
Vol.:(0123456789)1 3

Journal of Vibration Engineering & Technologies (2024) 12:4809–4828 
https://doi.org/10.1007/s42417-023-01154-6

ORIGINAL PAPER

Impacts of Complex Fields and Surface Energy on Forced and Free 
Vibrations of Rayleigh Nanobeams Under a Traveling Load

Bin Du1 · Fan Xu1 · Zhibin Fen1

Received: 9 May 2023 / Revised: 10 August 2023 / Accepted: 12 September 2023 / Published online: 13 October 2023 
© Springer Nature Singapore Pte Ltd. 2023

Abstract
Purpose The scale-dependent forced and free vibrational behaviors of a nanobeam located on variable elastic foundations 
subjected to a transverse moving load and an axial tensile force are analyzed based on the nonlocal Rayleigh beam theory. 
Meanwhile, a comprehensive parametric investigation is accomplished to elucidate the impacts of various system parameters, 
such as geometry, foundation coefficients, rotational inertia factor, surface energy, and hygro-thermo-magnetic fields on the 
dynamical response of the nanobeam.
Methods The dynamical equation of the system is derived by considering linear, parabolic, and sinusoidal distributions for 
the elastic foundation. Employing the Galerkin discretization technique and eigenvalue analysis, the vibrational frequencies 
of the system are determined numerically. The dynamical response of the system is also acquired analytically.
Results The critical velocity of the moving load and the dynamical amplification factor for the forced vibration of the system 
are computed. In addition, the conditions of the cancellation phenomenon and the maximum amplitude of free vibration are 
determined. The outcomes indicated that, in contrast to the effects of axial tensile force and elastic foundations, the critical 
velocity of the moving load decreases with increasing the nonlocal parameter and the rotational inertia factor. Moreover, it 
is inferred that the cancellation velocities of the moving load can be increased by exerting a magnetic field and increasing 
the length-to-thickness ratio of nanobeams.
Conclusions The findings reveal that considering the impacts of the surface energy, rotational inertia factor, and environ-
mental conditions is essential to the dynamical analysis of small-scale structures under traveling loads.

Keywords Dynamical response · Nonlocal Rayleigh beam theory · Surface effects · Variable elastic foundation · Moving 
load · Environmental conditions

Introduction

Dynamical analysis and engineering design of systems under 
moving loads have been challenging issues for researchers 
in recent years [1–4]. The research results in this field can 
be applied to a wide range of sciences, such as physics, 
mechanics, and civil engineering [5–8]. Scientific reports 
have revealed that systems subjected to traveling loads are 
prone to experiencing different dynamical phenomena, such 
as cancellation and resonance [9]. Also, their vibrational 
response is highly dependent on the occurrence of these 
dynamical phenomena. Therefore, researchers modeled 

various dynamical phenomena in engineering systems under 
moving loads for different operating conditions to predict 
structural performance. In this regard, Dimitrovova et al. 
[10] obtained the transient dynamical response of a beam 
embedded in a foundation with variable stiffness under the 
excitation of a moving load. They also analyzed the effects of 
abrupt local changes in foundation properties on the vibra-
tional behavior of the system. The dynamical behavior anal-
ysis of uniform beams with simple support conditions under 
a single moving load was performed by Kumar et al. [11]. 
They examined the damping effect on the cancellation of the 
free response of the system and also proposed a novel for-
mulation for the cancellation mechanism. Museros et al. [12] 
surveyed the cancellation and resonance phenomena in the 
free vibration of beams under moving loads. They discov-
ered the influence of elastic supports on the cancellation and 
resonance conditions. Forced and free dynamical responses 
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of laminated deep curved beams subjected to moving loads 
were analyzed by Sarparast and Ebrahimi-Mamaghani [13]. 
They reported the cancellation disappearance phenomenon 
in the system and showed that the resonance velocities for 
the symmetric and non-symmetric cross-ply layups are 
equal. Martinez-Rodrigo et al. [14] explored the resonance 
and cancellation mechanisms in the vibrational response of 
two-span beams under the action of traveling loads. They 
evaluated the effect of the velocity of moving loads on the 
maximum acceleration of the system. Forced and free vibra-
tions of straight beams made of axially functionally graded 
(FG) materials subjected to a moving load are considered 
by Ebrahimi-Mamghani et al. [15]. They studied the effects 
of several factors, such as system geometry and axial grada-
tion of materials, on the critical velocity of the moving load, 
dynamical amplification factor, and maximum free vibration 
amplitude of the system. Hu et al. [16] solved the dynamical 
problem of continuous multi-span beams subjected to mov-
ing masses with variable velocity. They clarified the impacts 
of damping and mass acceleration on the system vibration. 
Agrawal and Chakraborty [17] considered the vibrations of 
cantilevered beams with cracks under concentrated moving 
forces exploiting the discrete element method. They sur-
veyed the impacts of crack properties and force speed on the 
system dynamics. Jiang et al. [18] computed the vibrational 
response of multi-layer beams resting on an elastic medium 
subjected to traveling forces. They evaluated the impressions 
of foundation features and material properties on the system 
behavior. Kheim et al. [19] addressed the dynamical char-
acteristic of a cracked FG beam attached to a piezoelectric 
layer subjected to harmonic moving loads. They inspected 
the impacts of material factors, load velocity, and crack posi-
tion on the vibration response of the beam.

