and 
Singh [20] used FOPT to study the free vibrations of higher-
order FG plates. Lal and Palekar [21] conducted stochastic 
simulations to analyze the stress intensity factor, employing 
a first-order perturbation technique while considering uncer-
tainty in system properties. Lal et al. [22] utilized FOPT for 
stochastic simulations of non-linear bending, considering 
uncertainties in material properties and thermal coefficients. 

Pandit et al. [23] implemented FOPT for stochastic analysis 
of free vibration. Shakir and Talha [24] employed FOPT 
for stochastic simulations of free vibrations in panels rein-
forced with graphene, considering uncertainty in material 
properties. Lal et al. [25] utilized FOPT for stochastic simu-
lations of stress intensity factors, accounting for uncertainty 
in material properties. Amir et al. [26] conducted stochas-
tic simulations for free vibration analysis, employing the 
FOPT approach while considering material uncertainties. 
Raza et al. [27] performed stochastic simulations to investi-
gate in-plane free vibrations. Shaker et al. [28] implemented 
a stochastic finite element framework to analyze stochastic 
free vibrations. Lal and Singh [29] conducted stochastic 
simulations for nonlinear free vibrations using the first-order 
perturbation technique. Secgin and Kara [30] applied the 
statistical moment method to analyze stochastic free vibra-
tions. Bahmyari [31] conducted stochastic simulations of 
laminated composite plates for free vibrations, incorporating 
a non-intrusive chaotic radial function. Nasker et al. [32] 
performed stochastic simulations to determine natural fre-
quencies by introducing a stochastic representative volume 
element concept. Nayak and Satapathy [33] studied stochas-
tic analysis of damped free vibrations. Venini and Mariani 
[34] implemented the Rayleigh–Ritz approach to perform 
stochastic simulations of composite plates for free vibra-
tions while considering uncertainties in boundary condi-
tions, mass density, and Young’s moduli. Chakraborty et al. 
[35] conducted stochastic analyses of composite plates for 
free vibrations, employing polynomial correlated function 
expansion. Hien and Noh [36] performed stochastic simula-
tions for free vibrations, considering material randomness. 
Raza et al. [37] employed FOPT and conducted stochastic 
simulations of FG plates with edge cracks to analyze free 
flexural vibrations.

Over the last decade, porous structures have garnered sig-
nificant attention from researchers. They have extensively 
explored porous plates. Porosity in structure may alter the 
structural response, making it essential to consider during 
structural analysis. Xue et al. [38] simulated the vibration 
of plates with porosity using the isogeometric approach. Du 
et al. [39] examined the free vibration of porous plates, while 
Slimane et al. [40] also focused on simulating the free vibra-
tion of porous plates. Rjoub and Alshatnawi et al. [41] used 
an artificial neural network to simulate the free vibration 
of porous plates. Saad et al. [42] delved into the simulation 
of free vibration and reported on the effect of porosity in 
functionally graded sandwich plates on frequency. Merdaci 
et al. [43] performed simulations of the free vibration of 
functionally graded plates with porosity. In another study, 
[44] conducted a simulation for the vibration of function-
ally graded plates with porosity in a thermal environment. 
Farsani et al. [45] perform simulations of the free vibration 
of plates with porosity. Belarbi et al. [46] implemented an 
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extended layerwise theory to simulate the free vibration of 
functionally graded plates with porosity. Rezai et al. [47] 
simulated the free vibration of plates using the Carrera uni-
fied formulation, and Kumar et al. [48] focused on simulat-
ing the free vibration of plates with porosity. Rezai et al. [49] 
performed free vibration simulations of functionally graded 
plates with porosity. Tran et al. [50] present a BCMO-ANN 
algorithm to optimize vibration and buckling in function-
ally graded porous microplates. The author integrates the 
higher-order shear deformation theory and modified couple 
stress theory to explore the material property uncertainties 
and their impact on natural frequencies and critical buckling 
loads. Nguyen et al. [51] discuss the use of a hybrid phase-
field approach within isogeometric analysis to model crack 
propagation in functionally graded materials with porosity. 
The author demonstrates the impact of porosity on critical 
force and crack path while optimizing computational effi-
ciency through a local refinement multi-patch algorithm 
based on the VUKIMS technique. Le et al. [52] introduce 
an isogeometric numerical solution based on nonlocal strain 
gradient elasticity theory to analyse the static bending, free 
vibration, and buckling of sigmoid functionally graded nano-
plates, considering two core configurations. Pham et al. [53] 
employ isogeometric analysis based on higher order shear 
deformation theory to investigate the dynamic response of 
sandwich nanoplates with a porous functionally graded core. 
Vinh et al. [54] perform free vibration in functionally graded 
porous doubly curved nanoshells by considering variable 
nonlocal parameters. Tran et al. [55] investigate the free 
vibrations of functionally graded porous plates reinforced 
with graphene platelets and piezoelectric layers, exploring 
diverse configurations and their effects on vibration charac-
teristics. Sharma et al. [56] present a free vibration analysis 
of porous functionally graded plates using efficient eight-
noded 3D degenerated shell elements that reduce computa-
tional time while accurately accommodating material prop-
erty variations through thickness.

