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Abstract
Purpose Cantilever piezoelectric energy harvesters are suitable for low ambient excitation and have promising applications. 
However, the piezoelectric energy harvester with a simple cantilever is less efficient due to the beam only obtains large 
strain at the root. In order to improve the harvesting efficiency, this paper deals with the modeling and dynamic design of a 
cantilever-based energy harvester with surface constraints (EHSC). The design parameters for high efficiency in EHSC are 
obtained.
Methods Based on mechanics of materials and magnetizing current method, the expressions of nonlinear restoring force 
and magnetic force of EHSC are theoretically derived respectively. A more realistic lumped parameter model of EHSC is 
established from Newton's and Kirchhoff's laws. According to the static and dynamic analyses, the nonlinear behaviours of 
EHSC are studied. Then the parameter configuration with high harvesting performance can be obtained. At last, the experi-
ment is carried out to verify the theoretical conclusions.
Results By comparing the dynamic performance of EHSC with the conventional bi-stable energy harvester without the 
constraints under same conditions, we find that EHSC can broaden the harvesting frequency band by about seven times and 
increases the output power by about 23%. So the proposed EHSC can generate more electric energy in a wider range at low 
frequency.
Conclusion The constraints enhance the nonlinear stiffness of the harvester system, which is beneficial to broaden the work-
ing frequency band. The constraints can also generate large strain even far away from the beam root, which is beneficial to 
improve the harvesting efficiency. Moreover, this work can provide some design and optimization guidance for such nonlinear 
piezoelectric energy harvesters.

Keywords Piezoelectric cantilever energy harvester · Surface constraints · Modelling · Static bifurcation · Dynamic 
response · Parameter design

List of Symbols
S(x)  Shape function of surface constraint
ls  Length of surface constraint, 0.12 m
βM  Rayleigh–Ritz approximation constant, 0.236
lc  Length of cantilever beam, 0.15 m
hc  Thickness of cantilever beam, 0.4 ×  10–3 m
me  Quality of MFC M8507-P2

we  Width of MFC M8507-P2, 0.01 m
ρe  Density of MFC M8507-P2, 5440 kg/m3

lA, lB  Length of magnet A and B, 0.015 m
hA, hB  Thickness of magnet A and B, 0.01 m
mT  Quality of copper block
ρT  Density of copper block, 8300 kg/m3

v  Absolute velocity of beam tip
ceq  Damping coefficient, 0.0138
Cp  Equivalent capacitance
RL  Load resistance,  105 Ω
Fv  Nonlinear magnetic force
Fk  Nonlinear restoring force
Ec  Elastic modulus of cantilever beam, 128 ×  109 

N/m2

MA, MB  Magnetization, 9.95 ×  105 A/m
d  Distance between the centres of magnet A and B
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ε33  Permittivity component at constant strain, 
4.78 ×  10–8

dg  Height of surface constraint, 0.018 m
meq  Equivalent quality of cantilever beam
mc  Quality of cantilever beam
wc  Width of cantilever beam, 0.015 m
ρc  Density of cantilever beam, 8300 kg/m3

le  Length of MFC M8507-P2, 0.1 m
he  Thickness of MFC M8507-P2, 0.3 ×  10–3 m
mA, mB  Quality of magnet A and B
wA, wB  Width of magnet A and B, 0.006 m
ρA  Density of magnet A and B, 7500 kg/m3

VT  Volume of copper block, 15 × 2 × 10 ×  10–9  m3

y  Absolute displacement of beam tip
y1(t)  Relative displacement of beam tip
keq  Stiffness coefficient
P(t)  External excitation
V(t)  Output voltage
Fp  Electromechanical coupling force
Fc  Damping force
Ee  Elastic modulus of MFC M8507-P2, 

30.336 ×  109 N/m2

μ0  Permeability of vacuum, 4� × 10
−7 H/A2

d31  Piezoelectric constant, − 170 ×  10–12 C/N
g  Gravitational acceleration

Introduction

Using ambient energy to generate electricity has increas-
ingly become an important form of green energy [1–3]. 
Vibration is widespread in nature amongst various types 
of environmental energy forms [4, 5]. Therefore, vibration-
based energy harvesting is widely studied at present [6, 7]. It 
can be used to power low-energy devices such as biomedical 
engineering [8], environmental or industrial monitoring [9, 
10] and military applications [11] where periodic battery 
replacement is difficult.

According to the different conversion mechanisms, the 
vibration energy harvesting technologies can mainly be 
divided into three types: electromagnetic [12, 13], elec-
trostatic [14], and piezoelectric [15, 16]. Among the three 
types, piezoelectric vibration energy harvesting technology 
utilized the piezoelectric effect of piezoelectric materials 
to convert the ambient vibration into electricity output [17, 
18]. Compared with the other vibration energy conversion 
mechanisms, piezoelectric energy harvesting has many 
advantages such as anti-electromagnetic interference, high 
efficiency and easy integration [19]. They can be widely 
used in micro power electronic devices such as microelec-
tromechanical systems [20, 21] and wireless network nodes 
[22–24].

The common structure of piezoelectric energy harvest-
ers is the cantilever beam [25, 26]. It is more suitable for 
low frequency and small excitation. However, the linear 
properties of the material are confined to a very restricted 
frequency range, which makes it challenging to match 
the ambient excitation to achieve resonance [27, 28]. For 
this reason, researchers have proposed different improved 
structures based on cantilever beam. For instance, nonlin-
ear energy harvesters with magnetic coupling can exhibit 
bi-stable [29–31] or multi-stable [32–34] state, which can 
broaden the frequency band and improve the harvesting 
efficiency. Pereira et al. [35] analyzed a bi-stable energy 
harvester (BEH), and discussed the response under three 
excitation conditions (pure harmonic, pure random and com-
bination of harmonic and random excitation). Jiang et al. 
[36] designed a magnetic coupling bi-stable piezoelectric 
energy harvester which consists of a main beam and a para-
sitic beam, it shows broadband characteristics by controlling 
the magnets spacing. Wang et al. [37] added a fixed magnet 
to present a tri-stable state, resulting in a wider frequency 
band than bi-stable energy harvesters. Lai et al. [38] pro-
posed a multi-stable piezomagnetic elastic energy harvester 
array, increasing the harvesting efficiency and extending 
the working bandwidth to a lower frequency. Introducing 
nonlinearity and multi-stable through structure change has 
improved the harvesting efficiency at different levels. How-
ever, it is crucial to note that high strain is only generated 
at the root of the cantilever beam while the strain far away 
from the root is small. Consequently, this reduces the energy 
harvesting efficiency of the whole beam.