Theoretical and experimental investigations have shown 
that applying classical theories to the dynamical analysis of 
small-scale structures does not provide reliable outcomes 
[20–22]. As a result, scientists have developed higher-order 
continuum theories by considering the size effects. One of 
the most well-known theories for the mathematical mod-
eling of nanoscale structures is Eringen’s nonlocal elastic-
ity theory. In this theory, the softening effects in nanosys-
tems are justified by introducing the nonlocal parameter 
[23]. Accordingly, numerous reports have been devoted to 
explaining the vibrational behavior of nanostructures under 
moving load based on Eringen’s nonlocal elasticity theory. 
For instance, Hosseini et al. [24] obtained the axial and 
transverse dynamical responses of an FG nanobeam under 
a constant moving load. They inspected the impacts of struc-
ture parameters such as the aspect ratio, power index of FG 
material, and velocity of the moving load on the maximum 
axial and transverse displacements. According to the non-
local Euler–Bernoulli beam theory, Simsek modeled the 
forced vibration of simply supported single-walled carbon 

nanotubes under the action of a traveling harmonic load 
[25]. His results exhibited that the dynamical deflection of 
the system is directly related to the nonlocal parameter. Pir-
mohammadi et al. [26] scrutinized the vibration control of 
a single-walled carbon nanoscale tube by considering the 
effects of a traveling harmonic load. They investigated the 
influences of scale parameter, slender ratio, velocity, and 
excitation frequency of the moving load on the dynamical 
deflection of the system. Gupta et al. [27] conducted a nonlo-
cal stress analysis on an irregular FG porous system resting 
on a fiber-reinforced medium under the action of moving 
loads. They addressed the effects of the nonlocality, porosity, 
frictional coefficient, and material gradation parameters on 
the dynamical response of the system. Hosseini et al. [28] 
analyzed the forced and free vibrations of single-walled car-
bon nanotubes carrying a moving load utilizing the nonlo-
cal elasticity theory. They also compared the effects of the 
scale parameter, geometrical characteristics of nanotubes, 
velocity, and frequency of the moving harmonic load on the 
system vibration obtained via the classical, Rayleigh, and 
Bishop theories. Wang et al. [29] characterized the forced 
and free lateral dynamical responses of a nanobeam sub-
jected to a traveling load by considering the nonlocal and 
strain gradient effects. Their results proved that the material 
length scale and nonlocal parameters play essential roles 
in determining the transverse vibration amplitude of the 
system.

The literature review confirms that the performance of 
small-scale systems is substantially dependent on their 
environmental conditions [30]. For example, applying an 
external longitudinal magnetic field to a nanostructure 
enhances the effective stiffness of the system and improves 
its stability. On the other hand, hygro-thermal fields lead to 
strains and compressive stresses in the nanoscale structure 
that may reduce the system efficiency. Hence, an important 
engineering requirement is to evaluate the effects of envi-
ronmental variations on the dynamical behavior of nano-
structures under moving loads. In this field, Abouelregal 
et al. [31] acquired the vibrational response of a nanobeam 
excited by the temperature gradient and a moving load. Their 
results demonstrated the effects of the velocity of the moving 
load, temperature rise, and size-dependent parameters on 
the dynamical deflection and bending moment of the sys-
tem. The vibrational response of an FG nanobeam subjected 
to a moving load in thermal fields was computed by Hos-
seini et al. [32]. Their results illustrated that ascending the 
temperature and nonlocal parameter amplifies the dynami-
cal deflection of the system. Barati et al. [33] focused on 
the forced vibration of embedded nanoscale beams under 
concentrated moving loads in varying environments. They 
discussed the impacts of scale parameters, the velocity of 
the moving load, viscoelastic foundation, and hygro-ther-
mal fields on the system dynamics. The thermo-mechanical 
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behavior of bi-directional FG microscale beams subjected 
to a moving harmonic load was simulated by Liu et al. [34]. 
They analyzed the fundamental frequency variation and 
dynamical deflection of the system by considering the mate-
rial gradation in the axial and transverse directions, differ-
ent thermal loadings, and small-scale effects. According to 
Eringen’s nonlocal elasticity theory and the Kirchhoff–Love 
plate model, Ghadiri et al. [35] determined an analytical 
solution for the steady-state dynamical response of sim-
ply supported graphene sheets rested on a visco-Pasternak 
substrate subjected to magneto-thermo-mechanical fields 
and moving loads. They disclosed that, in contrast to the 
small-scale effects, the jump phenomenon is postponed by 
ascending the temperature, initial stress, and magnetic field 
strength. On the basis of the nonlocal strain gradient theory, 
the vibrational analysis of Timoshenko microscale beams 
exposed to a moving mass and magnetic fields was accom-
plished by Esen [36]. The results of his research proved that 
by applying a magnetic field, the dynamical deflection of the 
system is reduced.