During the manufacturing of FGM, invisible flaws and 
voids can exist in the domain, which may later result in crack 
initiation during the operation of engineering components 
or structures. Even a tiny crack can significantly affect the 
free vibration response of these structures. Variations in the 
crack size can lead to changes in the natural frequency of 
the structures, which can result in unexpected phenomena 
such as resonance, potentially leading to catastrophic struc-
tural failure. To address the issue of discontinuities in the 
plate domain, several advanced techniques are available. In 
this study, the XFEM method [57–59] has been employed 
to analyze cracked functionally graded plates in the con-
text of free flexural vibration. XFEM is a well-established 
and efficient computational technique for modeling discon-
tinuity problems. It offers higher convergence and more 
accurate solutions compared to conventional FEM. XFEM 

has several advantages over FEM. It allows for modeling 
the crack separately, eliminating the need for conformal 
meshing or special elements. This, in turn, eliminates the 
need for a time-consuming and computationally expensive 
remeshing process [60]. The level set method [61] is used 
as a mathematical tool to determine the region of the crack 
tip and crack face, along with their corresponding elements 
and nodes within the plate domain. In XFEM, tip elements, 
tip nodes, split elements, and split nodes are identified, and 
special treatment is applied to these discontinuous elements. 
The enrichment technique is implemented using the partition 
of unity method [57] to improve the approximation of pri-
mary variables. Over the past decades, numerous researchers 
have conducted analyses on cracked structures. For instance, 
Bachene et al. [62] employed XFEM to investigate the free 
vibration of cracked isotropic plates. Natarajan et al. [63] 
incorporated Mindlin’s plate theory within the XFEM frame-
work to study the free vibration of cracked plates. Raza et al. 
[64] applied the XFEM framework to computationally inves-
tigate porous functionally graded plates under free flexural 
vibration. Raza et al. [65] conducted a simulation for the free 
vibration analysis of cracked functionally graded plates with 
porosity, considering a thermal environment. In the present 
study, porosity is considered as a microstructural defect. 
Dwivedi et al. [66] introduce a method using HOXFEM and 
ANN to predict the natural frequencies of cracked sandwich 
plates, enhancing computational efficiency and accuracy.