In order to make the other parts of the cantilever beam 
also generate large strain, researchers have made a series of 
improvements. Zhou et al. [39] considered four types of stop-
pers including one-side fixed stopper, two-side fixed stopper, 
one-side followed stopper, and two-side followed stopper. 
The experiment results show that the two sides followed 
stopper type can greatly improve the bandwidth compared to 
the other types, and the soft material stoppers can make the 
resonance area wider and the output voltage higher. Wang 
et al. [40] studied a new type of mechanical-magnetic energy 
harvester. The mechanical part is a cantilever beam with 
elastic stoppers installed on both sides. The analysis shows 
that it can harvest lower frequency vibration and achieve 
higher harvesting efficiency. On this basis, Wang et al. [41] 
proposed a broadband piezoelectric energy harvester, which 
consists of a cantilever beam and two symmetric constraints. 
The kinetic equations are established by fitting the experi-
mental results. This structure not only improves the har-
vesting efficiency under low excitation, but also extends the 
operating band to lower frequency. According to the simi-
lar model, Silva et al. [42] used parameter identification to 
establish the kinetic equations. In the above works, research-
ers used experimental or parameter identification modeling 
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methods. The analytical expression of the restoring force of 
the cantilever beam was not obtained. The present work has 
limitations and cannot reveal the dynamic evolution law of 
the harvester more systematically, so it is not conducive to 
the parameter design of the harvester.

In the past few years, researchers have studied the non-
linear behaviour [43, 44] and modelling methods [45, 46] 
of beam structures. Besides, the dynamic characteristics and 
modelling of the constrained cantilever beam are studied. 
Sarkar et al. [47] studied the natural frequency of a canti-
lever beam with any number of constraint springs. Dumont 
et al. [48] established a mathematical model for the dynam-
ics of a cantilever beam between two rigid stoppers, and 
compared different algorithms for simulating the vibration 
of the beam. Ding et al. [49] investigated the response of 
any point on the beam with lateral constraints, and estab-
lished the kinetic equations by using Lagrange equation and 
Euler–Bernoulli beam theory. Farokhi et al. [50] proposed 
a cantilever beam equipped with two stoppers at a certain 
distance from the root of the cantilever beam. The two stop-
pers, simplified as springs with large stiffness coefficients, 
move harmoniously with the beam. Kinetic equations based 
on Euler–Bernoulli beam theory and Hamilton’s principle 
are derived. Li et al. [51] put the cantilever beam in a con-
straint similar to the zipper, and found that the new model 
can obtain a higher output voltage.

Therefore, there are still the following issues with the 
current piezoelectric cantilever beam energy harvesters: (a) 
large strain is only generated at the root of the beam, not 
resulting in high harvesting efficiency; (b) collision struc-
tures will cause damage to beams and piezoelectric patches, 
affecting the life of the energy harvester; (c) the mathemati-
cal analytical model of EHSC is not obtained, and the appro-
priate physical parameters and excitation parameters cannot 
be selected accordingly to make EHSC have high harvesting 
efficiency. It is of considerable scientific and engineering 
significance to propose and analyze non-collision, easy-to-
assemble, and multi-stable energy harvesters for low-fre-
quency and low-intensity excitation harvesting.

In this paper, a cantilever piezoelectric vibration energy 
harvester with symmetric surface constraints is proposed 
and analyzed. The surface constraints strengthen the nonlin-
ear stiffness of the harvester system, which is beneficial to 
broaden the frequency band. The surface constraints can also 
make the beam to generate large strain even far away from 
the beam root, which is beneficial to improve the harvest-
ing efficiency. Meanwhile, the contact between the surface 
constraint and the beam will not cause collision damage. The 
system forms a bi-stable state under the action of magnetic 
force, thus broadening the application scenarios and improv-
ing adaptability for the harvesters. Based on the obtained 
mathematical analytical model, selecting appropriate physi-
cal and excitation parameters can ensure high harvesting 

efficiency of EHSC. The structure of this paper is as follows: 
Sect. 2 establishes the nonlinear kinetic equations of the 
system. Section 3 carries out the static bifurcation analysis to 
obtain part of the highest efficiency parameters by evaluat-
ing the effects of main parameters on the equilibrium points 
spacing, potential well depth. Section 4 numerically ana-
lyzes some key parameters including magnets spacing and 
external excitation parameters to increase harvesting effi-
ciency. Section 5 compares the power generation of EHSC 
and BEH. Section 6 experimentally validates the theoretical 
results of the harvester. Conclusions are drawn in the last 
section.

Modeling

Assumptions

To build the mathematical model of the EHSC, the following 
assumptions are made:

1. Through the reasonable placement of EHSC, the gravity 
is orthogonal to the restoring force and inertia force, so 
the gravity can be ignored.

2. The shear deformation of the beam is ignored since the 
beam thickness is very small relative to its length.

3. Influence of the bonding layer between the MFC and the 
elastic beam is neglected.

4. The material of the piezoelectric beam is assumed to be 
linear elastic. All of the other components are rigid.

5. The elastic beam and piezoelectric material are homo-
geneous.

6. The magnetic field is uniformly distributed in the space.

Model Structure

EHSC is shown in Fig. 1. It is composed of a cantilever 
beam with low stiffness and two symmetrical constraints 
with given geometry. The piezoelectric patch (model: m2807 

Fixed constraints

a

Tip magnet

Fixed magnet

Bronze beamPizeo patch

lc

le

Bronze additional mass
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(a)

(b)

we

wc

tetc

y1
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Fig. 1  a EHSC schematic diagram; b top and right view of the pure 
beam
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P2, Smart Material Corp) is attached to a large area near the 
root of the beam, while a pair of magnets provide magne-
toelastic force for the beam. The magnetic repulsion at the 
tip of the beam can make EHSC have two stable equilibrium 
points in static state (bi-stable state), which may generate 
large strain of beam during vibration. At the same time, 
due to the effect of the surface constraints, the piezoelec-
tric patch attached to the larger area of the beam root can 
maintain large strain, thus generate more electric charges. To 
reduce the natural frequency of the cantilever beam, copper 
metal blocks are attached to the tip magnet. The external 
excitation is the lateral motion acting on the beam root. Fig-
ure 1 is a top view of the real model placement. The grav-
ity is orthogonal to beam surface without impact on system 
dynamics. So the influence of gravity is ignored in this work. 
When the beam is strained, the MFC attached to the beam 
will generate output voltage and realize the conversion from 
mechanical to electrical energy.