Due to the high surface-to-volume ratio at the nanoscale, 
the free surface energy cannot be ignored compared to bulk 
energy. As a result, surface effects should be considered in 
the physical and mechanical properties of the system for 
mathematical modeling and design of nanoscale structures. 
Nevertheless, limited investigations are concentrated on the 
surface effects on the vibrational behavior of nanostructures 
subjected to moving loads. Within this context, according 
to surface elasticity theory, Ghadiri et al. [37] modeled an 
Euler–Bernoulli nanobeam located on a nonlinear viscoe-
lastic medium with the moving load excitation in thermal 
fields. Their results showed that by ascending the nonlocal-
ity, temperature rise, as well as increment of the residual 
surface stress and the linear stiffness of the foundation, the 
possibility of a jump phenomenon in the dynamical behavior 
of the system is reduced. Exploiting the nonlocal strain gra-
dient theory and considering the surface effects, the forced 
torsional vibrational analysis of a nanobeam subjected to a 
moving harmonic torque was carried out by Hamidi et al. 
[38]. They inspected the effects of velocity parameter and 
scale factors on the maximum dynamical torsion of the sys-
tem. Hashemian et al. [39] solved the vibration problem 
of a Timoshenko nanoscale beam under the intermittent 
movement of nanoscale particles by considering the surface 
effects. They investigated the impacts of diverse parameters, 
such as the scale factor, Pasternak foundation coefficient, 
and nanoparticle inertia, on the dynamical instability of the 
system. Also, they declared that by considering the inertia 
of the moving nanoscale mass and size-dependent effects, 
the dynamical instability region of the system is displaced 
to lower frequencies. Based on the modified nonlocal elas-
ticity theory, Rahmani et al. [40] analyzed the forced vibra-
tion of double-walled carbon nanoscale tubes under the 

excitation of a moving nanoscale particle by considering 
surface effects. They also compared the deduced results of 
Eringen’s nonlocal and modified nonlocal elasticity theo-
ries. Based on the Euler–Bernoulli beam model and nonlo-
cal piezoelastic theory, a dynamical model for the axial and 
transverse vibrations of boron nitride nanotubes under the 
excitation of a moving nanoparticle was developed by Arani 
and Roudbari [41]. They explored the effects of geometry, 
small-scale parameters, residual surface stress, and visco-
Pasternak foundation characteristics on vibrational behav-
ior and dynamical deflection of the system. Rajabi et al. 
[42] studied the forced vibrational behavior of nanobeams 
under a point moving harmonic load by considering surface 
effects based on Euler–Bernoulli, Timoshenko, and modified 
Timoshenko beam models. They discovered the effects of 
the scale parameters, frequency and velocity of the moving 
harmonic load on the dynamical behavior of the system. 
Hosseini et al. [43] considered the surface effects on the 
forced vibration of a double-nanobeam system coupled with 
a viscoelastic layer under a traveling load. They found that 
surface effects greatly affect the system dynamics for short 
nanobeams.

A comprehensive literature review indicates that lim-
ited research has addressed the size-dependent dynamics of 
small-scale beams under moving loads in varying environ-
mental conditions by considering surface effects. To the best 
of the authors’ knowledge, the effects of axial tensile force, 
rotational inertia factor, surface energy, hygro-thermo-mag-
netic environments, and different elastic foundations on the 
critical velocity of the traveling load, dynamical amplifica-
tion factor, cancellation mechanisms, and maximum ampli-
tude of free vibration for nanobeams under moving load have 
not been reported. The current work discusses the dynamical 
behavior and response of a nanoscale beam under a mov-
ing load by considering environmental effects and surface 
energy based on Eringen’s nonlocal elasticity theory and 
the Rayleigh beam model. In the following, the dynamical 
equation of the system is extracted based on the generalized 
Hamilton’s principle. The Galerkin discretization approach 
derives the reduced-order system equation. Then, by solving 
the eigenvalue problem, the vibrational frequencies of the 
system are acquired numerically. Forced and free vibrational 
responses of the system are obtained analytically. Compari-
son and parametric studies are presented, and finally, the 
effects of system parameters on the dynamical response are 
assessed and analyzed.

Mathematical Formulation

Figure  1 shows the schematic view of a hinged-hinged 
nanoscale beam with a surface layer under a moving point 
load. The nanobeam has a rectangular cross-section with a 
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thickness of h and width of b. The length, perimeter, area, den-
sity, Young’s modulus, and moment of inertia of the nanobeam 
are indicated by L, S, A, ρ, E, and I, respectively. The moving 
load with a constant magnitude P and a constant velocity u 
moves along the axial direction of the system. The nanobeam 
is subjected to an axial tensile force F. Also, the system is 
under a magnetic field with the intensity B, temperature gradi-
ent ∆T, and moisture variation ∆H. The transverse displace-
ment of the nanobeam is depicted by w.