The introduction of cracks, porosity, and material 
uncertainty can significantly impact the free vibration 
and overall performance of FG plates. To predict the 
structural response while considering these parameters, 
the investigation of free vibration represents an interest-
ing area of research. The main motivations for this study 
include understanding FGM dynamic behaviour, enhanc-
ing safety by predicting crack effects, optimizing mate-
rial parameters for efficiency, advancing computational 
mechanics through innovative methods, contributing 
to academic knowledge, reducing computational cost, 
exploring industrial applications, and improving struc-
tural designs and materials understanding. The objectives 
and results of this paper encompass the following scien-
tific interests: firstly, it involves advancing computational 
methods through the development and application of 
the stochastic extended finite element method for modal 
analyses. This represents a notable progression in compu-
tational approaches, addressing uncertainties in material 
properties. Secondly, the study delves into understand-
ing the correlation between crack and porosity distribu-
tion with free vibration, providing critical insights into 
how structural irregularities and material heterogeneities 
influence the dynamic behaviour of FGM plates. This 
understanding is fundamental for predicting and manag-
ing structural integrity. Thirdly, the investigation explores 
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the effect of material gradation within the porous FGM 
domain, revealing how varying material properties impact 
the dynamic response. Optimizing this gradation is essen-
tial for achieving enhanced structural performance. Lastly, 
the study analyses the effect of material randomness on 
frequency dispersion, offering valuable insights into how 
variations in material properties affect the behaviour of 
FGM plates. This understanding is pivotal for real-world 
structural design and assessment, contributing collectively 
to the advancement of the field of structural mechanics. To 
the best of the author’s knowledge based on the literature 
review, no prior research has been reported on the stochas-
tic free vibration of cracked porous FG plates considering 
material randomness. The objectives for the current study 
are outlined below:

•	 The stochastic extended finite element method is devel-
oped and implemented for the modal analyses of porous 
FGM plates with crack discontinuity.

•	 The distribution of cracks and porosity was analyzed in 
correlation with free vibration.

•	 The effect of material gradation in the porous FGM 
domain is analyzed and discussed.

•	 The effect of material randomness is studied on the dis-
persion in the linear frequency of porous FGM plates.

Theoretical Formulations

Porous FGM Modelling

Consider a uniformly distributed porous FGM plate with 
a crack at the middle of the left edge whose configura-
tion and dimensions are shown in the diagram in Fig. 1a. 
Ceramic and metal are the constituent materials of the 
considered porous FGM plate. In the considered FGM 
plate, the bottom of the plate is fully metal, the top is 
fully ceramic, and the constituent material is graded in the 
thickness direction, which can be seen in Fig. 1b. Porosity 
distribution over the thickness of the FGM plate can be 
seen in Fig. 1c. The dimension length, width, and thick-
ness of the cracked porous FG plates are designated as a, 
b, and h in x, y, and z directions, respectively. The crack 

Fig. 1   Functionally graded 
plate with a edge crack in three 
dimensions, b material distribu-
tion over the thickness, c poros-
ity distribution in the thickness 
direction, and d edge crack in 
two dimensions
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length is defined as d, as shown in Fig. 1a. The reference 
plane or the origin of the coordinate geometry is shown 
with the dotted line in shown in Fig. 1a. The material is 
fully metal at –h/2, whereas the material is fully ceramic at 
h/2. The Power-law is incorporated to model the FG plates. 
The Power-law for the gradation of constituent material is 
given as [6]:

where Vc is designated as the volume fraction of ceramic and 
γ the gradient index. Figure 2 shows the variation of material 
along the thickness direction.

The effective material property in the FGM domain can 
be evaluated using the equation written as:

where P is designated as a generalized material property, the 
subscript c and m represent ceramic and metal, respectively.

Plate Kinematics

Displacement Field Higher order shear deformation theory 
is incorporated to investigate the plate. The displacement 
field of plate in Fig. 3 proposed by JN Reddy [67] is writ-
ten as:

(1)Vc(z) =
(
z

h
+ 0.5
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,

Strain–Displacement Relation Further strain [68] can 
be expressed as:

Material Constitutive Equation The constitutive equa-
tion [69] can be written as:

Where,

XFEM Approximation

The XFEM approximation for the cracked plate by aug-
menting the primary variable is written as [70–72]:
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Fig. 2   Variation of volume fraction for ceramic in the thickness direc-
tion of the plate

Fig. 3   Visualization of plate geometry with coordinate axis
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In above equation, Heaviside enrichment ( H(x) ) is 
required to address the crack face discontinuity, whereas tip 
enrichment ( ��(x) ) is required to take care of the crack tip 
singularities. ui is the displacement field that stands for the 
conventional FEM mesh, ai is the additional variable for 
Heaviside enrichment, whereas bi is the enriched variable 
corresponding to tip enrichment. There are two types of 
displacement in the plate kinematics; one is linear, and the 
other is due to rotation. Hence, there are two types of enrich-
ment [62] required to model the thorough crack in the plate 
domain for flexural analysis of the plate using plate theory. 
The tip enrichment function is given below in detail. Φ and 
Ψ are the tip enrichment functions for linear displacement 
and rotation, respectively.

