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Abstract
Background  The functionally graded materials (FGM) have excellent properties that make them suited for mechanical, 
automobile and aerospace applications. However, the presence of insidious porosity inside the bulk of the FGMs significantly 
alters their vibration response especially when working under thermal environment as in aero-engines, turbine blades and 
nuclear power plants.
Purpose  The paper presents a detailed investigation of the thermomechanical response of porous FGM blades that is crucial 
in order to ensure the safe service life of the structural components. The randomly varying porosity distribution is modelled 
mathematically using a cosine law whilst the material properties of the FGM constituents (metal and ceramic) are assumed 
to vary with the absolute temperature.
Methods  A finite element method (FEM)-based model is developed to predict the influence of porosity distribution and 
thermal gradient on the free vibration response of rotating functionally graded porous FGM fan blades idealised as cantilever 
pre-twisted rotating plates and shells with varying metal and ceramic FGM constituent combinations. The present formula-
tion is based on first-order shear deformation theory wherein the internal non-linear rotational and thermal strains are taken 
into account based on suitably derived geometric stiffness matrices.
Results  The non-dimensional frequencies are studied based on variations in crucial parameters like power index, pre-twist 
angle, plate aspect ratio, porosity distribution pattern, rotational speed, blade taper ratio and thermal gradient across the 
FGM plate. The natural frequencies for a tapered cylindrical fan blade composed of SUS304/Si3N4 FGM constituents are 
studied for different temperature and porosity type.
Conclusions  For all the FGM constituent combinations considered, the highest fundamental frequency is observed for 
Porosity Type 1 followed by no porosity, Porosity Type 3 and Porosity Type 2. For a certain value of the power index, the 
fundamental frequencies are found to increase with an increase in the rotational speed. On the other hand, there is a reduction 
in the frequency values with an increase in the thermal gradient for all porosity types owing to internal stresses and material 
property degradation. The tapering of the fan blades and the porosity gradient are found to have significant influence on their 
natural frequency in thermal environment.

Keywords  FGM · Porosity distribution · Finite element method · Thermal gradient · Rotation · Tapered fan blade

Introduction

The functionally graded materials (FGM) have gained 
prominence in the last few decades owing to their excel-
lent graded properties and wide suitability for aerospace, 
automobile and naval applications. The material properties 

like Young’s modulus, density, Poisson’s ratio and thermal 
coefficients in FGM structures may be tailored across pre-
ferred directions. Since their inception, the beneficial prop-
erties of FGM materials and their excellent performance 
during service conditions have opened a huge opportunity 
for research in this area. The FGM materials are manufac-
tured mostly using the powder metallurgy (PM) techniques 
whereby defects like cracks, holes and porosities are the 
most common maladies in the FGM structures. The blade 
profiles of thermal or nuclear reactors and aircraft fuselages 
may be mathematically idealised as pre-twisted plates made 
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up of FGM. Using this idealisation, many researchers in the 
recent years have predicted the vibration behaviour of the 
FGM plates using numerical, mathematical and finite ele-
ment methods. In conjunction, many research works have 
also tried to mathematically model the porosity distribution 
across the thickness of the FGM structures. However, it is 
quite cumbersome to visualise the random distribution of the 
inherent porosities and their interactions and coalescence at 
varying temperature and other operating conditions. Porosi-
ties and discontinuities may also develop in such structures 
owing to thermal gradients as in aerospace, nuclear, automo-
tive and naval applications. The turbine or windmill blades 
may be fairly idealised as plates from structural analysis 
point of view, and the finite element method (FEM) provides 
a powerful tool to analyse their performance under varied 
service conditions. The free vibration response of the FGM 
plates taking the influence of the porosity effects is a highly 
complex phenomenon, and many researchers have tried to 
mathematically predict the influence of porosities based on 
many mathematical models.

Olson and Lindberg [1] performed dynamic analysis of 
shallow shell structures with a doubly curved triangular 
finite element considering thickness variations. Lee et al. [2] 
developed a procedure for analysing the vibrations of rotat-
ing turbomachinery blades based upon shallow shell theory 
utilising the Ritz method. The application of finite element 
methods to accurately predict the structural response of 
functionally graded materials has been well established by 
many prominent researcher works. Reddy [3] presented a 
linear third-order and a non-linear first-order theory to study 
the deflections and stresses in functionally graded plates. 
Reddy and Chin [4] also presented the dynamic thermoelas-
tic response of functionally graded cylinders and plates 
using first-order shear deformation theory coupled with a 
three-dimensional heat conduction equation. Vel and Batra 
[5] developed an exact solution for the three-dimensional 
deformations of a simply supported functionally graded rec-
tangular plate subjected to mechanical and thermal load. 
They compared the classical plate theory, the first-order 
shear deformation theory, and a third-order shear deforma-
tion theory to assess accurately the deformation and stresses 
in functionally graded plates. Vel and Batra [6] also pre-
sented a three-dimensional exact solution for free and forced 
vibrations of simply supported functionally graded rectan-
gular plates. Ferreira et al. [7] analysed the static deforma-
tions of a simply supported functionally graded plate mod-
elled using a third-order shear deformation theory. Huang 
and Shen [8] analysed the nonlinear vibration and dynamic 
response of functionally graded plates in thermal environ-
ment. Matsunaga [9] studied the natural frequencies and 
buckling stresses of FGM plates taking into account the 
effects of transverse shear and normal deformations and the 
rotatory inertia. Zhao et al. [10] used an element-free kp-Ritz 