By ignoring the nonlinear effects in the system, the axial 
strain of the nanobeam is expressed as follows [44, 45]:

In practice, although the lateral movement is typically 
coupled with the longitudinal motion, the longitudinal dis-
placement is small compared to the lateral displacement 
[46]. Consequently, lateral motion is only considered in the 
current research.

The following equation gives the strain energy of the sys-
tem [44]:

where σx and V denote the axial stress and the volume of the 
system, respectively.

The stress–strain equations in the system are calculated 
from the following equations [47]:

in which �s
0
 is the residual stress of the surface layer. The 

superscript “s” refers to the surface layer.
The resultant local bending moment due to normal 

stresses in the bulk and surface layer of the nanobeam is 
defined as follows [48]:

(1)�x = −z
�2w

�2x

(2)Ee =
1

2∭
V

�x�xdV

(3)�x = E�x

(4)�s
x
= �s

0
+ Es�x

(5)Mlocal = ∫
A

z�xdx + ∫
S

z�s
x
dx = −(EI)eff

�2w

�x2

where (EI)eff is the equivalent flexural stiffness of the system 
and is introduced as follows [49]:

By implementing Eqs. (1) and (2), the strain energy of the 
system can be rewritten as follows [50–52]:

The kinetic energy of the Rayleigh nanobeam due to the 
transverse displacement and the cross-section rotation can be 
computed by the following equation [15, 53]:

The first term is related to the lateral movement of the 
nanoscale beam. The second term is related to the cross-sec-
tion rotation effect. The added rotary inertia effect enhances 
the kinetic energy and reduces the vibrational frequencies. The 
Rayleigh beam theory improves the Euler–Bernoulli beam the-
ory by containing the cross-section rotation about the neutral 
axis. Consequently, it presents an appropriate approximation 
of the vibrational frequencies than the Euler–Bernoulli theory. 
It should be noted that compared with the Timoshenko beam 
model, the Rayleigh beam model does not consider the shear 
deformation effects.

The work done by external loads on the system (Wtot) is the 
sum of the work done by the elastic foundation (Wf), moving 
load (WP), as well as work done by the surface layer, axial 
tensile force, and environmental loads (We).

The work done by the variable elastic foundation is [54, 
55]:

in which NF is the foundation force.
For linear, parabolic, and sinusoidal foundations, the foun-

dation force can be calculated by Eqs. (10)–(12), respectively 
[56–58]:

(6)(EI)eff = EI + Es
(

h3∕6 + bh2∕2
)

(7)Ee = −∫
0

L

Mlocal

�2w

�x2
dx

(8)K =
1

2
�A∫

0

L(
�w

�t

)2

dx +
1

2
�I∫

0

L
(

�2w

�x�t

)2

dx

(9)WF = ∫
0

L

N
F
wdx

(10)N
F
L
= k0

(

1 − �L
x

L

)

w, 0 ≤ �L ≤ 1

(11)N
L
P
= k0

(

1 − �P

(

x

L

)2
)

w, 0 ≤ �P ≤ 1

(12)N
F
S
= k0

(

1 − �Ssin
(

πx

2L

))

w, 0 ≤ �S ≤ 1

Fig. 1  Schematic view of a nanobeam with a surface layer subjected 
to a moving load
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where k0 is the foundation modulus. Also, σL, σP, and σS are 
linear, parabolic, and sinusoidal variation parameters of the 
foundation, respectively.

It should be noted that by eliminating the foundation vari-
ation parameter, the considered foundation is reduced to the 
conventional Winkler foundation.

The work done by an external moving load is expressed 
as follows [59, 60]:

in which δdir is the Dirac delta function.
The work done by hygro-thermo-magnetic environments, 

axial tensile force, and the transverse load due to the surface 
layer is given as follows [3, 61]:

where

in which η is the permeability of the magnetic field. Also, α 
and β are the thermal and moisture expansion coefficients, 
respectively.

The generalized Hamilton’s principle is utilized accord-
ing to the following equation to derive the dynamical equa-
tion of the system [62, 63]:

By utilizing Hamilton’s principle, the equilibrium equa-
tion of the system is obtained as follows:
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According to Eringen’s nonlocal elasticity theory [48, 
64], the constitutive nonlocal relation for the bending 
moment in nanostructures is stated as follows:

where e0a is the scale factor and reflects the small-scale 
effects in the system.

By inserting Eq. (21) into the equilibrium equation, the 
governing equation for the motion of the system is specified 
as follows:

in which the dot and prime represent temporal and spatial 
derivatives, respectively. Also, ∇ = ∂/∂x.

To generalize the results of the current study, the follow-
ing dimensionless parameters are introduced [65]:

where μ is the nonlocal parameter, and λ is the rotational 
inertia factor.