With the external excitation, the cantilever beam will 
gradually attach to the constraint, while the stiffness is grad-
ually increases. For the cantilever beam without constraints, 
only in the area near the root has a large deformation [52], 
and the deformation away from the root is small. Therefore, 
the MFC cannot be attached within a large range and can-
not generate more electricity. After applying constraints, as 
external excitation changes, the portion near the root of the 
beam attaches to the constraints. Due to the small stiffness of 
the beam design, a large portion will fit with the constraint 
surface. This allows the part far from the root of the beam 
have significant deformation (related with the shape of the 
constraints). Besides, the symmetrical constraints make the 
beam have symmetrical stable equilibrium points. There-
fore, it is convenient to generate significant motion across 
the symmetric equilibrium points. If the surface constraints 
are asymmetric, the beam is likely to move only across one 
stable equilibrium point closer to the static equilibrium. This 
is not conducive to generating large motion across two stable 
equilibrium points. In summary, symmetrical surface con-
straints enable large strain even far from the root.

The shape of the fixed constraints can be expressed as 
follows [41]

where dg is the height of the constraint; ls is the length of 
the constraint. n is a natural number larger than 2 to ensure 
that the curvature of the constraint at the root is 0. In this 
paper, n = 3.

Since the bending stiffness of the beam is low and the 
tip is attached with blocks, EHSC can be simplified as a 
single degree of freedom system with equivalent quality 
meq, as shown in Fig. 2. The equivalent quality meq can be 

(1)S(x) = dg

(
x

ls

)n

,

represented [53] as meq = βM (mc + me) + mA + 2mT, in which 
βM means Rayleigh–Ritz approximation constant, mc, me, 
mA, mT are the quality of cantilever beam, piezoelectric 
patch, magnet A and the blocks, respectively. It can be seen 
that, the equivalent quality is subjected to nonlinear mag-
netic force Fv, electromechanical coupling force Fp, nonlin-
ear restoring force Fk, and damping force Fc in the opposite 
direction. In order to establish the kinetic equations, it is first 
necessary to calculate the forces acting on the equivalent 
quality, especially the nonlinear restoring force Fk and the 
nonlinear magnetic force Fv.

Nonlinear Restoring Force

The nonlinear restoring force of the beam can be expressed 
by the relationship between the lateral force acting on the 
beam tip and the lateral displacement of the tip, as shown 
in Fig. 3. In the coordinate system O1x1y1, the free tip of the 
beam produces lateral displacement y1 under the action of 
the lateral force Fk. The material of the beam is assumed to 
be linear elastic. The length of the beam O1A is divided into 
two parts with M as the demarcation point. O1M is com-
pletely fitted with the surface constraints, and MA can be 
regarded as a smaller cantilever beam.

According to the mechanics of materials [52], the differ-
ential form of the deflection curve of MA can be written as

where lc is the length of cantilever beam, x1 is the abscissa 
of any point N on the beam, xM is the abscissa of the 

(2)EIy��
1
= Fk(lc − x1) (xM ≤ x1 ≤ lc),

meq

ceq keq Cp

vay
y1(t)

O x
y P(t)

RL

V(t)

meqa
y1(t)

Fv

Fp Fk Fc

(b)(a)

Fig. 2  a EHSC model with lumped parameter; b image of force dia-
gram

Fig. 3  Deformation of cantilever beam under lateral force Fk at the 
free end
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demarcation point M. EI is the equivalent bending stiffness 
of the piezoelectric beam, which can be expressed [53] as

where, EIc =
Ecwch

3
c

12
 , EIce = 1

3
Ecwc(yy

3

1
− yy3

0
) +

1

3
Eewe(yy

3

2
− yy3

1
) , 

yy =
Eeweh

2
e
+Ecwch

2
c
+2Eewehehc

2(Eewehe+Ecwchc)
 ,  yy0 = −yy  ,  yy1 = hc − yy  , 

yy2 = (hc + he) − yy , lx is shown in Fig. 1b, le is the length 
of piezoelectric patch, Ec, Ee are the elastic modulus of can-
tilever beam and piezoelectric patch, respectively, wc, we are 
the width of cantilever beam and piezoelectric patch, respec-
tively, hc, he are the thickness of cantilever beam and piezo-
electric patch, respectively.

Integrating Eq. (2) and using the boundary conditions 
at point M to determine the integral constant, let x1 = lc, we 
obtain that

We can see in Fig. 4 that the displacement y1 is composed 
of three parts: yI is the vertical coordinate of M, yI = S(xM); yII 
is calculated by the slope of the tangent line of M, yII = Sʹ(xM)
(lc − xM); yIII is the deflection of cantilever beam MA with 
M as the fixed end, yIII=

Fk⋅(lc−xM)
3

3EI
.

Differentiate Eq. (3) with respect to xM, according to the 
relationship between the force on the tip of the cantilever 
beam and the lateral displacement, it can be obtained that

Substitute Eq. (4) into Eq. (3) and consider Eq. (1), one 
can get

Equation (5) gives the relationship between the tip dis-
placement and restoring force of the beam. To build the 
kinetic model of the system, it is necessary to obtain the 
analytical expression of the restoring force expressed by 
the beam tip displacement. For this reason, Fk is expanded 
as Taylor series of y1 and retained to the third order. The 
approximate expression of Fk can be obtained by substitut-
ing Taylor series of Fk into Eq. (5). Owing to the model is 
symmetry about x1

-axis, it should have the relationship of Fk 
(y1) = − Fk (− y1). So

EI = EIc
lx

lc
+ EIce

le

lc
+ EIc

lc − lx − le

lc
,

(3)y1 = Fk ⋅
(lc − xM)

3

3EI
+ S�(xM) ⋅ (lc − xM) + S(xM).

(4)Fk =
S��(xM)EI

lc − xM

(5)y
1
=

[
72d3

g
(EI)2

l6
s
F2

k

+
18d2

g
EI

l3
s
Fk

+ dg

]
⋅

(
Fklcl

2

s

6dgEI + Fkl
3

s

)3

From Eq. (6), the approximate analytical expression of 
the restoring force can be further analyzed. The first term 
reflects the linear characteristics of the unconstrained can-
tilever beam, while the latter two terms reflect the nonlin-
ear characteristics of the constrained cantilever beam. The 
stiffness of the beam is related with the length ls and height 
dg of the constraint. When the length ls increases, the bend-
ing stiffness of the beam increases and changes rapidly; 
when the height dg decreases, the stiffness of the beam also 
increases.