method to study the free vibration of functionally graded 
plates based on first-order shear deformation plate theory 
wherein the displacement fields were approximated using 
mesh-free kernel particle functions. Neves et al. [11] pre-
sented a sinusoidal shear deformation theory accounting for 
through thickness deformations for vibration analysis of 
functionally graded plates. Taj et al. [12] performed the 
static analysis of FGM plates using a higher-order shear 
deformation theory by employing an efficient C° iso-para-
metric Lagrangian finite element with seven degrees of free-
dom for each node. Kim and Reddy [13] identified the 
effects of power law distribution and microstructure-depend-
ent size parameter on the bending, buckling and vibration 
behaviour of FGM plates. Mantari and Soares [14] worked 
on a new trigonometric higher-order theory considering the 
stretching effects and found the results comparable to the 3D 
exact solution and with other higher-order shear deformation 
theories. Bandyopadhyay and Karmakar [15] studied the 
influence of temperature and moisture concentration on the 
bending characteristics of delaminated rotating composite 
conical shells for initial twist and moderate rotational 
speeds. Bandyopadhyay et al. [16] also presented a finite 
element-based method to investigate the hygrothermal 
effects on the transient dynamic response of delaminated 
composite pre-twisted conical shells with initial twist. Bich 
et al. [17] investigated the non-linear buckling analysis and 
post-buckling behaviour of FGM toroidal shell segments 
filled inside by an elastic medium under external pressure 
loads including temperature effects. The structural behaviour 
of porous FGM plates was analysed by some researchers 
using mathematical models to account for the porosity dis-
tribution inside the plates. Thang et al. [18] presented the 
elastic buckling and free vibration analyses of porous cel-
lular plates based on the first-order shear deformation theory 
(FSDT) considering the porosities to be dispersed in both 
uniform and non-uniform (symmetric and asymmetric) pat-
terns. Gao et al. [19] analysed the free vibration of function-
ally graded (FG) porous nanocomposite plates reinforced 
with graphene platelets (GPLs) resting on two-parameter 
elastic foundations. Cong et al. [20] investigated the buck-
ling and post-buckling behaviour of FGM plate containing 
porosities based on the Reddy's higher-order shear deforma-
tion plate theory considering Von Karman nonlinearity, ini-
tial geometrical imperfections and Pasternak type of elastic 
foundations. Zenkour [21] analysed the bending responses 
of porous functionally graded (FG) single-layered and sand-
wich thick rectangular plates using a quasi-3D shear defor-
mation theory. Wu et al. [22] introduced a finite element 
method (FEM) analysis framework for the free and forced 
vibration analyses of functionally graded porous (FGP) 
beam type structures. Kiran and Kattimani [23] analysed the 
free vibration characteristics and the static behaviour of 
porous functionally graded magneto-electro-elastic 
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(FGMEE) plates using finite element method. The porosities 
or micro-voids arising due to the maladies in the fabrication 
processes are accounted for using modified power law in the 
work. Kim et al. [24] modelled the porosity distributions 
using cosine function forms and obtained analytical solu-
tions for bending, free vibration and buckling response using 
the Navier solution technique. Coskun et al. [25] worked on 
a third-order plate theory to analyse the static bending, free 
vibration and buckling of functionally graded porous micro-
plates. Bansal et al. [26] presented a vibrational study of the 
porous functionally graded plate with geometric discontinui-
ties wherein the geometric discontinuities are incorporated 
in terms of a circular cut-out of different sizes at the centre 
of the plate. Li et al. [27] investigated the static bending, free 
vibration and buckling analysis of porous bi-directional 
functionally graded (BDFG) plates based on first-order shear 
deformation theory (FSDT) as well as iso-geometric analysis 
(IGA). Dastjerdi et al. [28] proposed a three‐dimensional 
approach for bending analysis of moderately thick porous 
plates with a nano-functionally graded material in hygro-
thermal surroundings. Genao et al. [29] developed a dis-
placement-based nonlinear finite element model for func-
tionally graded porous micro-plates based on the general 
third-order shear deformation plate theory and the modified 
couple stress theory. Tran et al. [30] presented numerical 
results for static bending and free vibration of functionally 
graded porous (FGP) variable-thickness plates using an 
edge-based smoothed finite element method (ES-FEM). 
Kumar et al. [31] analysed the vibration characteristics of 
porous FGM plate with variable thickness resting on Paster-
nak's foundation. Yin et al. [32] performed bending and free 
vibration analysis of functionally graded plates made of 
porous materials according to a novel the semi-analytical 
method. Ninh et al. [33] carried out vibration analyses of 
FGM convex–concave shells subjected to electro-ther-
mal–mechanical loads surrounded by Pasternak foundation. 
Kumar and Kattimani [34] presented nonlinear vibration 
analysis of tapered porous functionally graded skew 
(TPFGS) plate considering the effects of geometrical non-
uniformities to optimise the thickness in the structural 
design. Vinh et al. [35] investigated the static bending and 
buckling behaviours of bi-directional functionally graded 
(BFG) plates with porosity. Karakoti et al. [36] developed a 
finite element formulation based on C° continuity of trans-
verse displacement for obtaining and comparing nonlinear 
transient response of porous functionally graded material 
(FGM) sandwich plates and shell panels. Ramteke et al. [37] 
estimated the nonlinear eigen-frequency responses of a func-
tionally graded material (FGM) panel in a thermal environ-
ment using the finite element method (FEM). Ramteke et al. 
[38] also studied the eigen-frequency characteristics of the 
doubly curved FG panel considering multi-directional grad-
ing influence and geometrical large deformation utilising 

HSDT mid-plane kinematics along with Green Lagrange 
kind of nonlinear strain terms. Fang et al. [39] studied the 
size-dependent vibrations of porous functionally graded 
rotating microplates under thermal environment based on 
first-order shear deformation theory (FSDT) and modified 
couple stress theory (MCST). Thai et al. [40] investigated 
the nonlinear bending behaviour of multi-directional func-
tionally graded plates with variable thickness. Xiong et al. 
[41] studied the thermal buckling behaviour of non-Lévy-
type functionally graded (FG) rectangular plates using sym-
plectic superposition method (SSM) whilst Xiong et al. [42] 
presented new analytic thermal buckling solutions of tem-
perature-dependent moderately thick functionally graded 
plates with non-Lévy-type constraints within the symplectic 
solution framework. Ninh et al. [43] analysed the effect of 
cracks on non-linear dynamical response of double-variable-
edge plates made of graphene nano-platelets-reinforced 
porous matrix and sur-bonded by piezoelectric layers when 
subjected to thermo-mechanical loads. Hu et al. [44] pre-
sented new symplectic analytic solutions for buckling of 
non-Lévy-type carbon nanotube (CNT) reinforced composite 
rectangular plates. Hu et al. [45] developed the new analytic 
free vibration solutions of non-Lévy-type functionally 
graded (FG) doubly curved shallow shells whilst Hu et al. 
[46] extended the study to analyse the free vibration solu-
tions of non-Lévy-type porous functionally graded material 
(FGM) rectangular plates by the symplectic superposition 
method (SSM). Long et  al. [47] studied the dynamical 
response of variable generatrix profile and thickness 
ceramic-matrix composite shells under electro-thermo-
mechanical effects.

From the literature review, it is apparent that the free 
vibration behaviour of porous functionally graded plates was 
studied by some researchers though they mostly considered 
stationary and uniform-width plates. However, the study 
of the dynamic response of rotating functionally graded 
plates and shells in thermal environment considering the 
effects of pre-twist, porosity distribution pattern and blade 
taper ratio is found to be very limited. As such, the present 
work is focussed on the effects of porosity distribution on 
the thermomechanical response of pre-twisted functionally 
graded porous plates and cylindrical fan blades considering 
the effects of rotation and tapering of the blades. The present 
work intends to develop a mathematical model for predict-
ing the vibration response of porous FGM plates based on a 
finite element formulation (FEM) considering the influence 
of some critical parameters like pre-twist angle, rotational 
speed, aspect ratio, blade taper ratio and thermal gradients 
across the ceramic and metallic interfaces. The FEM for-
mulation is based on minimization of potential energy and 
employs an eight-node iso-parametric plate bending element 
comprising five degrees of freedom at each node wherein 
the effects of shear deformation are taken into account. 
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The material properties of the FGM plate are assumed to 
vary along the thickness direction only. The FGM plate is 
assumed to be made of a finite number of isotropic layers 
smoothly bonded at the interfaces. The material properties 
at each of the assumed isotropic layers are computed based 
on the assumed property distribution laws. A study of the 
vibration response of tapered fan blades for typical twisted 
cylindrical fan blade geometry is also presented consider-
ing both span-wise and chord-wise tapers. The interaction 
between the porosities at elevated temperatures inside the 
bulk of the FGM structure is kept outside the scope of the 
present work.

Theoretical Formulation

Basic Equation

A pre-twisted FGM plate (Fig. 1) of length ‘a’, breadth ‘b’ 
and thickness ‘h’ is considered. The mid-plane of the FGM 
plate may be expressed mathematically as

The radius of curvature 
(
Rxy

)
 is related to the pre-twist 

angle (�) and the span length ‘a’ of the FGM plate by

Based on the first-order shear deformation theory, the 
spatial displacement of any point P (x, y, z) on the FGM 
plate (Fig. 1) is related to the mid-plane displacements and 
rotations as

The linear strains corresponding to a lamina at a distance 
‘z’ from the mid-surface of the FGM plate

where u, v, and w are the displacement variables along x, y , 
and z axes, whilst u0, v0 , and w0 represent corresponding 
mid-plane displacement variables at a point within the plate, 
respectively. The symbols �y and �x signify the rotations of 
plate cross section about y - and x-axes, respectively. The 

(1)z = −
xy

Rxy

(2)Rxy = −
a

tan�

(3)

u(x, y, z) = u0(x, y) + z�x(x, y)

v(x, y, z) = v0(x, y) + z�y(x, y)

w(x, y, z) = w0(x, y)

(4)

�x = u,x = u0
,x
+ z�y,x

�y = v,y = v0
,y
+ z�x,y

�xy = u,y + v,x +
2w

Rxy

= u0
,y
+ v0

,x
+ z

(
�y,y + �x,x

)
+

2w

Rxy

in-plane strain vector may be represented as a sum of the 
mid-surface strain vector and vector of the change in curva-
ture of the plate surface due to applied external loads

where �x , �y , and �xy denote the curvature vectors of the 
FGM plate.