By substituting the above-mentioned dimensionless 
parameters into Eq. (22) and omitting the star superscript, 
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the dimensionless dynamical equation of the system is 
acquired as follows:

To separate the time and space domains, the Galerkin 
scheme is applied. According to this discretization method, 
the transverse displacement of the nanobeam is described as 
follows [12, 66, 67]:

in which ϕ is the vibration shape mode of the nanobeam. 
Furthermore, n is the number of vibrational modes, and q is 
the generalized coordinate.

The vibrational mode shape for the simply supported con-
ditions is stated as follows [29, 68]:

The effect of the external moving load is ignored to 
extract the natural vibrational frequencies of the system. 
Equation (25) is substituted into the dynamical equation of 
the system, and the resultant is multiplied by the shape mode 
function. By integrating over the system length and using 
the orthogonality property of shape modes, the first-order 
differential equations of the system in the matrix form are 
obtained as follows:

where
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By solving the eigenvalue problem of Eq. (27), the com-
plex eigenvalues are computed as a function of critical 
parameters. It should be noted that the imaginary parts of 
the system eigenvalues are the natural vibrational frequen-
cies of the system (ω) [69–71].

The effects of external moving load are considered to 
obtain the dynamical response of the system. Under these 
conditions, the dynamical equation of the system for the 
n-th vibrational mode is rewritten as follows [72–74]:

in which �2
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It should be noted that to determine the coefficients of 
the reduced-order system equation, the derivative property 
of the Dirac delta function according to the following rela-
tion is used [24, 75]:

When the nanobeam is under an external moving load 
(t < 1/u), the system experiences forced vibration. Also, 
the system undergoes free vibration when the moving load 
leaves the nanobeam (t > 1/u). The solution of Eq. (31), 
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including homogeneous and particular solutions, is 
expressed as follows [11]:

in which C and D can be obtained from the initial displace-
ment and velocity of the system.

By assuming zero initial conditions for the nanobeam, 
the dynamical response of the forced vibration of the sys-
tem is given as follows:

To characterize the forced vibrational behavior of sys-
tems under moving loads, the dynamical amplification 
factor (Dd), which is the ratio of the maximum amplitude 
of the forced vibration of the system to the static displace-
ment, is defined as follows [76]:

where wst is the static displacement of the system and can be 
calculated from the following relation [76]:

When the moving load leaves the nanobeam, the free 
vibrational response can be determined depending on the 
final displacement and velocity of the nanobeam in the 
forced vibrational response. Generally, the free vibrational 
response of the nanobeam is expressed as follows [11]:

in which qf ree
n0

 and q̇f ree
n0

 are the initial displacement and veloc-
ity of the free vibration of the system for the n-th vibrational 
mode, respectively. The initial conditions of the free vibra-
tional response can be obtained from the final conditions 
of the forced vibrational response of the system as follows:

(33)
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For convenience, the free vibrational response of the sys-
tem (Eq. 37) is rewritten in the following simple form using 
trigonometric relations [76]:

where Xn and ψn are the magnitude and phase angle of the 
free vibration for the n-th vibrational mode of the system, 
respectively, and are derived from the following equations:

The normalized amplitude of free vibration is defined as 
follows to understand better the free vibrational behavior of 
the system [11]:

To identify the velocities of the moving load related to 
the maximum free vibration amplitude of the system, it can 
be written [11]:

After the moving load passes through the nanobeam, the 
cancellation phenomenon occurs in the system when the 
amplitude of the free vibration of the system becomes zero. 
The velocity of the moving load related to the cancellation 
phenomenon is obtained as follows [11]:

According to Ref. [11], when the initial displacement and 
velocity of free vibration of the system are zero simultane-
ously, the system does not vibrate and undergoes the cancel-
lation phenomenon. In this condition, for the initial condi-
tions of free vibration of the system, it can be written as:
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Based on Eqs. (46) and (47), it can be expressed that when 
the initial velocity of the free vibration is zero, the initial dis-
placement is also zero, but not vice versa. Therefore, it can be 
inferred that the zero initial velocity of free vibration of the 
system is a sufficient condition for vibration cancellation in 
the system.

Results and Discussion

The results of the present investigation are compared and 
evaluated with those published in scientific reports under 
various working conditions to validate the proposed model 
and the solution method. In Fig. 2, the normalized amplitude 
of the free vibration of a beam in terms of the normalized 
velocity of the moving load (kn = nπu/ωn) is plotted for the 

(46)qf ree
n0

= 0 ⇒ un
can

=
�n

jπ

(47)q̇f ree
n0

= 0 ⇒ un
can

=
𝜔n

2(j − 1)π

first vibration mode. Moreover, the dynamical amplification 
factor of the system is displayed in this figure. As can be 
seen, the obtained results of the present investigation are in 
an acceptable correlation with those reported in Ref. [77]. 
As stated in Refs. [3, 13, 77], since the vibrational frequen-
cies of the system are sufficiently separated, the effect of 
higher vibrational modes in comparison with the fundamen-
tal vibrational mode can be neglected.

Figures 3 and 4 indicate the vibrational frequencies of 
the system by considering the axial tensile force and scale 
effects. According to these two figures, the current study 
results agree with those published in Ref. [78].