Selecting the beam parameters shown in "List of Sym-
bols" and calculating Eqs. (5) and (6) respectively, the results 
are shown in Fig. 5. When the displacement of the cantile-
ver beam tip is below 0.008 m, the approximate analytical 
expression can accurately describe the force–displacement 
relationship at the beam tip. Thereafter, as the restoring force 
increases, the error of the approximate analytical expres-
sion increases; when the tip displacement does not exceed 
0.016 m, the error can still be kept within 6%.

The results indicate that, when the ratio of beam tip dis-
placement to beam length is within 16% (usually motion is 
in this range), the error of the approximate analytical expres-
sion is less than 15%. Therefore, the approximate solution 
can accurately describe the stiffness characteristics of the 
beam in this range.

Nonlinear Magnetic Force

The nonlinear magnetic force can greatly affect the dynamic 
performance of the energy harvester. In the previous works 
[40], the magnetic force of EHSC is established by experi-
mental data fitting, which seems to be not suitable for struc-
tural optimization. In this section, we use the magnetizing 
current method [54] to deduce the analytical expression of 
the magnetic force. Moreover, the rotation angle of magnet 
is also considered in order to improve the accuracy of the 
formula. Figure 6 is a structural diagram of the piezoelectric 
energy harvester in an applied magnetic field.

The force Fv of the magnetic field on the magnetically 
conductive material along the i-axis direction is [55]

(6)Fk =
3EI

l3
c

y1 +
9EIl3

s

4dgl
6
c

y1
||y1|| +

15EIl6
s

8d2
g
l9
c

y3
1
.

(7)

Fv = ∬
S

�� × 𝜇0��dsA =

⎧
⎪⎪⎨⎪⎪⎩

−∬
SA

MA × 𝜇0H�1dsA
̂� (Top surface)

∬
SA

MA × 𝜇0H�2dsA
̂� (Bottom surface)

,
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where, Km = M × n is the density of surface magnetization 
current; n is the surface normal vector; μ0 is the permeability 
of vacuum; Hj is the strength of the magnetic field; sA is the 
area of the upper and lower surfaces of magnet A; Hj1 and 
Hj2 respectively present the strength of the magnetic field 
along the j-axis direction at the centre of the top and bottom 
surfaces of the magnet A; MA is the magnetization of magnet 
A. Assuming that the magnetic field is uniformly distributed 
in the area, the magnetic force Fv can be given by

With the centre of magnet B as the coordinate origin, 
the magnetic field strength along the j-axis generated at the 
coordinates (i, j, k) of any point in space is [56]

where, MB is the of magnet B, ip = i +
hB

2
 , in = i −

hB

2
 , 

kp = k +
wB

2
 , kn = k −

wB

2
, hB, wB are the thickness and width 

of magnet B, respectively.
When magnet A is subjected to lateral force, the bend-

ing beam will generate a rotation angle α at the beam tip. 
As shown in Fig. 7, O1A0 is the initial state when the beam 
is without bending; MA1 is the tangent of the surface con-
straint at point M; O1A is the state where the beam tip is 
subjected to a force. The rotation angle can be divided into 
two parts: the angle of the beam tip corresponding to the 
beam from A0 to A1 is α1; the increased angle of the beam 
tip corresponding to the beam from A1 to A is α2.

Combining Eqs. (1), (3), (4), the relationship between 
the displacement y1 of beam tip and the abscissa xM of the 
beam–constraint demarcation point M can be obtained as 
follow,

Since the condition y1 = 0, xM = 0 must be satisfied, xM 
can be solved by Eq. (10),

(8)Fv = �0MAsA(H�2 − H�1).

(9)Hj(i, j, k) =
MB

4�

⎡

⎢

⎢

⎢

⎣

arctan
⎛

⎜

⎜

⎜

⎝

ipkp

j
√

i2p + k2p + j2

⎞

⎟

⎟

⎟

⎠

+ arctan

(

inkn
j
√

i2n + k2n + j2

)

− arctan
⎛

⎜

⎜

⎜

⎝

inkp

j
√

i2n + k2p + j2

⎞

⎟

⎟

⎟

⎠

− arctan
⎛

⎜

⎜

⎜

⎝

ipkn

j
√

i2p + k2n + j2

⎞

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

,

(10)y1 =
dglc

l3
s

xM(2lc − xM).

MA1 is the tangent of the constraint at point M, α1 is the 
angle of the tangent. Since the angle of the tangent line is 
small, α1 can be regarded as a small quantity, yields

α2 can be approximated as the cantilever beam MA mov-
ing from the MA1 position to the MA position. Therefore, 
based on the properties of the cantilever beam, α2 can be 
represented as

where y12 is the lateral displacement of the beam tip from A1 
to A, as shown in Fig. 7. In addition, the geometric meaning 
of y11 in Fig. 7 gives

Then, from Eq. (10) and Eq. (14), it follows that

The relationship between the rotation angle and displace-
ment of magnet A can be obtained as follow

(11)

xM = lc − lc

√
1 −

l3
s
y1

dgl
3
c

≈ lc − lc

(
1 −

1

2

l3
s
y1

dgl
3
c

)
=

l3
s

2dgl
2
c

y1.

(12)tan �1 = S�(xM) =
3dg

l3
s

x2
M
≈ �1,

(13)�2 =
3y12

2(lc − xM)
,

(14)y11 = S(xM) + S�(xM) ⋅ (lc − xM) =
dg

l3
s

x2
M
(3lc − 2xM).

(15)y12 = y1 − y11 =
2dg

l3
s

xM(lc − xM)
2.

Fig.4  Geometry diagram of beam tip displacement decomposition
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Fig. 5  Approximate and precise solutions of the relationship between 
the restoring force and displacement at the beam tip
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Therefore, for the EHSC system, the rotation angle and 
displacement of the beam tip are related with the beam 
length lc.

The displacement of magnet A in the j-direction is very 
small, and it has little effect on the total potential energy of 
the system, so it can be ignored. When the cantilever beam 
is in a horizontal position, the centre coordinate of magnet 
A is (0, d, 0), d = e + lA/2 + lB/2 is the distance between the 
centres of the two magnets, e is the magnets interval, as 
shown in Fig. 6. When magnet A vibrates, considering the 
coordinates at the centre of the top and bottom surfaces of 
magnet A, the force between the magnets along the vertical 
direction is

where α is obtained from Eq. (16). Therefore, Fv is related 
to the size, properties, spacing of magnets and the beam tip 
displacement.

When α = 0 and α ≠ 0, the images are drawn according 
to Eq. (17), as shown in Fig. 8. We can see that the angle 
of magnet A has a great influence on the magnetic force. 
Therefore, when using the magnetizing current method to 

(16)� =
3

2l2
c

y1.