The transverse strains �xz and �yz are given by

(5)

⎧⎪⎨⎪⎩

�
x

�
y

�
xy

⎫
⎪⎬⎪⎭
=

⎧
⎪⎨⎪⎩

�0
x

�0
y

�0
xy

⎫
⎪⎬⎪⎭
+ z

⎧
⎪⎨⎪⎩

�
x

�
y

�
xy

⎫⎪⎬⎪⎭

(6)�xz = w0
,x
− �x

Fig. 1   An FGM blade (plate) showing the metal and ceramic inter-
face and tapered blade
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The constitutive equations considering the thermal effects 
can be expressed as

where �x and �y are the thermal expansion coefficients whilst [
Qij

]
k
 are the transformed reduced stiffnesses of the kth layer 

of the FGM plate.
The on-axis stiffness matrix 

([
Qij

]
k

)
 of the kth layer is 

given by

The transformation matrices are given by

The off-axis stiffness values for the kth lamina are given 
by

An eight-node iso-parametric plate bending element 
in the non-dimensional (ξ − η) coordinates is considered 
(Fig. 2) having five degrees of freedom at each node for 
which the shape functions are assumed as

The Lagrangian or the energy function is defined as

(7)�yz = w0
,y
− �y

(8)
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⎞
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⎟

⎟

⎟
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[

Qij

]

k

(
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)

�
Qij

�
k
=

⎡⎢⎢⎣
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, i, j = 1, 2, 6,

�
Qij

�
k
=

�
Q44 0

0 Q55

�
, i, j = 4, 5

(9)Q11 =
E1

1 − �12�21
, Q12 =

E1

1 − �12�21
, Q22 =

E2

1 − �12�21
, Q44 = G13, Q55 = G23

(10)
�
T1
�
=
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m2 n2 2mn

n2 m2 −2mn

−mn mn m2 − n2
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,

�
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�
=

�
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n m

�

(11)

[
Qij

]
k
=
[
T1
]−1[

Qij

]
k

[
T1
]T
, i, j = 1, 2, 6

[
Qij

]
k
=
[
T2
]−1[

Qij

]
k

[
T2
]
, i, j = 4, 5

(12)

Ni =
(
1 + ��i

)(
1 + ��i

)(
��i + ��i − 1

)
∕4, i = 1, 2, 3, 4

Ni =
(
1 − �2

)(
1 + ��i

)
∕2, i = 5, 7

Ni =
(
1 − �2

)(
1 + ��i

)
∕2, i = 6, 8

The potential energy 
(
Ue

)
 is expressed as

where the strain vector ({�}) is related to the displacement 
vector for an element 

{
�e
}
 based on the strain–displacement 

matrix ([B]) written as

The potential energy 
(
Ue

)
 may then be reduced as

The element stiffness matrix 
([
Ke

])
 is given by,

(13)L = Ue − T

(14)Ue =
1

2 ∬
A

{
�T
}
[D]{�}dA

(15){�} = [B]
{
�e
}

(16)
Ue =

1

2

a∕2∫
−a∕2

b∕2∫
−b∕2

{
�e
}T

[B]T[D][B]
{
�e
}
dxdy

=
[
�e
]T[

Ke

]{
�e
}

(17)
[
Ke

]
=

1∫
−1

1∫
−1

[B]T[D][B]|J|d�d�

8 (-1,0) 

7 (0,1) 

6 (1,0) 

5 (0,-1) 2 (1,-1) 

4 (-1,1) 3 (1,1) 
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Fig. 2   Iso-parametric plate bending element in the ξ − η space



4598	 Journal of Vibration Engineering & Technologies (2024) 12:4593–4615

1 3

where [B] is the strain–displacement matrix, [D], the elastic-
ity matrix and |J| is the determinant of the Jacobian matrix. 
A (2 × 2) integration scheme is adopted to avoid shear 
locking.

The expression for the strain–displacement matrix is 
defined as

The Kinetic energy expression in Eq. (13) is defined as

The element level mass matrix 
[
Me

]
 is arrived at from the 

first term in Eq. (19) as

where � denotes the density of the FGM plate material while 
[N] is the shape function matrix.

The element geometric stiffness matrix arising out of rota-
tion is

(18)
[B] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ni,x 0 0 0 0

0 Ni,y 0 0 0

Ni,y Ni,x
2Ni

Rxy

0 0

0 0 0 0 Ni,x

0 0 0 −Ni,y 0

0 0 0 −Ni,x −Ni,y

0 0 −Ni,x Ni 0

0 0 −Ni,y 0 −Ni

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ i = 1 to 8

(40 × 40)

(19)
T =

1

2

{
𝛿̇e
}T[

Me

]{
𝛿̇e
}
+

1

2

{
𝛿e
}T[

KRot

]{
𝛿e
}
+

1

2

{
𝛿e
}T[

KTh

]{
𝛿e
}

(20)
[
Me

]
= �∫

vol

[N]T[N]d(vol)

The element level in-plane stress and moment resultants 
{Ne} on the FGM plate due to thermal stresses 

{
FTh
e

}
 at the 

element level is given by

The element geometric stiffness matrix due to the induced 
thermal strains is

The dynamic equilibrium equation for moderate rota-
tional speeds due to the thermal gradient is given by

where {�} and 
{
𝛿
}
 are the global displacement and accelera-

tion vectors, [K]L is the linear global stiffness matrix, 
[
K�

]
Rot

 
is the geometric stiffness matrix due to rotation and 

[
K�

]
Th

 
is the geometric stiffness matrix resulting from the thermal 
gradient across the FGM plate.

The natural frequencies 
(
�n

)
 are determined from the 

standard eigenvalue problem which is represented below

A porosity distribution function �(z) is defined which 
is assumed to follow a cosine distribution law across the 
thickness of the FGM plate and is mathematically identi-
fied as of three types (Porosity Type 0 refers to No poros-
ity/Intact FGM plate) as below:

(a)	 Porosity Type 1: The porosity is maximum near the 
centre of the FGM plate and gradually reduces to zero 
on either of the metal or the ceramic sides.

(b)	 Porosity Type 2: The porosity is maximum on the 
metallic side and is negligible on the ceramic side of 
the FGM plate.

(21)
[
K�e

]
Rot

= ∫
vol

[
GRot

]T[
SRot

][
GRot

]
d(vol)

(22){Ne} = [D]{�} −
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FTh
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vol
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STh

][
GTh
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+
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]
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}
{𝛿} = {F}Rot + {F}Th

(25)

[A]{�} = �{�}

where [A] =
(
[K] +

[
K�

]
Rot

+
[
K�

]
Th

)−1
[M],

and � = 1
/
�2
n

(26a)�(z) = �max cos
(
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h
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(26b)�(z) = �max cos
[
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Fig. 3   The distribution of the porosity across the thickness of the 
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(c)	 Porosity Type 3: The porosity is maximum on the 
ceramic side and is negligible on the metallic side of 
the FGM plate.

where �max is the maximum porosity and is expressed 
as a percentage. In the present study, the maximum 
porosity is considered to be �max = 0.50 for all the cases 
considered. A plot of the porosity distribution function 
(�) for different porosity distribution functions consid-
ered in Eq. (26a-c) is given in Fig. 3 for �max = 0.50 
across the normalised FGM thickness (z/h) direction.

The temperature-dependent materials’ properties of 
either the metallic (bottom) of the ceramic (top) fibres are 
represented as a third-order non-linear polynomial of the 
absolute temperature (T) and expressed as:

where the constant thermal coefficients P0 , P−1,P1,P2 andP3 
are considered for the different FGM combinations [10] in 
the current work and summarised in Table 1.