The terminologies related to cracks in the discretized 
domain, such as split nodes, split elements, tip nodes, and 
tip elements, are defined in the schematic diagram shown 
in Fig. 4.

Governing Equation

In this work, the origin of the coordinate geometry is in 
the middle of the plate. Discretization is done using a four-
noded quadrilateral element. The displacement vector is 
given as:

(6)
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Here, [N] is the shape function matrix.
Strain can be evaluated and expressed as:

where [B] is the strain–displacement matrix.
The strain energy [73] of the plate due to the vibration 

is written as:

The kinetic energy [74] of the plate due to vibration is 
given as:

Using the variational principle [63], the equation can be 
written as:

where [M] is the global mass matrix, and [K] is the global 
stiffness matrix.

First‑Order Perturbation Technique (FOPT)

The first-order perturbation technique is a probabilistic 
method that is relatively computationally cost-effective. 
FOPT provides accurate solutions for input random vari-
ables of less than 20%. In a study conducted by Cha and 
Gu [9], they applied FOPT to compute perturbed natural 
frequencies and compared the results with a deterministic 
approach. The random variable can be expressed as the mean 
variable, denoted as ‘m’, and its zero-mean random variable, 
denoted as ‘r’.

Here, λ and q are eigenvalues and eigenvectors, 
respectively.

Solve the equation after putting Eq. (13) in Eq. (12). 
Zeroth-order and first-order from the derivation is segre-
gated and written as:

Taylor’s series is used to express random variables about 
the mean values and can be written as:
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Fig. 4   Domain discretization with XFEM
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where br and bm are material properties.
The variance of the eigenvalues can be defined as:

Boundary Conditions

The boundary conditions implemented in the present work 
are expressed as follows:

1.	 For clamped (CCCC) boundary condition, the degree of 
freedom at all sides is zero.

2.	 For simply supported (SSSS), v = w = φy = ψy = 0 at x = 0 
and a, whereas u = w = φx = ψx = 0 at y = 0 and b.

The flowchart for the deterministic simulation of cracked 
plate for free vibration is presented in Fig. 5. A MATLAB 
code based on the algorithm given in the flowchart is devel-
oped to simulate the problem.

(17)�
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i
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n∑
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�m
i,j
br
j
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qm
i,j
br
j
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(
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j
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k

)
.

Numerical Results and Discussion

In this section, a numerical analysis is presented using the 
developed formulation. An in-house MATLAB code is 
developed to solve the defined problem. The algorithm for 
the developed XFEM formulation is illustrated in Fig. 5. To 
check the accuracy and reliability of the developed XFEM 
formulation, a comparative study is conducted. This study 
involves solving various numerical problems, considering 
different parameters, such as material uncertainty, porosity, 
cracks, and volume fraction, with various boundary condi-
tions. The section begins with the deterministic results for a 
porous FG plate with cracks, followed by a detailed stochas-
tic analysis and discussion is performed.

Convergence and Comparative Study

In this sub-section, the developed mathematical formula-
tion for the defined problem is validated by solving some 
numerical examples.

Example 1.  A problem of free flexural vibration in a non-
cracked porous plate is solved for validation. The plate is 
assumed to be square and simply supported, with a thickness 

Fig. 5   Flowchart of deterministic approach for free vibration analysis of cracked plate
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ratio (b/h) of 10. Material properties from Table 1 are uti-
lized, and the results are compared, as presented in Table 2. 
The observation from the validation study lead to the conclu-
sion of the efficacy and accuracy of the solution.

Example 2.  In this problem, free flexural vibration of edge 
cracked functionally graded plate has been solved for the 
comparison study. Material properties from Table 1 are uti-
lized. The plate considered is square and simply supported, 
with a thickness ratio of h/b = 0.1, and it has an edge crack 
located at y = a/2. The results are compared, as reported in 
Table 3. The findings from the validation study indicate the 
effectiveness of the developed formulation.