(17)
Fv = �0MASA

[

H�2

(

y1 −
hA
2

cos �, d −
hA
2

sin �, 0
)

−H�1

(

y1 +
hA
2

cos �, d +
hA
2

sin �, 0
)]

,

calculate the magnetic force, it is necessary to consider the 
angle of the tip magnet.

Taylor expansion of Eq. (17) at y1 = 0 gives the magnetic 
force between the two magnets in the vertical direction

The coefficients are detailed in Appendix 1.

Kinetic Equations

In addition to the restoring force Fk and the magnetic force 
Fv, the equivalent quality at the beam tip is also affected by 
the electromechanical coupling force caused by the piezo-
electric patch [57]. Neglecting the influence of the bond-
ing layer between the MFC and the elastic beam, the MFC 
moves with the deformation of the beam. In such an electro-
mechanical coupling structure, the piezoelectric constitutive 
equations are [58]

where, S1 is the strain of piezoelectric patch, sE
11

 is the com-
pliance coefficient of piezoelectric materials under constant 
electric field, T1 is the stress of piezoelectric patch, E3 is the 
electric field intensity, D3 is the electric displacement, �T

33
 is 

the dielectric coefficient under constant stress.
When the strain is 0, Eq. (19) can be rewritten as

where V(t) the voltage, V(t) = E3he.
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Fig. 6  Structure diagram of piezoelectric energy harvester in applied 
magnetic field
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According to the calculation formula of normal stress in 
bending, one has

where J is the moment of inertia of the beam cross-section 
to the neutral axis.

Combining Eq. (21) with Eq. (22), further calculations 
lead to

Considering E3 = 0, the relation between y1(t) and the cur-
rent i is obtained from Eq. (20).

So

where �c =
3Eeweled31(2lc−le)(he+hc)

2l3
c

 . The electromechanical cou-
pling force is obtained by Eq. (23),

Hence, Fp is related with the size of beam, piezoelectric 
patch, and the beam tip displacement.

By now, the restoring force Fk, magnetic force Fv and 
electromechanical coupling force Fp, have been derived. 
So we can establish the kinetic equations of the system. 
Considering the damping force Fc, as shown in Fig. 2, and 
assuming electromechanical piezoelectric coupling is linear, 
the mechanical and electrical equations of the energy har-
vester system can be obtained according to Newton's law and 
Kirchhoff's law as follows

where ,  � =
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P(t) = p cos(2�Ωt), p is the excitation acceleration, Ω is the 
excitation frequency,� =
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CpRL

 , Cp is the equivalent capaci-

tance, RL is the load resistance, � =
�c

Cp

.

(22)

T1 =
1

le ∫
le

0

Fp(lc − x)(he + lc)

2J
dx =

Fp(2lc − le)(he + lc)

4J
,

(23)−

d31V(t)

sE
11
he

=

Fp(2lc − le)(he + hc)

4J
.

(24)

D3 = d31T1 = d31EeS1 =
3Eed31(2lc − le)(he + hc)

4l3
c

y1(t).

(25)i = 2wele
̇D3 = 𝜅cẏ1(t),
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Static Analysis

The static bifurcation characteristics of EHSC can be 
obtained by analyzing the equilibrium points and stability 
of the autonomous system Eq. (27), so as to further study the 
dynamic response of the system. Let Y1 = y1(t) , Y2 = ẏ1(t) , 
Y3 = V(t) . Then the autonomous system corresponding to 
Eq. (27) can be written as first-order differential equations

According to the Routh-Hurwitz theorem, there is a 
stable zero equilibrium point when a >

b2

4c
 ; there are two 

stable non-zero equilibrium points and one unstable zero 
equilibrium point when a <

b2

4c
 . Therefore, it is a pitch-

fork bifurcation point. The equilibrium points spacing 
of the system is −b+

√
b2−4ac

c
 ; the potential well depth is 

(b−
√
b2−4ac)2(−b2+6ac+b

√
b2−4ac)

96c3
.

According to the principle of piezoelectric power genera-
tion, energy harvesters achieve higher harvesting efficiency 
when they can achieve greater amplitude at lower excitation. 
For adapting smaller excitation, the potential well depth of 
the system should be as shallow as possible; for increasing 
the amplitude of the beam, the system should exhibit bi-
stability and the equilibrium points spacing should be as 
large as possible. Based on the above analysis, the beam 
length, beam width and magnet spacing are key parameters 
according to the expressions of equilibrium points spacing 
and potential well depth. Besides, these three parameters are 
easy to change in the experiment. Therefore, we focused on 
the analysis of these three parameters.

Figure 9 shows the relationships among the beam length, 
beam width, the magnets spacing, the equilibrium points 
spacing, and the potential well depth, respectively. Figure 9a, 
b shows that the equilibrium points spacing and potential 
well depth increase with the increase of beam length, but 
the potential well depth tends to a fixed value (about 0.10 m) 
when the beam length is about 0.25 m. Figure 9c, d show that 
the equilibrium points spacing and the potential well depth 
decrease with the increase of beam width. Because there is 
no extreme value point in this case, only can selecting an 
appropriate value according to other parameters. Figure 9e, 
f show that, when the magnets spacing e is about 0.02 m, 
the balance point spacing has a maximum value of 0.028 m, 
while the potential well depth decreases with the increase of 
e. The curves in the figures provides a basis for the param-
eter design. Because the system is usually expected to have 
larger equilibrium points spacing and a smaller potential 

(28)
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well depth, it is beneficial to meet these two conditions with 
an appropriate large beam length and an appropriate small 
beam width. Especially note the extreme point in Fig. 9e, in 

which there is an "optimal" e to maximize the equilibrium 
points spacing, so the result provides a guidance for select-
ing value of e. Combined with Fig. 9f, e should be selected 
at the "optimal" value or slightly larger than that.

Fig. 9  Relationship between the 
main parameters of the system 
and the equilibrium points spac-
ing or potential well depth

(a) Beam length - equilibrium points spacing; (b) Beam length - potential well depth;

(c) Beam width - equilibrium points spacing; (d) Beam width - potential well depth;

(e) magnets spacing - equilibrium points spacing; (f) magnets spacing -potential well depth;
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The diagram of potential energy function can further 
reveal the properties of system equilibrium points. Fig-
ures 10 and 11 show that, when e decreases, the potential 
well is deeper and less likely to produce large vibration. 
Meanwhile, when e decreases, the equilibrium points spac-
ing decreases, the amplitude also decreases. In Fig. 11, lc 
will affect the steady-state number of the system. In order to 
harvest more energy, the system should be bi-stable. As the 
length lc of the beam increases, it required more energy to 
cross the potential barrier; on the other hand, it will obtain 
a larger amplitude. Therefore, it is necessary to analyze 
further to obtain a suitable parameter domain. However, 
potential well has no relation to length ls and height dg of 
the constraints.