(26c)�(z) = �max cos
[
�

2

(
z

h
−

1

2

)]

(27)P = P0

(
P−1T

−1 + 1 + P1T
1 + P2T

2 + P3T
3
)

The graded material properties of a FGM plate are 
assumed to be based on the power law and account for the 
porosity distribution �(z) , expressed as

The variations of the effective material properties (Peff) 
with the power index (k) are illustrated in the plots shown 
in Fig. 4a–d, for no porosity and Porosity Types 1, 2 and 
3 respectively. In general, the variations of the properties 
like Young’s Modulus, Poisson’s ratio, density and Ther-
mal expansion coefficients with the porosity types are simi-
lar in nature as evident from Eq. 28a-d. As such, only the 

(28a)

E(z) =

{(
EC − EM

)
∗
[
1

2
+
(
z

h

)]k
+ EM

}
× (1 − �(z))

(28b)

�(z) =

{(
�C − �M

)
∗
[
1

2
+
(
z

h

)]k
+ �M

}
× (1 − �(z))

(28c)

�(z) =

{(
�C − �M

)
∗
[
1

2
+
(
z

h

)]k
+ �M

}
× (1 − �(z))

(28d)

�(z) =

{(
�C − �M

)
∗
[
1

2
+
(
z

h

)]k
+ �M

}
× (1 − �(z))

Fig. 4   a Thickness-wise 
variation of Effective Young’s 
Modulus (Eeff) for SUS304/
Si3N4 FGM square plates for 
different power index and No 
Porosity [a = b = 0.1, h = 0.01, 
ψ = 0°, Non-Porous plate]. b 
Thickness-wise variation of 
Effective Young’s Modulus 
(Eeff) for SUS304/Si3N4 FGM 
square plates for different power 
index and Porosity Type = 1 
[a = b = 0.1, h = 0.01, ψ = 0°, 
Porosity Type 1, φmax = 0.50]. 
c Thickness-wise variation of 
Effective Young’s Modulus 
(Eeff) for SUS304/Si3N4 FGM 
square plates for different power 
index and Porosity Type = 2 
[a = b = 0.1, h = 0.01, ψ = 0°, 
Porosity Type 2, φmax = 0.50]. 
d Thickness-wise variation of 
Effective Young’s Modulus 
(Eeff) for SUS304/Si3N4 FGM 
square plates for different power 
index and Porosity Type = 3 
[a = b = 0.1, h = 0.01, ψ = 0°, 
Porosity Type 3, φmax = 0.50]
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variations in the effective Young’s modulus (Eeff) are pre-
sented in Fig. 4a–d and the observations apply to all other 
porosity dependent material properties. It is evident from 
Fig. 4a that in case of non-porous plates, there is a smooth 
transition of the effective material properties from metal-
lic phase to the ceramic phase across the thickness of the 
FGM plate following a parabolic distribution (except at k = 1 
which follow a linear variation). The effective material prop-
erties (Eeff) for Porosity Type 1 as in Fig. 4b are found to be 
minimum near the mid-surface of the FGM plate where the 
porosity distribution function (porosity density) happens to 
be a maximum as evident from Fig. 3. Similarly, compar-
ing Figs. 3 and 4c, it may again be inferred that for Porosity 
Type 2, the effective material properties are a maximum 
near the ceramic part (top surface) where the porosity den-
sity happens to be minimum. For Porosity Type 3 also, the 
effective material properties are again a maximum near the 

metallic phase (bottom surface) where the porosity density 
is a minimum (Figs. 3 and 4d). It may thus be concluded 
from Fig. 4a–d that the effective material properties are a 
maximum near the zones where the porosity density happens 
to be a maximum and vice versa.

The properties of the FGM material are assumed to vary 
across the thickness direction (z) of the plate and derived by 
defining the volume fraction 

(
Vc

)
 of the ceramic constituent,

The span-wise and the chord-wise taper in the FGM plate 
may be accounted for by defining the taper ratios �x and �y , 
respectively. For span-wise taper in the FGM plate wherein (
hmin

)
span

 and 
(
hmin

)
span

 are the minimum and the maximum 
thicknesses at x = 0 and x = L respectively, along the span. 

(29)Vc =
(
1

2
+

z

h

)k

Table 1   The temperature coefficients for evaluation of the material properties like Elastic Modulus (E), Poisson’s ratio (ν), density (ρ) and ther-
mal coefficient (α) for different metallic and ceramic constituents comprising the FGM plate [10] P = P

0

(
P−1T

−1 + 1 + P
1
T
1 + P

2
T
2 + P

3
T
3
)

Property (P) Constituent P0 P −1 P1 P2 P3

E (Pa) SUS304 201.04 × 109 0 3.08 × 10–4 − 6.53 × 10–7 0
Si3N4 348.43 × 109 0 − 3.07 × 10–4 2.16 × 10–7 − 8.95 × 10–11

Ti–6Al–4V 122.56 × 109 0 − 4.586 × 10–4 0 0
aluminium oxide 349.55 × 109 0 − 3.853 × 10–4 4.027 × 10–7 − 1.673 × 10–10

ν SUS304 0.3262 0 − 2.002 × 10–4 3.797 × 10–7 0
Si3N4 0.24 0 0 0 0
Ti–6Al–4V 0.2884 0 1.121 × 10–4 0 0
aluminium oxide 0.2600 0 0 0 0

ρ (kg/m3) SUS304 8166 0 0 0 0
Si3N4 2370 0 0 0 0
Ti–6Al–4V 4429 0 0 0 0
aluminium oxide 3750 0 0 0 0

α (/K) SUS304 12.330 × 10–6 0 8.086 × 10–4 0 0
Si3N4 5.8723 × 10–6 0 9.095 × 10–4 0 0
Ti–6Al–4V 7.5788 × 10–6 0 6.638 × 10–4 − 3.147 × 10–6 0
aluminium oxide 6.8269 × 10–6 0 1.838 × 10–4 0 0

Table 2   Non-dimensional frequencies 
(
�∗ = �h

√
�c

Ec

)
 of simply supported square Al/Al2O3 FG plates for different aspect ratio (a/h) and power 

index (k) [9]

a/h k 0.0 0.5 1.0 4.0 10.0 1000

2 Present FEM 0.9265 0.8070 0.7309 0.6069 0.5585 0.4712
Matsunaga [9] 0.9400 0.8233 0.7477 0.5997 0.5460 0.4773

5 Present FEM 0.2112 0.1811 0.1631 0.1388 0.1307 0.1074
Matsunaga [9] 0.2121 0.1819 0.164 0.1383 0.1306 0.1077

10 Present FEM 0.05769 0.04922 0.04423 0.03803 0.0361 0.02933
Matsunaga [9] 0.05777 0.04917 0.04426 0.03811 0.03642 0.02933
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The uniform taper ratio along span-wise direction can then 
be denoted by �x =

[(
hmin

)
span

∕
(
hmax

)
span

]
. The thickness hx 

along the span-wise direction (x–) is then given by

Similarly, assuming the uniform taper ratio 
(
�y
)
 in the 

chord-wise direction �y =
[(
hmin

)
chord

∕
(
hmax

)
chord

]
 , the 

thickness hy along the chord-wise direction (y–) is given by

where

(30)

hx(
hmax

)
span

= 1 −

[
1 −

(
hmin

)
span(

hmax

)
span

](
x

L

)

hx =
[
1 −

(
1 − �x

)( x

L

)]
⋅

(
hmax

)
span

(31)

hy(
hmax

)
chord

= 1 −

[
1 −

(
hmin

)
chord(

hmax

)
chord

](
y

b0
+ 0.5

)

hy =

[
1 −

(
1 − �y

)( y

b0
+ 0.5

)]
⋅

(
hmax

)
chord

(32)

(a) hx =
(
hmax

)
span

at x = 0 (b) hx =
(
hmin

)
span

at x = L

(c) hy =
(
hmax

)
chord

at y = −b∕2 (d) hy =
(
hmin

)
chord

at y = b∕2

.