Example 3.  In this example, a numerical problem is solved 
in a stochastic medium, and the results are compared with 
the results available in the literature. The effect of material 
randomness on dispersion in the linear frequency is evalu-
ated. The FOPT is implemented to solve the problem. The 
covariance of the square of natural frequency is evaluated by 
varying the covariance of Young’s modulus of ceramic from 
0 to 20%. Functionally graded material (Al/ZrO2) is assumed 
for this problem. A square FG plate with simple support and 
a thickness ratio of 0.1 is considered. The material properties 

are as follows: Ec = 151 GPa; Em = 70 GPa; ρc = 3000 kg/
m3; ρm = 2707 kg/m3; νc = 0.3; νm = 0.3. The value of the 
gradient index is 2. The results are compared and reported 
in Fig. 6. The validation inference confirms the accuracy of 
the solution.

Parametric Study

In this section, deterministic and stochastic free flexural 
vibrations of cracked FG plates are presented. The sche-
matic diagram of the considered functionally graded plate 
is shown in Fig. 1. The material properties listed in Table 1 
are utilized.

Table 1   Material properties [49] of FGM plate

Constituents Material prop-
erties

E (GPa) ν ρ (Kg/m3)

Alumina (Al2O3) 380 0.3 3800
Aluminium (Al) 70 0.3 2702

Table 2   Validation of the linear 
frequency under SSSS boundary 
condition for the porous FGM 
plate; a/b = 1; h/b = 0.1; Al/ 
Al2O3

Porosity 
Index 
(α)

Gradient Index (γ)

γ = 0 γ = 0.5 γ = 1

Analytical 
method 
[49]

Present (XFEM) Analytical 
method 
[49]

Present (XFEM) Analytical 
method 
[49]

Present (XFEM)

0 0.11369 0.11460 0.09651 0.09750 0.08702 0.08797
0.2 0.11726 0.11821 0.09612 0.09716 0.08244 0.08347
0.4 0.12248 0.12347 0.09493 0.09606 0.07142 0.07267

Table 3   Validation 
of linear frequency 
( �∗ = �(a2∕h)

√
�
c
∕E

C
 ) for 

cracked FGM plate under SSSS 
boundary condition; a/b = 1; 
h/b = 0.1; Al/ Al2O3

Gradient Index (γ)

γ = 0 γ = 1 γ = 5 γ = 10

d/a 0 0.3 0 0.3 0 0.3 0 0.3

Present (XFEM) 5.834 5.747 4.477 4.413 3.809 3.752 3.673 3.616
Ritz Method [75] 5.769 5.690 4.419 4.359 3.768 3.716 3.637 3.586

Fig. 6   Validation of linear frequency dispersion variation for Young’s 
modulus uncertainty in ceramics using the present method and a prior 
study
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Deterministic Analysis

In this sub-section, simulation for free vibration of porous 
FG plate (Al/Al2O3) with a crack is performed in a determin-
istic environment. A simple supported square porous plate 
is considered with a thickness ratio of h/b = 0.1 and an edge 
crack located at y = a/2. The porosity index can be defined as 
the volume fraction of porous medium to the whole domain 
or in terms of percentage. The porosity index is varying from 
0 to 0.3.

The non-dimensional frequency �∗ = �h
√
�c∕Ec is eval-

uated. The results for influential parameters such as gradient 
and porosity indexes are obtained. The obtained results for 
various boundary conditions are reported in Tables 4, 5, and 
6. The investigation reports the variation in frequency. The 
value is decreasing with the increase in the gradient index. 
The frequency is also decreasing with the increase in crack 
size. With the increase in porosity index, the value of the 
frequency increases for gradient index zero (fully ceramic), 
whereas, for gradient index rise, the value of frequency 
decreases.