The geometric and physical characteristics of the nano-
beam are listed in Table 1 to obtain numerical examples and 
examine the effect of system parameters on the dynamical 
behavior of the system. It should be mentioned that the per-
meability of the magnetic field and the coefficients of ther-
mal and moisture expansion for the bulk and surface layer 
are considered equal. Also, according to experimental obser-
vations, the coefficients of thermal expansion of small-scale 
systems at low (room) and high temperatures are different.

Fig. 2  Comparison of the normalized amplitude of free vibration and the dynamical amplification factor with Ref. [77] without considering 
foundations, environmental conditions, scale, and surface effects, for λ = μ = F = 0
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Figure 5 depicts the dynamical amplification factor vari-
ation regarding the velocity of the traveling load. The effect 
of different elastic substrates on the forced vibration of the 
system is also shown in this figure. According to this figure, 
as the velocity of the traveling load increases, the dynamical 
amplification factor ascends irregularly until it reaches its 

maximum value. The velocity of the traveling load related 
to the maximum amplitude of the forced vibration system 
is known as the critical velocity of the traveling load (ucr). 
The dynamical amplification factor is reduced smoothly by 
further increasing the velocity of the moving load. As can 
be seen, when the system is rested on an elastic foundation, 

Fig. 3  Comparison of natural 
vibrational frequencies of a 
nanobeam with Ref. [78] with-
out considering foundations, 
surface effects, and environmen-
tal conditions for F = 5, λ = 0

Fig. 4  Comparison of natural 
vibrational frequencies of a 
nanobeam with Ref. [78] with-
out considering foundations, 
surface effects, and environmen-
tal conditions for μ = 0.6, λ = 0
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the effective stiffness of the system improves, and the curve 
of the dynamical amplification factor displaces to higher 
velocities of the traveling load. In other words, the critical 
velocity of the moving load rises by considering an elas-
tic foundation for the system. According to this figure, 
compared to the considered non-uniform foundations, the 
conventional Winkler substrate has a greater effect on the 
forced vibrational behavior of the system. Also, among the 
considered variable foundations, parabolic and sinusoidal 
foundations have the most and least impact on the dynamical 
amplification factor, respectively.

In Fig. 6, for different residual stresses and Young’s mod-
uli of the surface layer, the dynamical amplification factor 
in terms of the velocity of the moving load is plotted. As is 
apparent, the increment in Young’s modulus and residual 

stress of the surface layer leads to a stiffer system, and the 
system experiences the maximum value of the dynamical 
amplification factor at higher velocities of the moving load. 
Consequently, it can be inferred that by considering the sur-
face effects in small-scale systems, the effective stiffness of 
the system improves, and the critical velocity of the moving 
load is enhanced.

The critical velocity of the moving load in terms of 
the nonlocal parameter is shown in Fig. 7 by consider-
ing different hygro-magnetic loads. Since the increment 
of nonlocality in the system leads to a softer system, the 
critical velocity of the moving load is reduced. It is also 
observed that as the magnetic field intensity is amplified, 
the critical velocity of the moving load ascends. This trend 
can be attributed to the hardening effects of the magnetic 
field. As indicated in the technical literature, the effective 
stiffness of the system is improved by the application of a 
magnetic field. Conversely, by absorbing water molecules 
in a moist environment, degradation conditions arise in 
the system. In this condition, the effective stiffness of the 
system is reduced, and as a result, the critical velocity of 
the moving load is diminished.

In Fig. 8, the critical velocity of the traveling load in 
terms of the rotational inertia factor is demonstrated by con-
sidering the temperature gradient. According to the figure, 
the critical velocity of the moving load decreases as the rota-
tional inertia factor increases. This trend can be justified by 
the fact that the rotational inertia factor has a mass-addition 
effect on the system. Thus, the vibrational frequencies of the 
system decrease with increasing the rotational inertia factor, 

Table 1  Physical and 
geometrical properties of the 
considered system [3, 33, 61, 
79]

Parameter Value

ρ 2707 kg/m3

h 1 nm
b 1 nm
L 20 nm
E 70 GPa
αL − 1.6 ×  10–6  K−1

αH 1.1 ×  10–6  K−1

β 0.44 (wt%  H2O)−1

η 4π ×  10–7 N/A2

Es 5.1882 N/m
τ0 0.9108 N/m

Fig. 5  Dynamical amplifica-
tion factor of the nanobeam 
as a function of the velocity 
of the moving load without 
considering surface effects 
and environmental conditions 
for λ = F = 0, μ = 0.2, k = 1000, 
σL = σS = σP = 0.9
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and the system experiences greater deflection at lower veloc-
ities of the moving load. Also, the system has dual behav-
ior in thermal environments. So, as the temperature rises 
at high-temperature conditions, the system undergoes com-
pressive thermal stresses and deformation. Consequently, the 
effective stiffness and vibrational frequency of the system 

are diminished, and the critical velocity of the moving load 
is lessened. Conversely, because the sign of the coefficient 
of thermal expansion is different at room-temperature condi-
tions, this trend is reversed in the low-temperature field. In 
this case, as the temperature rises, the critical velocity of the 
moving load improves.