Results and Discussion

Validation of FEM Formulation

Based on the formulation presented above, finite element 
codes are developed to study the effects of triggering param-
eters like FGM constituent combination, power index, plate 
aspect ratio, twist angle, rotational speed, porosity distribu-
tion pattern, blade taper ratio and thermal gradient on the 
non-dimensional frequencies of pre-twisted rotating porous 
FGM plates. A mesh size of (8 × 8) consisting of 64 elements 
and 225 nodes is considered for the analysis. Each node of 
the iso-parametric element is considered as having five 
degrees of freedom (three translations and two rotations). 
The natural frequencies 

(
�∗ = �h

√
�c

Ec

)
 of simply supported 

square Al/Al2O3 FG plates are validated in Table 2 with 
Matsunaga [9] for different aspect ratio (a/h) and power 
index (k). The non-dimensional natural frequencies (
�∗ = �

(
a2

h

)√
�c

Ec

)
 corresponding the first four modes of 

vibration of the simply supported square (a = b, a/h = 10) 
FGM plates with constituent combinations of SUS304/Si3N4 
and Ti–6Al–4V/Aluminium Oxide are compared with the 
available results [10] for a range of the FGM power index 
values (k = 0, 0.5, 1, 2, 5, 8 and 10) and the validation results 
are presented in Tables 3 and 4, respectively. The experi-
mental vibration results for a typical cylindrical tapered fan 

Table 3   Non-dimensional 
frequencies 

(
�∗ = �

(
a2

h

)√
�c

Ec

)
 

of simple-supported square 
SUS304/Si3N4 FG plates for 
different power index values 
(a/b = 1, a/h = 10)

k Mode 1 Mode 2 Mode 3 Mode 4

[10] Present FEM [10] Present FEM [10] Present FEM [10] Present FEM

0 5.6148 5.6813 13.513 13.5979 13.513 13.5979 20.74 20.9137
0.5 3.8947 3.9503 9.3645 9.4308 9.3645 9.4308 14.365 14.4988
1 3.4242 3.4759 8.2298 8.2838 8.2298 8.2838 12.62 12.7335
2 3.0813 3.1288 7.3991 7.4467 7.3991 7.4467 11.338 11.4389
5 2.8058 2.8443 6.7284 6.7707 6.7284 6.7707 10.299 10.3865
8 2.7129 2.7473 6.5032 6.5430 6.5032 6.5430 9.9517 10.0332
10 2.6768 2.7095 6.4161 6.4545 6.4161 6.4545 9.8178 9.8966

Table 4   Non-dimensional 
frequencies 

(
�∗ = �

(
a2

h

)√
�c

Ec

)
 

of simply supported square 
Ti–6Al–4V/Aluminium oxide 
FG plates for different power 
index values

k Mode 1 Mode 2 Mode 3 Mode 4

[10] Present FEM [10] Present FEM [10] Present FEM [10] Present FEM

0.0 5.6147 5.7080 13.42 13.6507 13.42 13.6507 20.484 20.9809
0.5 4.6754 4.7865 11.257 11.3400 11.257 11.3400 17.2867 17.4732
1.0 4.2255 4.3979 10.114 10.2917 10.114 10.2917 15.459 15.8818
2.0 3.8897 4.0830 9.2916 9.4571 9.2916 9.4571 14.179 14.5895
5.0 3.6546 3.7810 8.748 8.7982 8.748 8.7982 13.372 13.5153
8.0 3.5435 3.6343 8.4729 8.5159 8.4729 8.5159 12.939 13.0561
10.0 3.4892 3.5652 8.3417 8.3809 8.3417 8.3809 12.738 12.8419
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blade with a taper in the chordwise direction (
�x = 1.0, �y = 0.291

)
 are presented alongside the results of 

Olson and Lindberg [1] in Table 5. Similarly, the non-dimen-

sional fundamental frequencies �∗ = �

(
a2

h

)√(
�m(1−�2m)

Em

)
 

of simply supported SUS304/Si3N4 and Ti–6Al–4V/ZrO2 
FGM plates are plotted for different thermal gradients (ΔT) 
between the ceramic and metallic layers and are compared 
in Table 6 with Huang and Shen [8]. Regarding validation 
of the porosity distribution models considered, the non-

dimensional natural frequencies 
(
� = �

√
�ba

4

Ebh
2

)
 of porous 

FGM plates are plotted alongside the results obtained by 
Kim et al. [24] for different porosity distribution patterns 
(Porosity Types 1, 2 and 3) in Fig. 5. The dimensions and 
the elastic properties of the functionally graded porous plate 
constituents considered by Kim et al. [24] are, a = 20 h, 
b = 20  h, and h = 17.6 × 10−6  m, Et = 14.4  GPa, 
Eb = 1.44 GPa, ρt = 12.2 × 103 kg/m, ρb = 1.22 × 103 kg/m. 
The close agreement of the present FEM results with the 

benchmark values confirms the accuracy of the codes devel-
oped and their suitability in carrying out further analyses to 
predict the vibration response of porous twisted and rotating 
FGM plates with taper whilst operating in thermal environ-
ments. The minor variations in the results obtained using the 
present method may be attributed to the different methodolo-
gies adopted by different authors to predict the response 
from the present work.

Numerical Results Based on Current FEM Model

In the current study, a cantilevered square FGM plate of 
span length (a), chord or breadth (b) and thickness (h) is 
considered comprising of 4 different constituent combina-
tions Al/Al2O3, Al/ZrO2, SUS304/Si3N4 and Ti–6Al–4V/
Aluminium oxide. For each of these FGM combinations, 
free vibration characteristics for different power index (k), 
aspect ratios (a/b), porosity types (No Porosity, 1, 2 and 
3), twist angle (ψ), non-dimensional rotational speed (Δr) 
and thermal gradient (ΔT) are presented and analysed. The 

Table 5   Comparison of the first eight natural frequencies (Hz) of CFFF tapered fan blade with chord-wise taper with experimental results 
[E = 200 GPa, ρ = 7860 kg/m3, ν = 0.30, Ry = 30.0in, a = b = 12.0in, hmax = 0.165in hmin = 0.048in, �x = 1.0 , �y = 0.291]

Modes 1 2 3 4 5 6 7 8

Experiment 
[1]

76.4 108 202 253 364 426 465 572

Present FEM 76.49 111.19 204.52 247.32 358.08 436.85 454.49 564.66

Table 6   Non-Dimensional 
frequencies 

�∗ = �

(
a2

h

)√(
�m(1−�2)

Em

)
 of 

simply supported square 
SUS304/Si3N4 and ZrO2/
Ti–6Al–4V FG plates for 
different power index values at 
different thermal gradients 
[a = b = 0.2 m, h = 0.025 m]

Temperature 
Gradients

Power Index (k) SUS304/Si3N4 ZrO2/Ti–6Al–4V

Current FEM Huang and Shen 
[8]

Current FEM Huang and Shen 
[8]

Ceramic (k = 0.0) 12.247 12.495 8.281 8.273
Tm = 300 K 0.50 8.512 8.675 7.127 7.139
Tc = 300 K 1.0 7.463 7.555 6.662 6.657
ΔT = 0 2.0 6.729 6.777 6.289 6.286

Metal 
(k– > infinity)

5.402 5.405 5.744 5.400

Ceramic (k = 0.0) 12.039 12.397 7.728 7.868
Tm = 400 K 0.50 8.361 8.615 6.727 6.876
Tc = 300 K 1.0 7.331 7.474 6.327 6.437
ΔT = 100 K 2.0 6.585 6.693 6.007 6.101

Metal 
(k– > infinity)

5.297 5.311 5.534 5.322

Ceramic (k = 0.0) 11.645 11.984 6.480 6.685
Tm = 600 K 0.50 8.014 8.269 5.864 6.123
Tc = 300 K 1.0 6.996 7.171 5.624 5.819
ΔT = 300 K 2.0 6.229 6.398 5.443 5.612

Metal 
(k– > infinity)

4.979 4.971 5.343 5.118
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temperature coefficients of the FGM constituents considered 
are presented in Table 1 from which the properties Pc (Ec, ρc, 
νc, αc) and Pm (Em, ρm, νm, αm) of the ceramic and the metal 

constituents can be evaluated using the non-linear thermal 
variation law given in Eq. (28).