Figure 12 shows the static bifurcation diagrams. The solid 
and dash lines represent the stable and unstable solutions, 
respectively. In Fig. 12a, the saddle-node bifurcation occurs 
when lc = 0.078 m, and then the amplitude of the system 
increases with the increase of lc; when lc is about 0.25 m, the 
trend of amplitude increase slows down. In Fig. 12b, wc has 
almost no effect on the amplitude, and the system remains in 
a bi-stable state within this range. In Fig. 12c, as e increases, 
the amplitude of the system increases first and then decreases, 
the amplitude reaches the maximum when e is about 0.02 m, 
and the system remains in a bi-stable state within this range. 
Figures 8, 9, 10, 11, 12 can confirm each other.

According to the results of the static analysis, the most 
efficiency EHSC system should have the following param-
eters configuration: (1) system should be bi-stable state; (2) 
the potential well should not be too deep. The shallower 
the potential well is, the easier the oscillator jump between 
potential wells, resulting in a large inter-well oscillation; 
(3) choose the suitable larger e to get the higher harvesting 
efficiency; (4) a "optimal" solution for magnets spacing can 
maximizes the equilibrium points spacing, choose this value 
or a slightly larger can obtain a larger displacement of the 
beam tip.

In summary, by analyzing and selecting the parameter 
domain that makes the system have larger equilibrium 
points spacing and smaller potential well depth, the system 

has good harvesting efficiency. Considering the applica-
tion occasions, the size of EHSC should not be too large. 
Therefore, preliminarily select lc = 0.15 m, wc = 0.015 m, 
e = 0.02 m in the following work.

Numerical Simulation

According to the static analysis in Sect. 3, part of physical 
parameters of EHSC can be determined, such as the size of 
the beam. However, the amplitude and frequency of the exci-
tation are the key conditions for the system to achieve large 
vibration. In addition, the magnets spacing has a great influ-
ence on the equilibriums of the system under dynamic con-
ditions, so it is discussed in this section. The basic physical 
parameters of the system are determined by the subsequent 
experiments, as shown in “List of Symbols”. This paper only 
uses numerical analysis to optimize.

Effect of Excitation Amplitude

Referring to the results in Fig. 9e, we choose e = 0.02 m. 
Figure 13 shows the bifurcation diagram when Ω = 2.5 Hz, 
5 Hz, 7.5 Hz and 10 Hz, respectively. The excitation ampli-
tude is used as the bifurcation parameter to compare the 
bifurcation plots at different excitation frequencies.

Take Fig. 13b as an example to analyze the influence 
of different excitation amplitudes on vibration in detail. In 
area ①: when the excitation amplitude is small, the system 
does not have enough energy to cross the potential barrier, 
so it move around one equilibrium point in a small range. 
With the increase of the excitation amplitude, the system 
has enough energy to cross the barrier and make stable 
large-amplitude periodic vibration between two equilibrium 
points, as in Fig. 12a. Then the system makes small vibra-
tion in area ②, as shown in Fig. 14b. Chaos occurs in the 
system in region ③, as shown in Fig. 14c. Large-amplitude 
periodic vibration occurs in region ④. The period doubling 
bifurcation occurs in region ⑤, resulting in large Period-2 
motion, as shown in Fig. 14d. Chaos appears in region ⑥. 

Fig.12  Static bifurcation 
diagrams
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In region ⑦, the system performs large Period-3 motion, as 
shown in Fig. 14e. When p = 1.28 g, the system performs 
large Period-9 motion, as shown in Fig. 14f. In area ⑧, the 
system first performs large Period-5 motion, as shown in 
Fig. 14g, and then performs large Period-9 motion, as shown 
in Fig. 14h. Chaos appears in region ⑨.

As shown in Fig. 15, the higher the frequency is, the 
lower the excitation amplitude is required to generate 
large vibration. Apparently, when the excitation amplitude 
p > 0.4 g, large vibration will occur in the system.

Fig. 13  Bifurcation diagrams 
with excitation amplitude as 
bifurcation parameter at differ-
ent excitation frequencies

Fig. 14  Phase diagram of the 
system in different states when 
5 Hz excitation frequency

(a) p=0.2 g and p=0.3 g              (b) p=0.4 g                           (c) p=0.92 g                           (d) p=0.94 g
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Fig. 15  The higher excitation 
frequency, the lower excitation 
amplitude required to generate 
large periodic vibration
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Effect of Excitation Frequency

Figure 16 shows the bifurcation diagrams of the system 
changing with excitation frequency when p = 1 g, 1.2 g.

When p = 1 g. In region ①, the system performs small 
periodic vibration. In region ②, the system performs 

small periodic vibration. With Ω = 3.5  Hz, the system 
performs large Period-5 motion, as shown in Fig.  17a. 
In region ③, the system performs large Period-3 motion, 
as shown in Fig. 17b. Chaos appears in region ④. Small 
periodic vibration appears in region ⑤ with Ω = 5–5.6 Hz; 
Ω = 5.8–7.3 Hz for large scale periodic vibration. In region 

Fig. 16  Bifurcation diagrams 
with excitation frequency as the 
bifurcation parameter for differ-
ent excitation amplitudes

Fig. 17  Phase diagram of the 
system at different states when 
the excitation amplitude is 1 g

(a) �=3.5 Hz                                        (b) �=4.5 Hz                                (c) �=18 Hz

Fig. 18  Bifurcation diagrams of 
the system with e for differ-
ent excitation frequencies and 
excitation amplitudes
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⑥, Ω = 7.4–10.5 Hz is for large scale periodic vibration, and 
Ω = 10.5–17.8 Hz is for small scale periodic vibration. With 
Ω = 18 Hz, the system appears large Period-3 motion, as 
shown in Fig. 17c. In region ⑦, the system performs small 
periodic vibration.

When p = 1.2 g. The system makes small periodic vibra-
tion in region ①. The system performs large Period-2 motion 
in region ②. Small periodic vibration occurs in region ③. 
Chaos occurs in region ④. Large periodic vibration occurs in 
region ⑤. Chaos occur in region ⑥. Large periodic vibration 
occurs in region ⑦. Chaos occurs in region ⑧. Large Period-3 
motion is performed in the region ⑨. Chaos occurs in region 
⑩. Large periodic vibration occurs in region ⑪. Large peri-
odic vibration occurs in region ⑫ with Ω = 7–11 Hz, while 
small periodic vibration occurs with Ω = 12–20 Hz.