Fig. 6  Effect of Young’s modu-
lus and the residual stress of the 
surface layer on the dynamical 
amplification factor without 
considering foundations and 
environmental conditions for 
λ = F = 0, μ = 0.05

Fig. 7  Critical velocity of the 
moving load as a function of 
the nonlocal parameter without 
considering foundations, tem-
perature gradient, and surface 
effects for λ = F = 0
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Figure 9 illustrates the critical velocity of the moving 
load in terms of the nanobeam thickness for different axial 
force values by considering the surface effects. As is clear, 
the ucr–h curves are overall descending with ascending the 
nanobeam thickness. This point can clarify this pattern 
such that as the nanobeam thickness increases, the role of 

surface energy relative to the bulk energy decreases. It can 
be observed that for small nanobeam thickness values, the 
critical velocity of the moving load decreases rapidly with 
increasing the nanobeam thickness. Conversely, for high 
nanobeam thickness values, the critical velocity of the mov-
ing load does not change significantly with the thickness 

Fig. 8  Critical velocity of the 
moving load as a function of the 
rotational inertia factor without 
considering foundations, hygro-
magnetic loads, and surface 
effects for F = μ = 0

Fig. 9  Critical velocity of the 
moving load as a function of 
the nanobeam thickness without 
considering foundations and 
environmental conditions for 
λ = 0, μ = 0.05
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Fig. 10  a Amplitude and b phase angle of free vibration of the embedded system in a parabolic foundation as a function of the velocity of the 
moving load without considering surface effects and environmental conditions for λ = μ = F = 0, k0 = 1000, σP = 0.5

Fig. 11  Initial conditions of 
free vibration of the embedded 
system in a parabolic founda-
tion as a function of the velocity 
of the moving load without 
considering surface effects and 
environmental conditions for 
λ = μ = F = 0, k0 = 1000, σP = 0.5
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variation. Furthermore, when the nanoscale beam is sub-
jected to an axial compressive/tensile force, the effective 
stiffness of the system decreases/increases, and conse-
quently, the critical velocity of the moving load decreases/
increases. It should be noted that variations in axial force 
at high values of the nanobeam thickness are more evident.

In Fig. 10a, b, the magnitude and phase angle of free 
vibration of the system are depicted in terms of the veloc-
ity of the moving load, respectively. According to these 
figures, the free vibration amplitude increases with a wavy 
trend as the velocity of the moving load enhances. It can be 
observed in Fig. 10a that the free vibration amplitude of the 
system is locally zero at cancellation velocities. Moreover, 
between two consecutive cancellation velocities, the free 
vibration amplitude of the system is locally maximized. At 
these velocities, the system experiences the maximum free 
vibration phenomenon, and the corresponding velocities are 
called the velocity of maximum free vibration. According 
to Fig. 10b, the phase angle of the free vibration of the sys-
tem fluctuates around the zero value. Also, at cancellation 
velocities, it undergoes a sudden decrease with increasing 
the velocity of the moving load.

Initial conditions for free vibration of the system in 
terms of the velocity of the moving load are demonstrated 
in Fig. 11. It is observed that with the velocity variation 
of the moving load, the initial conditions of the free vibra-
tion behave similarly to the free vibration amplitude varia-
tions. So, with increasing the velocity of the moving load, 
the magnitudes of initial displacement and velocity of 
free vibration increase non-monotonously. By comparing 

Figs. 10 and 11, it can be deduced that the cancellation 
phenomenon occurs in the system when both the initial 
displacement and velocity of free vibration become zero. 
According to Fig. 11, one can infer that when the initial 
displacement of free vibration becomes zero, the initial 
velocity of free vibration also becomes zero.

Figure 12 indicates the effects of different foundations on 
the free vibration amplitude of the system. The embedded 
system has a higher effective stiffness than the case with-
out a foundation. As a result, the nanobeam experiences 
cancellation and maximum free vibration phenomena at 
higher velocities of the moving load. In simple words, by 
considering a foundation for the system, the curve of the free 
vibration amplitude shifts to higher velocities of the moving 
load. Compared to the considered variable foundations, the 
uniform Winkler foundation has a greater effect on the free 
vibration amplitude of the system. Also, among the con-
sidered non-uniform foundations, sinusoidal and parabolic 
variations are the least and most effective foundations for the 
free vibration of the system, respectively.

The first two cancellation velocities of the moving load 
in terms of the foundation modulus are displayed in Fig. 13. 
As expected, increasing the foundation modulus leads to 
a stiffer system, consequently enhancing the cancellation 
velocities. Also, cancellation velocities for the embedded 
system in non-uniform foundations have lower values than 
those for the system rested on a uniform Winkler founda-
tion. In addition, among the considered variable foundations, 
the parabolic, linear, and sinusoidal foundations have higher 
cancellation velocities, respectively. It should be noted that 

Fig. 12  Effect of different foun-
dations on the free vibration 
amplitude of the system without 
considering surface effects and 
environmental conditions for 
λ = F = 0, μ = 0.1, k0 = 2000, 
σL = σS = σP = 0.9
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by considering foundation effects, the second cancellation 
velocity has more significant changes.