Stochastic Analysis

In this section, stochastic-free vibration in cracked porous 
FG plate based on HSDT plate kinematics is presented. 
The FG plate is assumed to be composed of ceramic and 
metal. One side is considered fully ceramic, while the other 
side is fully metal. In the region between these two sides, 
the material composition varies according to a power-law 
distribution. The First-Order Probability Theory (FOPT) is 
implemented for the stochastic analysis and validated with 
previous studies that used the Second Order Reliability 
Method, as illustrated in Fig. 7. This figure clearly demon-
strates that the covariance (standard deviation/mean) of the 
natural frequency increases with an increase in the covari-
ance of the Young's moduli (ceramic/ metal). It can also be 
observed that the covariance in the natural frequency of the 
FGM plate is higher when considering the covariance in 
Young's modulus of metal. The analysis is performed for 
various porosity indices and various gradient indexes. Mate-
rial uncertainty in Young’s modulus and Poisson’s ratio, is 
considered an input variable. These analyses aim to explore 
the influence of material randomness on the dispersion in 

Table 4   Variation of non-dimensional frequency ( � = �h
√
�c∕Ec ) 

with porosity of FGM plate under SSSS boundary condition; a/b = 1; 
h/a = 0.01; Al/Al2O3

γ d/b α = 0 α = 0.1 α = 0.2 α = 0.3

0 0 5.8727 5.9567 6.0564 6.1769
0.1 5.8665 5.9500 6.0497 6.1701
0.2 5.8418 5.9228 6.0220 6.1418
0.3 5.7774 5.8595 5.9576 6.0762
0.4 5.6672 5.7448 5.8410 5.9572
0.5 5.5130 5.5918 5.6855 5.7986

0.5 0 4.9989 4.9934 4.9828 4.9636
0.1 4.9935 4.9881 4.9775 4.9584
0.2 4.9712 4.9660 4.9555 4.9366
0.3 4.9194 4.9144 4.9044 4.8860
0.4 4.8259 4.8214 4.8121 4.7949
0.5 4.7014 4.6977 4.6895 4.6739

1 0 4.5118 4.4187 4.2847 4.0800
0.1 4.5070 4.4141 4.2803 4.0760
0.2 4.4871 4.3948 4.2619 4.0589
0.3 4.4410 4.3500 4.2191 4.0191
0.4 4.3576 4.2693 4.1421 3.9478
0.5 4.2468 4.1622 4.0403 3.8539

10 0 3.6943 3.4130 2.9045 1.3631
0.1 3.6899 3.4090 2.9012 1.3618
0.2 3.6725 3.3929 2.8878 1.3566
0.3 3.6320 3.3557 2.8566 1.3447
0.4 3.5582 3.2876 2.7996 1.3233
0.5 3.4598 3.1970 2.7239 1.2971

Table 5   Variation of non-dimensional frequency ( � = �h
√
�c∕Ec ) 

with porosity of FGM plate under CCCC boundary condition; 
a/b = 1; h/a = 0.01; Al/Al2O3

γ d/b α = 0 α = 0.1 α = 0.2 α = 0.3

0 0 10.0450 10.1886 10.3592 10.5654
0.1 10.0039 10.1458 10.3158 10.5211
0.2 9.9723 10.1135 10.2829 10.4875
0.3 9.8964 10.0374 10.2055 10.4086
0.4 9.7415 9.8757 10.0411 10.2410
0.5 9.5012 9.6371 9.7985 9.9935

0.5 0 8.6252 8.6265 8.6219 8.6068
0.1 8.5897 8.5910 8.5866 8.5718
0.2 8.5638 8.5654 8.5614 8.5470
0.3 8.5008 8.5026 8.4988 8.4850
0.4 8.3659 8.3680 8.3649 8.3520
0.5 8.1668 8.1695 8.1672 8.1557

1 0 7.8070 7.6678 7.4658 7.1539
0.1 7.7750 7.6366 7.4356 7.1253
0.2 7.7523 7.6148 7.4151 7.1067
0.3 7.6959 7.5599 7.3624 7.0573
0.4 7.5749 7.4419 7.2487 6.9503
0.5 7.3965 7.2680 7.0814 6.7933