Table 7   The non-dimensional 
fundamental frequencies (
�∗ = �

(
a2

h

)√
�c

Ec

)
 of square 

Al/Al2O3 cantilever FGM plates 
for different twist angles (ψ), 
power index values (k) and 
porosity types (0, 1, 2 and 3) 
[a = b = 0.1, h = 0.01, 
�max = 0.50]

Twist angle K No porosity Porosity Type 1 Porosity Type 2 Porosity Type 3

0° 0 1.0384 1.1229 1.0190 1.0190
0.5 0.8846 0.9460 0.8586 0.8777
1 0.7946 0.8426 0.7670 0.7926
2 0.7199 0.7636 0.6885 0.7253
5 0.6787 0.7274 0.6451 0.6855
10 0.6521 0.7050 0.6274 0.6499

30° 0 0.9745 1.0536 0.9564 0.9564
0.5 0.8303 0.8878 0.8061 0.8238
1 0.7459 0.7909 0.7202 0.7440
2 0.6758 0.7168 0.6465 0.7440
5 0.6369 0.6826 0.6056 0.6432
10 0.6118 0.6614 0.5889 0.6097

Table 8   The non-dimensional 
fundamental frequencies (
�∗ = �

(
a2

h

)√
�c

Ec

)
 of square 

SUS304/Si3N4 cantilever FGM 
plates for different twist angles 
(ψ), power index values (k) and 
porosity types (0, 1, 2 and 3 
[a = b = 0.1, h = 0.01, 
�max = 0.50]

Twist angle k No porosity Porosity Type 1 Porosity Type 2 Porosity Type 3

0° 0 1.0271 1.1144 1.0132 1.0132
0.5 0.7127 0.7662 0.7231 0.6803
1 0.6245 0.6751 0.6334 0.5967
2 0.5611 0.6120 0.5656 0.5396
5 0.5101 0.5596 0.5091 0.4948
10 0.4854 0.5312 0.4814 0.4727

30° 0 0.9639 1.0457 0.9511 0.9511
0.5 0.6689 0.7189 0.6788 0.6385
1 0.5861 0.6335 0.5945 0.5600
2 0.5266 0.5742 0.5309 0.5064
5 0.4787 0.5250 0.4778 0.4643
10 0.4555 0.4984 0.4518 0.4436

Table 9   The non-dimensional 
fundamental frequencies 
(

�∗ = �
(

a2
h

)
√

�c
Ec

)

 of square 
Ti–6Al–4V/Aluminium oxide 
cantilever FGM plates for 
different twist angles (ψ), power 
index values (k) and porosity 
types (0, 1, 2 and 3) [a = b = 0.1, 
h = 0.01, �max = 0.50]

Twist angle k No porosity Porosity Type 1 Porosity Type 2 Porosity Type 3

0° 0 1.0306 1.1170 1.0150 1.0150
0.5 0.8553 0.9188 0.8416 0.8409
1 0.7739 0.8301 0.7595 0.7625
2 0.7113 0.7668 0.6942 0.7047
5 0.6641 0.7221 0.6472 0.6576
10 0.6313 0.6889 0.6187 0.6213

30° 0 0.9672 1.0481 0.9527 0.9527
0.5 0.8028 0.8623 0.7901 0.7892
1 0.7264 0.7790 0.7131 0.7157
2 0.6676 0.7196 0.6517 0.6613
5 0.6232 0.6775 0.6075 0.6170
10 0.5923 0.6462 0.5807 0.5829
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Influence of Varying Twist Angle (ψ) for Different Porosity 
Types

The first natural frequencies 
(
�∗ = �

(
a2

h

)√
�c

Ec

)
 of square 

Al/Al2O3 FGM plates are presented in Table 7 for differ-
ent twist angles (ψ = 0° and 30°), power index values (k) 
and porosity types (No Porosity, 1, 2 and 3). Similar data 
for FGM combinations of SUS304/Si3N4 and Ti–6Al–4V/
Aluminium oxide, respectively, are also presented in 
Tables 8 and 9, respectively. For each of the FGM plates 
considered, it is observed that at a certain value of the 
power index k, the maximum value of the first natural 
frequencies is observed for the untwisted plate (ψ = 0°) 
and decreases with an increase in the twist angle (ψ). 
This clear trend of decrease in the natural frequency val-
ues is due to the fact that the stiffness of the plate 
decreases with an increase in the twist angle. In case of 
both twisted and untwisted plates, the first natural fre-
quencies are found to decrease with an increase in the 
power index value for the range of the values considered 
(k = 1–10). As evident, the contribution of the metallic 
constituents predominates with an increase in the power 
index value (k). An increase in the power index results in 
a decrease in the natural frequency values owing to the 
structural weakness incurred due to transition from 
ceramic rich interface to the metal rich interfaces. In 

general, the highest values of the first natural frequencies 
are observed for Porosity Type 1 whilst the lowest value 
is observed for Porosity Type 2 at a particular twist angle 
and porosity type. This can be explained from Fig. 4b, c 
wherein the average material properties are the highest 
for Porosity Type 2 and are the lowest for Porosity Type 
1 considering their variation across the thickness of the 
FGM plate.

Effects of Aspect Ratio (a/h)

The non-dimensional  fundamental  f requencies (
�∗ = �

(
a2

h

)√
�c

Ec

)
 of both intact and porous Al/Al2O3 

and SUS304/Si3N4 FGM square untwisted (ψ = 0°) plates 
are plotted in Fig. 6a, b respectively for different aspect 
ratios (a/h) and porosity variations. It is noted that with 
an increase in the plate aspect ratio, there is a decrease 
in the non-dimensional fundamental frequency values for 
all the porosity distribution types considered along with 
the non-porous plates. This can be explained from the 
fact that an increase in the aspect ratio of the plate results 
in a decrease in the structural stiffness of the FGM plate 
resulting in a reduction in the natural frequency values. 
For a particular aspect ratio, the maximum value of the 
fundamental frequency is observed for Type 1 porosity 
variation followed by Type 3, Type 0 and Type 2 porosity 
variations. A convergence is observed in the frequency 
values after the aspect ratio of the plate (a/h) approaches 
a value of 10.

Influence of Non‑dimensional Rotational Speed 
(
1

r
=

!

!0

)
 

for Different Porosity Types

The FGMs are mostly employed as rotating components, 
such as turbine or fan blades and windmill propellers. Such 
structures are made to operate at high rotational speeds 
well within their resonance limits and the porosity of the 
blades play a pivotal role in the dynamic and vibration 
characteristics of the rotating porous FGM blades. In this 
study, the non-dimensional rotational speed Δr =

�

�0

 is 
considered wherein ω is the actual speed of rotation in 
rad/s, whilst ω0 is the circular frequency at resonance 
(rad/s) which is obtained at the non-rotating conditions of 
the FGM plate. The Δr is varied from Δr = 0 (no rotation) 
to 100% of the circular frequency at resonance 

(
Δr = 1.0

)
 . 