The above analysis shows that, when p = 1 g, large vibra-
tion occurs when excitation frequency is 0–20 Hz. When the 
excitation amplitude is p = 1 g, the excitation amplitude can 
occur in the range of 1.6–12 Hz. Also, the higher the excita-
tion amplitude, the lower the frequency is needed to pro-
duce large vibration. As the excitation amplitude increases, 
the excitation frequency band for generating large vibration 
becomes wider.

Effect of Magnets Spacing

Figure  18 shows the bifurcation diagrams of the sys-
tem response with the change of magnets spacing e when 

Ω = 2 Hz and p = 1 g, Ω = 5 Hz and p = 1.2 g, Ω = 14 Hz and 
p = 1 g, Ω = 14 Hz and p = 1.2 g, respectively.

As shown in Fig. 18a, when Ω = 5 Hz and p = 1 g, in 
region ① and region ② the system performs small periodic 
vibration, chaos in region ③, large periodic vibration in 
region ④. When e = 0.0223 m, large Period-2 motion is per-
formed. In region ⑤, the system continues to perform large 
periodic vibration.

As shown in Fig. 18b, when Ω = 5 Hz and p = 1.2 g, 
the system performs small periodic vibration in region ① 
and region ②, large Period-3 motion occurs in region ③, 
chaos occurs in region ④, large periodic vibration occurs 
in region⑤.

As shown in Fig. 18c, when Ω = 14 Hz and p = 1.2 g, 
the system performs small periodic vibration in region ①, 
large periodic vibration in region②, chaos in region ③, small 
periodic vibration in region ④. In region ⑤, large Period-3 
motion occurs before e = 0.0255 m, as shown in Fig. 19a. 
Small Period-2 motion occurs when e = 0.0255–0.0265 m, 
as shown in Fig. 19b. In region ⑥, the system performs small 
periodic vibration when e = 0.027–0.035 m, while the system 
performs large periodic vibration when e = 0.035 ~ 0.038 m. 
Large periodic vibration occurs in region ⑦.

As shown in Fig. 18d, when Ω = 14 Hz and p = 1.2 g, 
the system performs small periodic vibration in region 
①, large periodic vibration in region②, chaos in region ③, 
small periodic vibration in region ④. In region ⑤, large 
Period-9 motion occurs when e = 0.0238–0.0245  m, as 

Fig. 19  The phase diagrams of 
the system under different states 
when Ω = 14 Hz and p = 1 g

(a) e=0.0223 m (b) e=0.0145 m

Fig. 20  The phase diagrams of 
the system under different states 
when Ω = 14 Hz and p = 1.2 g

(a) e=0.0245 m (b) e=0.0264 m (c) e=0.0265 m
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shown in Fig. 20a. Large Period-3 motion occurs when 
e = 0.0245–0.0264 m, as shown in Fig. 20b. The system then 
briefly enters small Period-2 motion when e = 0.0265 m, as 
shown in Fig. 20c, small periodic vibration occurs in region 
⑥, large periodic vibration occurs in region ⑦.

From the above analysis, when Ω = 5  Hz and 
p = 1  g, the system performs large vibration with 
e = 0.0205–0.05  m. When Ω = 5  Hz and p = 1.2  g, the 
system performs large vibration with e = 0.0205–0.05 m. 
When Ω = 14 Hz and p = 1 g, the system performs large 
vibration with e = 0.008–0.016 m, e = 0.024–0.0255 m and 
e = 0.035–0.05 m. Also, under the same excitation ampli-
tude, with excitation frequency increases, large vibration 
can occur in the area which has smaller e. As shown in 

the bifurcation diagrams, under the same excitation fre-
quency with excitation amplitudes increase, large vibration 
can occur in the area which has smaller e. Which means, 
the spacing where system can generate the large vibration 
become larger. As e decreases, the energy required to cross 
the barrier becomes larger. Therefore, both of increasing the 
excitation amplitude or excitation frequency can cause the 
system to make large vibration.

Energy Harvesting Performance

In order to evaluate the performance of the energy harvester 
proposed in this paper, this section compares the constrained 
harvester EHSC with the traditional bi-stable harvester BEH 
without constraints. The traditional bi-stable harvester BEH 
is composed of a cantilever beam and a pair of magnets. 
The bi-stable state is formed by repulsive force generated 
between the tip magnet and fixed magnet.

The basic principle of piezoelectric power generation 
is to use the piezoelectric effect of piezoelectric materials 
to generate stress and strain in the piezoelectric patch of 
the device under external excitation, leading to the flow of 
internal charges and the formation of output voltage [17, 
59]. The output power is usually used to describe the power 
generation of the energy harvester [60]. The amplitude, 
bandwidth and output voltage of the system are positively 
correlated with the output power. The following research Fig. 21  Compared with EHSC and BEH potential energy function

Fig. 22  The simulated 
responses of tip displacement 
and output voltage under up-
sweep excitation for a 0.5 g, b 
0.8 g

(a) 0.5 g

              
(b) 0.8 g 
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is taken from these perspectives. When the potential well 
depth of the system is shallower, the inter-well motion can 
be achieved more easily. Based on the principle of piezoelec-
tric power generation, the greater the strain, the more energy 
harvested. As shown in Fig. 21, EHSC has shallower poten-
tial wells than BEH in the vibration range under the same 
other parameters. EHSC is easier to jump between potential 
wells than the oscillator in the traditional BEH, resulting in 
the occurrence of large amplitude oscillation, which makes 
EHSC show more potential in the energy harvesting of low 
intensity vibration.

Due to the action of nonlinear force (magnetic force) 
or nonlinear structure (fixed constraints), the frequency 
response curve will deflect, so that the system maintain a 
large amplitude in a wider frequency band, thus achieve the 
goal of expanding the working frequency band [61]. Fig-
ure 22 shows the displacement and voltage responses of 
EHSC and traditional BEH under the excitation of sweep 
sinusoidal function, with the acceleration amplitudes of 
0.5 g and 0.8 g respectively. Obviously, EHSC has a wider 
frequency bandwidth than BEH. When the acceleration 
amplitude of the excitation is 0.5 g, as shown in Fig. 22a, 
the EHSC can perform large inter-well vibration in the fre-
quency range of 7.9–17.7 Hz, which in turn results in high 
voltage output. On the contrary, BEH only generate large 
amplitude vibration in the range of 10.6–12 Hz under the 
same excitation. When the excitation acceleration amplitude 
rises to 0.8 g, as shown in Fig. 22b, BEH can enter a large 
inter-well vibration in the frequency range of 9.4–13.4 Hz. 
At this time, the large vibration bandwidth of EHSC are 
3.0–5.14 Hz and 7.2–27.7 Hz, which is 7 times higher than 
that of BEH, and EHSC can excite large vibration at low 
excitation frequency. Therefore, EHSC has higher harvesting 
efficiency than traditional BEH.