Figure 14 demonstrates the first cancellation velocity 
in terms of the length-to-thickness ratio of the nanobeam 
for different rotational inertia factors by considering the 
surface effects. As can be seen, as the length-to-thickness 
ratio of the system increases, the cancellation velocity of 

the moving load also increases. Furthermore, due to the 
mass-addition effects of the rotational inertia factor, the 
cancellation velocity of the moving load decreases with 
increasing λ.

In Fig. 15, the first velocity of maximum free vibration in 
terms of the axial tensile force is drawn for different hygro-
magnetic loads. According to this figure, when the axial 

Fig. 13  Cancellation velocities 
of the moving load as a func-
tion of the foundation modulus 
without considering surface 
effects and environmental 
conditions for λ = F = 0, μ = 0.1, 
σL = σS = σP = 0.9

Fig. 14  First cancellation 
velocity of the moving load as a 
function of the length-to-thick-
ness ratio without considering 
foundations and environmental 
conditions for F = 0, μ = 0.05
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tensile force is enhanced, the effective stiffness of the system 
improves. In such a condition, the nanobeam undergoes the 
maximum free vibration amplitude at higher velocities of 
the moving load. Moreover, due to the hardening effects of 
magnetic fields, the system experiences a higher velocity of 

maximum free vibration in the presence of a magnetic field. 
Conversely, in a moist field, the softening behavior of the 
system increases, and as a result, the velocity of maximum 
free vibration declines.

Fig. 15  First velocity of 
maximum free vibration as a 
function of the axial tensile 
force without considering 
foundations, surface effects, 
and temperature gradient for 
λ = μ = 0

Fig. 16  First velocity of maxi-
mum free vibration as a func-
tion of the nonlocal parameter 
without considering founda-
tions, surface effects, and hygro-
magnetic loads for λ = F = 0
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The first velocity of maximum free vibration in terms of 
the nonlocal parameter in thermal environments is shown 
in Fig. 16. It can be observed that increasing the nonlocal 
parameter leads to the softening behavior of the system. As 
a result, the system experiences the maximum free vibra-
tion phenomenon at a lower velocity of the moving load 
by increasing nonlocal effects. Also, based on this figure, 
temperature variation in low- and high-temperature condi-
tions have opposite impacts on the vibrational behavior of 
the system. So, in the room-temperature environment, the 
velocity of maximum free vibration improves by increasing 
the temperature. This trend is reversed in high-temperature 
conditions.

Finally, to better comprehend the vibrational behavior 
of the system under a traveling load, the time response 
of the system is investigated. In Fig. 17, the dynamical 
response of the nanobeam is plotted for u = 0.2. Accord-
ing to this figure, after passing the moving load, the sys-
tem experiences free vibration with an amplitude of 0.17 
without considering environmental conditions and surface 
effects. When the nanoscale beam is in a hygro-thermal 
environment, the forced vibration amplitude enhances, and 
the system undergoes the maximum free vibration phe-
nomenon. Also, when surface effects are considered for the 
system, the forced vibration amplitude of the nanobeam is 
reduced, and the cancellation phenomenon occurs. In this 
case, the system no longer vibrates after the moving load 
passes over the nanobeam.

Conclusion

In this work, the vibration of nanoscale beams embedded 
in variable elastic foundations under a transverse moving 
load and an axial tensile force is modeled based on the 
nonlocal Rayleigh beam theory by considering surface 
effects and environmental loadings. The dynamical equa-
tion of the system is derived and solved analytically. For 
validation purposes, comparison studies with published 
data are performed. The effects of various key parameters 
on the free and forced vibration mechanisms are examined. 
The key findings of the current research can be summa-
rized below:

The critical velocity of the moving load reduces with 
increasing the rotational inertia factor and the axial 
compressive force.
By considering the foundation and surface effects, the 
maximum amplitude of the forced vibration of the nano-
beam occurs at higher velocities of the moving load.
Cancellation velocities of the moving load increase/
decrease in a magnetic field/moist environment.
The velocity of the traveling load related to the maxi-
mum free vibration decreases with increasing the non-
local parameter and the temperature in a high-temper-
ature environment.
Among the variable elastic foundations, the parabolic/
sinusoidal medium has the most/least incremental effect 

Fig. 17  Time response of the 
system without considering 
foundations for λ = F = B = 0, 
μ = 0.1, u = 0.2
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on the cancellation and critical velocities of the mov-
ing load.
With the increase of foundation modulus, cancellation 
velocities of the moving load improve.
Contrary to the effects of the length-to-thickness ratio, 
the critical velocity of the moving load decreases by 
ascending the nanobeam thickness.
By fine-adjusting the environmental conditions and sur-
face energy, unwanted vibration of the nanobeam can be 
eliminated.
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