T h e  n o n - d i m e n s i o n a l  n a t u r a l  f r e q u e n c i e s (
�∗ = �

(
a2

h

)√
�c

Ec

)
 of square FGM plates for different 

combinations of non-dimensional rotational speeds (Δr) 
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Fig. 5   Non-dimensional Fundamental frequencies 
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b
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)
 of 

porous FGM plates for three different cosine porosity distribution pat-
terns [24] [a = 20  h, b = 20  h, h = 17.6 × 10−6  m, Et = 14.4  GPa, 
Eb = 1.44  GPa, ρt = 12.2 × 103  kg/m, ρb = 1.22 × 10.3  kg/m, 
νb = νt = 0.38]
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with varying power index values (k) and porosity types are 
presented in Figs. 7, 8 and 9 for FGM combinations of Al/
Al2O3, SUS304/Si3N4 and Ti–6Al–4V/Aluminium Oxide, 
respectively. The non-dimensional rotational speeds are 
varied from 0 to 1.0 at a step of 0.25 whilst the power 
index values are varied from 1 to 10. For a certain value 
of the power index k, the first natural frequencies are found 
to increase with an increase in the non-dimensional 

rotational speeds 
(
Δr

)
 at all the porosity types considered. 

This increase in the natural frequencies may be attributed 
to the fact that there is a gradual increase in the structural 
stiffness of the FGM plate owing to centrifugal stiffening 
effect with increase in rotation. This increase in the 
stiffness results in higher values of the natural frequencies 
obtained. Since the increase in stiffness is independent of 
the presence of porosity in the rotating structure, as such 
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Fig. 6   a Non-dimensional fundamental frequencies (
�∗ = �

(
a
2

h

)√
�c

Ec

)
 of perfect and porous Al/Al2O3 FGM square 

untwisted (ψ = 0°) plates (maximum porosity = 0.50) for different 
aspect ratios (a/b) and power factors of flat plates and different 
porosity types (Types 1, 2 and 3). b Non-dimensional fundamental 

frequencies 
(
�∗ = �

(
a
2

h

)√
�c

Ec

)
 of perfect and porous SUS304/Si3N4 

FGM square untwisted (ψ = 0°) plates (maximum porosity = 0.50) for 
different aspect ratios (a/b) and power factors of flat plates and 
different porosity types (Types 1, 2 and 3)



4606	 Journal of Vibration Engineering & Technologies (2024) 12:4593–4615

1 3

the rise in the natural frequency values is observed for all 
the porosity types considered. The increase in the first 
natural frequency values is found to be higher at higher 
power index values (k = 10) compared to the lower ones 
(k = 0). Again for a particular rotational speed, the highest 
value of the fundamental frequency is observed for 
Porosity Type 1 whilst the lowest value is observed for 
Porosity Type 2.

Influence of Thickness Taper Ratio 
(
ˇ

x
,ˇ

x

)
 Along 

the Span and Chordal Direction

The fundamental and the second natural frequencies (Hz) 
of tapered cylindrical fan blades of SUS304/Si3N4 are 
presented in Tables 10 and 11 respectively for different 

taper ratios considering different power index values and 
porosity distribution patterns. The taper ratios along the 
span-wise and the chord-wise directions are denoted by �x 
and �y , respectively. It is observed that for span-wise taper (
�y = 1.0

)
 , both the first and the second natural frequen-

cies are highest for the triangular blade 
(
�x = 0.0

)
 . The 

values are found to decrease as �x reaches 0.50 and then 
again increases for uniform thickness blades 

(
�x = 1.0

)
 . 

However, in case of chord-wise 
(
�x = 1.0

)
 taper blades, the 

first and the second natural frequency values are found to 
increase with an increase in the chord taper ratio 

(
�y
)
 from 

0.0 to 1.0. As such, for chord-wise tapered blades, the low-
est values of the natural frequencies are observed triangu-
lar blades 

(
�y = 0.0

)
 and the highest value is observed for 

�y = 1.0 (uniform thickness blades). In case of both taper 
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Fig. 6   (continued)
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and uniform-width blades, both the first and second natural 
frequencies are found to be the highest for Porosity Type 
1 and the lowest for Porosity Type 3.

Influence of Temperature Variations for Different 
Porosity Types

The non-dimensional  fundamental  frequencies 

�∗ = �

(
a2

h

)√
�m0(1−�2m0)

Em0

 of cantilever untwisted (ψ = 0°) 

square SUS304/Si3N4 and Ti–6Al–4V/Aluminium Oxide 
FGM plates are presented in Tables 12 and 13 for different 
thermal gradients and porosity distribution types. The 

temperatures of the top and the bottom layers of the FGM 
plate are denoted by Tc and Tm respectively. The 
temperature of the bottom (metallic) fibre is assumed to 
be constant at Tm = 300 K, whilst the temperature of the 
ceramic surface is assumed to be at an elevated 
temperature of Tm + ΔT, where ΔT refers to the thermal 
gradient prevalent across the thickness of the FGM plate 
(ΔT = Tc—Tm). The material properties 

(
Em0, �m0, �m0

)
 at 

the base temperature (T = 300  K) are selected for 
calculation of the non-dimensional frequencies. The 
thickness-wise distribution of the effective Young’s 
modulus (Eeff) of the FGM plates at different temperatures 
of the metal and the ceramic layers for no porosity and 
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Fig. 7   The first natural frequency values 
(
�∗ = �
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Ec

)
 of untwisted (ψ = 0°) Al/Al2O3 FGM plates for different rotational speeds (Δr) with 

varying power index values (k) and porosity type [a = b = 1.0, h = a/10, ψ = 0°]
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Porosity Types 1, 2 and 3 is plotted in Fig.  10a–d for 
SUS304/Si3N4 FGM plates. The nature of variations in the 
other properties like Poisson’s ratio (ν), density (ρ) and 
thermal expansion coefficient (α) is same with thermal 
gradient as adopted in Eq. (28). For all the porosity types, 
a reduction in the effective Young’s Modulus is observed 
with increase in the thermal gradient (ΔT) leading to 
strength degradation. As a consequence, a gradual 
reduction in the non-dimensional frequencies in both the 
porous and non-porous plates is observed in both 

Tables  12 and 13 with increase in the temperature 
difference (ΔT) between the ceramic and the metal layers 
of the FGM plates. In addition to the material property 
degradation, internal thermal strains are also induced in 
the bulk of the FGM plates with rise in temperature (ΔT) 
that causes a reduction in the structural stiffness of the 
FGM plate. This stiffness reduction is attributed to the 
introduction of the geometric stiffness matrix 

([
K�

]
Th

)
 in 

the FEM formulation resulting from thermal effects which 
gets subtracted from the structural stiffness of the FGM 
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Fig. 8   The first natural frequency values 
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)
 of untwisted (ψ = 0°) SUS304/Si3N4 FGM plates for different rotational speeds 

(Δr) with varying power index values (k) and porosity type
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plate owing to the thermal strains being compressive in 
nature. For a certain thermal gradient (ΔT) and porosity 
type, there is a reduction in the non-dimensional funda-
mental frequencies (�∗) with an increase in the power 
index value (k). Also, for a certain power index value, the 
highest value of �∗ is observed for Porosity Type 1 whilst 
the lowest value is observed for Porosity Type 3. This may 
be explained from Fig. 10 where the highest average value 
of the effective Young’s modulus (E) is observed for 
Porosity Type 1 whilst the lowest value occurs for Porosity 
Type 3. The values of the non-dimensional frequencies are 

also dependent on the choice of the FGM constituent com-
bination. For the FGM’s considered, the �∗ values are 
higher for the SUS304/Si3N4 FG plates compared to the 
Ti–6Al–4V/Aluminium Oxide FG plates at a particular 
thermal gradient and porosity type. In addition, the per-
centage decrease in the frequency values with an increase 
in the thermal gradient is higher in SUS304/Si3N4 FG 
plates owing to their higher effective thermal expansion 
coefficient values compared to the Ti–6Al–4V/Aluminium 
Oxide FG plates.
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Fig. 9   The first natural frequency values 
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)√
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)
 of untwisted (ψ = 0°) Ti–6Al–4V/Aluminium Oxide FGM plates for different rota-

tional speeds (Δr) with varying power index values (k) and porosity type
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Table 10   The first natural 
frequencies (in Hz) of 
cantilevered untwisted 
tapered SUS304/Si3N4 FGM 
cylindrical fan blades for 
different taper ratios and 
Porosity distribution patterns 
and power index [E = 200 GPa, 
ρ = 7860 kg/m3, ν = 0.30, ψ = 0°, 
Ry = 30.0in, a = b = 12.0in, 
hmax = 0.165in hmin = 0.048in, 
�x = 0.0, 0.50 and 1.0 , �y = 1.0]