The larger the amplitude of the system, the greater the 
strain produced by MFC, and thus the output voltage and 

output power will increase, improving the energy harvest-
ing efficiency. Figure 23 shows the instantaneous power 
response of EHSC and BEH when  105 Ω impedance under 
simple harmonic excitation with acceleration amplitude of 
0.8 g and frequency of 19 Hz. By calculating the output 
power of the harvester at different stages, the energy har-
vesting efficiency at corresponding stages can be obtained. 
By calculating the average power of EHSC and BEH within 
99–100 s, the average power of EHSC is 3.80 mW while 
BEH is 3.09 mW. EHSC has 23.0% higher energy harvesting 
power compared to the conventional BEH.

Experimental Verification

Experimental Setup

The overall design of the experimental system and the 
EHSC prototype are shown in Fig. 24. The experimental 
system consists of the following experimental devices and 
instruments: harvester prototype, signal generator, power 
amplifier, shaker, accelerometer (model: aepe, sensitivity: 
10.16 mV/g), laser displacement sensor (model: IL100, 
Keyence), resistance box, digital oscilloscope (model: 
DSOX1204G, Keysight), signal analyzer (model: 3039, 
Brüel & Kjær), etc. Piezoelectric material MFC (model: 
m2807 P2, Smart Material Corp) is attached to beryllium 
bronze beam by epoxy glue (model: DP460, 3 M). Also, 
in order to reduce the natural frequency of the system, two 
beryllium bronze blocks are attached on both sides of the tip 
magnet. In order to reduce the influence of the weight of the 
oscillator on the position of the stable equilibrium points, 
the prototype is placed as shown in Fig. 24b. The shaker 
provides horizontal vibration excitation for the experimental 
prototype, which is bolted to the excitation table.

Fig. 23  EHSC and BEH when 
 105 Ω load under simple har-
monic excitation with excitation 
frequency of 19 Hz and accel-
eration amplitude of 0.8 g a 
output voltage; b output power

(a) Output voltage (b) Output power
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Experimental Results and Discussion

The experimental prototype is set when  105 Ω load resist-
ance, and the excitation frequency is 5–20 Hz (in steps of 
1 Hz). We adjust the gain of power amplifier to keep the 
amplitude of excitation acceleration at 0.5 g and 1 g. The 

experiment responses are compared with the numerical 
simulation results, as shown in Fig. 25.

It can be seen from Fig. 25 that the experimental fre-
quency bandwidth and amplitude are roughly the same as 
the predicted theoretical results. The differences in the fre-
quency bands may be due to prototype assembly errors.

Fig. 24  a Overall experiment 
setup; b prototype experiment 
model

Function generator
&

Power amplifier

Shaker

Prototype

Accelerometer

Laser displacement
sensor

Resistance box

Oscilloscope
Computer

Signal analyzer

Prototype

Prototype

Shaker

Laser
displacement

sensor

Accelerometer

Power
amplifier

Function
generator

Signal
analyzer

Resistance
box

Osilloscope

(a)

(b)

Fig. 25  Numerical and experi-
mental responses under 0.5 g 
and 1 g sinusoidal excitation
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In order to further verify the correctness of the theoreti-
cal results, the corresponding fixed frequency experiment is 
taken on the basis of the sweep frequency experiment. The 
comparison between the experimental and the theoretical 
results is shown in Fig. 26. Due to some unavoidable exter-
nal influences, such as the influence of adhesive when the 
piezoelectric patch is attached to the beam and air resistance, 
the vibration is slightly different from the prediction, but the 
overall fit is pretty well. Therefore, the experimental results 
verify the correctness of the theoretical conclusions.

Conclusions

In order to improve cantilever piezoelectric energy har-
vesting efficiency, this paper deals with the modelling and 
dynamic design of a cantilever-based energy harvester with 
surface constraints (EHSC). EHSC is composed of a low 
stiffness cantilever beam and two symmetrical constraints 
with a given geometry, while a pair of magnets provide mag-
netoelastic force for the beam. The constraints can also make 
the beam to generate large strain far from the root. Based 

on the principle of piezoelectric power generation, it can 
improve the harvesting efficiency greatly. Besides, the mag-
netic force makes the system bi-stable and broaden the work-
ing bandwidth. Through static and dynamic analysis, the 
parameter domain that makes EHSC achieve high efficiency 
is determined. A test rig is built to valid experimentally. The 
main conclusions obtained are as follows:

1. The approximate analytical expression of the nonlin-
ear restoring force of EHSC is obtained. Under the 
same other conditions, the constraint length ls is posi-
tively related to the bending stiffness of the beam, and 
changes rapidly; the height dg of the constraint is nega-
tively related to the stiffness of the beam. The analytical 
expression can accurately describe the nonlinear stiff-
ness characteristics of the constrained cantilever beam 
within the actual working range, and can be directly 
used for nonlinear dynamic modelling. Considering the 
rotation angle of the beam tip magnet, a more accurate 
magnetic force model using the magnetization current 

Fig. 26  Numerical and experi-
mental responses under constant 
frequency excitation

(a) �=7 Hz p=0.5 g

(b)�=10 Hz p=1 g
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method is obtained. The analytical kinetic equations of 
EHSC facilitate subsequent parameter analysis.

2. Through static bifurcation analysis and dynamic bifur-
cation analysis, it is found that the system can present 
rich nonlinear vibration patterns, such as multi-period 
motion, period-doubling bifurcation, chaos, etc. The 
EHSC parameter design method is used for selecting the 
appropriate physical parameters (such as magnets spac-
ing) and excitation parameters to make the EHSC have 
high harvesting efficiency. The EHSC is easier to jump 
across potential wells while achieving large motions, 
which allows the device to perform output high power 
in low-intensity environments. The results can provide 
guidance for design and optimization of constrained 
piezoelectric energy harvesters.

3. Compared with BEH without constraints, EHSC can 
broaden the bandwidth by about 7 times, and can gen-
erate higher voltage output at low frequency. When com-
pared with traditional BEH, the energy harvesting power 
of EHSC increases by 23.0%. EHSC is a non-collision, 

easy-to-assemble, and multi-stable energy harvester for 
low-frequency and low-intensity excitation harvesting. 
EHSC has a unique configuration, excellent efficiency, 
the possibility of practical application and academic 
research value.
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