5 0 6.4743 6.0086 5.2051 3.1879
0.1 6.4465 5.9828 5.1829 3.1737
0.2 6.4260 5.9643 5.1681 3.1682
0.3 6.3783 5.9208 5.1317 3.1494
0.4 6.2770 5.8277 5.0529 3.1071
0.5 6.1281 5.6911 4.9378 3.0500
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frequency. Figures 8 and 9 present the stochastic simulation 
of a cracked square FGM plate (a/b = 1, h/a = 0.1, d/b = 0.5) 
for free vibration. A square plate with a thorough edge crack 

is considered for the analysis. The crack is located at the 
edge of the plate (y = a/2). The crack is assumed to be static. 
The thickness ratio of the plate is assumed as h/a = 0.01. The 
material considered for this problem is Al/ Al2O3, whose 
material properties are given in Table 1. The porosity index 
is varying from 0 to 0.4. The porosity index can be defined 
as the volume fraction of porous medium to the whole 
domain or in terms of percentage.

The covariance of linear frequency varies linearly with 
the covariance of Young’s modulus (SD/mean). Figure 8a, 
c, e shows the dispersion in linear frequency decreases with 
the increase in porosity index for variation in Young’s modu-
lus of ceramic. Whereas the dispersion in linear frequency 
increases with the increase in porosity index for variation 
in Young’s modulus of metal, as shown in Fig. 8b, d, and f. 
From these figures, it can be observed that the dispersion of 
natural frequency of the plate is higher when the plate is sub-
jected to CCCC boundary conditions, and the lowest natural 
frequency is obtained under SSSS boundary conditions. The 
effect of uncertainty in Poisson’s ratio on dispersion in lin-
ear frequency of FGM plate (a/b = 1, h/a = 0.1, d/b = 0.5) is 
shown in Fig. 9. From this figure, it can be observed that the 
covariance of natural frequency increases with an increase 
in the covariance of Poisson's ratio. As the porosity index 
increases, the dispersion in natural frequency increases with 
respect to the covariance of poisson’ ratio. The effect of 
Poisson’s ratio on dispersion in linear frequency for various 
porosity indices is much less with respect to Young’s modu-
lus. Figures 10 and 11 show the influence of the coefficient 
of variation of material properties on the dispersion in free 
vibration of the cracked plate in the porous medium. Func-
tionally graded material Al/Al2O3 is assumed for the present 
investigation, and material properties are given in Table 1. A 
square plate with a thorough edge crack is considered for the 
analysis. The coefficient of variation (SD/mean) of the input 
parameter varies from 0 to 20% to examine the dispersion 
in the frequency parameter. Figure 10 shows the influence 
of uncertainty in Young’s modulus on dispersion in linear 
frequency of FGM plate (a/b = 1, h/a = 0.01, d/b = 0.5) for 
various gradient indices. With the increase in the gradient 
index, the covariance of linear frequency is decreasing for 
Young’s modulus of ceramic. The problem is solved for 
various boundary conditions and various gradient indices. 
Figure 11 shows the influence of uncertainty in Young’s 
modulus on dispersion in linear frequency of FGM plate 
(a/b = 1, h/a = 0.01, d/b = 0.5) for various porosity indices. 
The covariance of linear frequency varies with the variation 
in Young’s modulus (SD/mean). Figure 11a, c, e shows the 
dispersion in linear frequency decreases with the increase in 
porosity index for variation in Young’s modulus of ceramic. 
Whereas the dispersion in linear frequency increases with 
the increase in porosity index for variation in Young’s modu-
lus of metal, as shown in Fig. 11b, d, and f. From these 

Table 6   Variation of non-dimensional frequency ( � = �h
√
�c∕Ec ) 

with porosity of FGM plate under SSCC boundary condition; a/b = 1; 
h/a = 0.01; Al/Al2O3

γ d/b α = 0 α = 0.1 α = 0.2 α = 0.3

0 0 8.8035 8.9219 9.0827 9.2527
0.1 8.7607 8.8828 9.0315 9.2112
0.2 8.6608 8.7829 8.9300 9.1077
0.3 8.5331 8.6461 8.7910 8.9659
0.4 8.3762 8.4554 8.5970 8.7681
0.5 8.2116 8.3290 8.4685 8.6371

0.5 0 7.5911 7.5941 7.5915 7.5841
0.1 7.5490 7.5556 7.5592 7.5566
0.2 7.4674 7.4744 7.4785 7.4768
0.3 7.3546 7.3620 7.3668 7.3660
0.4 7.1957 7.2035 7.2089 7.2090
0.5 7.0934 7.1020 7.1084 7.1100

1 0 6.8831 6.7728 6.6186 6.3708
0.1 6.8526 6.7444 6.5882 6.3496
0.2 6.7797 6.6735 6.5202 6.2856
0.3 6.6789 6.5755 6.4260 6.1971
0.4 6.5362 6.4360 6.2913 6.0693
0.5 6.4456 6.3487 6.2086 5.9938

5 0 5.6988 4.3074 4.6485 3.0888
0.1 5.6746 5.2872 4.6271 3.0613
0.2 5.6090 5.2270 4.5764 3.0286
0.3 5.5225 5.1481 4.5106 2.9910
0.4 5.4009 5.0361 4.4153 2.9331
0.5 5.3196 4.9625 4.3560 2.9120

Fig. 7   Comparative analysis of covariance variation (SD/Mean) in 
natural frequencies of FGM plate between present and previous study
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Fig. 8   Dispersion in linear frequency as a function of porosity index for varying Young’s modulus in ceramic (a, c, e) and metal (b, d, f) under 
different boundary conditions
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figures, it can be observed that the dispersion of natural fre-
quency of the plate is higher when the plate is subjected 
to CCCC boundary conditions, and the lowest natural fre-
quency is obtained under SSSS boundary conditions.

Conclusions

In this study, both deterministic and stochastic analyses for free 
flexural vibration of the cracked porous functionally graded 
plate are reported. In the deterministic analysis, extended finite 
element formulation based on higher order shear deforma-
tion plate kinematics is successfully implemented using in-
house MATLAB code for considered problems. In stochas-
tic analysis, FOPT is employed to anticipate the covariance 
of the linear frequency with the material randomness. This 
study is interesting because it examines how cracks, porosity, 
and gradient index affect the natural frequency of function-
ally graded materials (FGMs). Additionally, it explores how 

Fig. 9   Illustrate the impact of Poisson’s ratio uncertainty on linear 
frequency dispersion of FGM plate at different porosity levels

Fig. 10   Effect of Young’s modulus (ceramic) uncertainty on linear frequency dispersion of FGM plate at different gradient indices and bounda-
ries
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Fig. 11   Dispersion in linear frequency as a function of porosity index for varying Young’s modulus in ceramic (a, c, e) and metal (b, d, f) under 
different boundary conditions
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material randomness influences this behavior through stochas-
tic analysis, informing better material design and structural 
integrity. These insights have significant implications for prac-
tical applications in engineering and materials science. The 
robustness and efficacy of the proposed computational algo-
rithm are validated by several numerical examples presented 
in this paper. A further parametric study has been performed 
for both deterministic and stochastic problems with various 
influential parameters. The investigation concluded with the 
following observations:

•	 The presence of a crack has a significant effect on the non-
dimensional frequency of the plate, resulting in a reduction 
in the natural frequency as the crack size increases.

•	 An increase in the gradient index is associated with a 
reduction in the non-dimensional natural frequency of the 
FGM plate.

•	 The covariance of material properties has a notable effect 
on the linear frequency of the plate. Specifically, as the 
coefficient of variation in material properties increases, the 
coefficient of variation of natural frequency also increases 
linearly.

•	 The porosity index plays a role in influencing the dispersion 
in the linear frequency of the plate. As the porosity index 
increases, the dispersion in linear frequency decreases for 
variations in Young’s modulus of ceramic. However, for 
variations in Young’s modulus of metal, the dispersion in 
linear frequency increases with a higher porosity index.

•	 A higher gradient index reduces the variation in linear fre-
quency for changes in Young’s modulus of ceramic.

Appendix

(1)	 The strain [68] from the derivative of the displacement 
field is expressed as:
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(2)	 The Strain displacement matrix can be written as below.
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