Taper ratio k No porosity Porosity Type 1 Porosity Type 2 Porosity Type 3

�
x
 = 0.0 0.0 258.97 274.95 260.93 260.92

�
y
 = 1.0 1.0 156.17 165.63 163.81 151.63

(Triangular Spanwise) 5.0 125.37 135.39 129.56 124.21
10.0 119.09 128.26 121.98 118.87

0.0 219.06 236.37 221.44 221.69
�
x
 = 0.5 1.0 131.67 141.89 138.33 128.77

�
y
 = 1.0 5.0 106.14 116.4 109.86 105.83

10.0 100.75 110.25 103.48 101.16
�
x
 = 1.0 0.0 169.55 181.97 170.52 170.78

�
y
 = 0.0 1.0 102.14 109.5 106.71 99.39

(Triangular Chordwise) 5.0 82.39 89.82 84.77 81.69
10.0 78.26 85.12 79.88 78.12

0.0 192.96 208.56 195.13 195.35
�
x
 = 1.0 1.0 115.87 125.17 121.83 113.47

�
y
 = 0.5 5.0 93.46 102.72 96.81 93.29

10.0 88.74 97.29 91.19 89.16
0.0 237.55 258.51 240.53 240.81

�
x
 = 1.0 1.0 142.52 154.95 149.83 139.85

�
y
 = 1.0 5.0 115.15 127.34 119.29 115.15

(Uniform width blade) 10.0 109.23 120.61 112.41 109.99

Table 11   The second 
natural frequencies (in Hz) 
of cantilevered untwisted 
tapered SUS304/Si3N4 FGM 
cylindrical fan blades for 
different taper ratios and 
Porosity distribution patterns 
and power index [E = 200 GPa, 
ρ = 7860 kg/m3, ν = 0.30, ψ = 0°, 
Ry = 30.0in, a = b = 12.0in, 
hmax = 0.165in hmin = 0.048in, 
�x = 0.0, 0.50 and 1.0 , �y = 1.0]

Taper ratio k No Porosity Porosity Type 1 Porosity Type 2 Porosity Type 3

�
x
 = 0.0 0.0 297.01 320.45 300.75 299.02

�
y
 = 1.0 1.0 178.25 192.29 187.63 173.47

(Triangular Spanwise) 5.0 144.32 157.82 149.28 142.66
10.0 136.97 149.57 140.73 136.41

�
x
 = 0.5 0.0 310.37 321.74 311.29 310.08

�
y
 = 1.0 1.0 187.94 194.85 196.61 180.28

5.0 150.36 158.36 154.78 147.05
10.0 142.97 150.12 145.71 141.01

0.0 221.93 229.92 221.56 220.49
�
x
 = 1.0 1.0 135.09 139.45 139.99 128.5

�
y
 = 0.0 5.0 108.19 113.49 110.45 104.98

(Triangular Chordwise) 10.0 102.87 107.63 104.06 100.66
0.0 269.03 274.73 269.27 268.79

�
x
 = 1.0 1.0 163.51 166.78 170.95 156.24

�
y
 = 0.5 5.0 130.1 135.01 133.86 126.95

10.0 123.68 127.96 125.88 121.86
0.0 285.73 290.64 285.8 285.61

�
x
 = 1.0 1.0 173.68 176.57 181.75 166.34

�
y
 = 1.0 5.0 138.01 142.82 142.05 134.75

(Uniform Width blade) 10.0 131.24 135.36 133.53 129.38
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Table 12   Non-Dimensional 
frequencies (
�∗ = �

(
a2

h

)√
�m0(1−�2m0)

Em0

)
 of 

cantilevered untwisted square 
SUS304/Si3N4 FG plates at 
different thermal gradients and 
Porosity distribution patterns 
[a = b = 0.1, h = 0.01, 
φmax = 0.50, ψ = 0°, 
Em0 = 207.78E9, νm0 = 0.3177, 
ρm0 = 8166 kg/m3]

Temperature k No Porosity Porosity Type 1 Porosity Type 2 Porosity Type 3

0.00 2.251 2.443 2.221 2.221
0.5 1.562 1.679 1.585 1.491

Tm = 300 K 1.0 1.369 1.480 1.388 1.308
Tc = 300 K 2.0 1.229 1.342 1.239 1.183

5.0 1.118 1.227 1.116 1.085
10.0 1.064 1.165 1.055 1.036
0.00 2.208 2.395 2.178 2.178
0.5 1.532 1.647 1.554 1.462

Tm = 300 K 1.0 1.343 1.451 1.361 1.282
Tc = 500 K 2.0 1.206 1.315 1.215 1.159

5.0 1.097 1.202 1.094 1.063
10.0 1.044 1.141 1.034 1.016
0.00 2.172 2.356 2.142 2.142
0.5 1.494 1.604 1.513 1.425

Tm = 300 K 1.0 1.303 1.406 1.318 1.244
Tc = 700 K 2.0 1.167 1.270 1.172 1.121

5.0 1.057 1.158 1.052 1.024
10.0 1.003 1.097 0.992 0.975
0.00 2.120 2.299 2.091 2.091
0.5 1.411 1.511 1.425 1.346

Tm = 300 K 1.0 1.207 1.297 1.214 1.153
Tc = 1000 K 2.0 1.064 1.154 1.060 1.024

5.0 0.953 1.042 0.941 0.923
10.0 0.896 0.977 0.879 0.868

Table 13   Non-Dimensional 
fundamental frequencies (
�∗ = �

(
a2

h

)√
�m0(1−�2m0)

Em0

)
 of 

square Ti–6Al–4V/Aluminium 
Oxide FG plates at different 
thermal gradients and Porosity 
distribution patterns [a = b = 0.1, 
h = 0.01, ψ = 0°, Em0 = 105.7E9, 
νm0 = 0.298, ρm0 = 4429 kg/m3]

Temperature k No Porosity Porosity Type 1 Porosity Type 2 Porosity Type 3

0.00 1.861 2.017 1.833 1.833
0.5 1.544 1.659 1.520 1.518

Tc = 300 K 1.0 1.397 1.498 1.371 1.377
Tm = 300 K 2.0 1.284 1.385 1.253 1.272

5.0 1.199 1.304 1.169 1.187
10.0 1.140 1.244 1.117 1.122

0.00 1.830 1.985 1.804 1.803
0.5 1.508 1.619 1.483 1.482

Tc = 500 K 1.0 1.356 1.452 1.329 1.335
Tm = 300 K 2.0 1.238 1.332 1.206 1.227

5.0 1.151 1.250 1.119 1.141
10.0 1.092 1.191 1.069 1.075

0.00 1.814 1.966 1.786 1.785
0.5 1.479 1.586 1.454 1.453

Tc = 700 K 1.0 1.318 1.408 1.292 1.298
Tm = 300 K 2.0 1.192 1.281 1.160 1.182

5.0 1.102 1.196 1.069 1.094
10.0 1.043 1.138 1.019 1.028

0.00 1.793 1.943 1.766 1.766
0.5 1.437 1.538 1.412 1.412

Tc = 1000 K 1.0 1.259 1.341 1.234 1.239
Tm = 300 K 2.0 1.117 1.195 1.086 1.109

5.0 1.022 1.106 0.986 1.018
10.0 0.964 1.049 0.937 0.952
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The frequency response of tapered untwisted cylindri-
cal fan blade made of a FGM constituent combination of 
SUS304/Si3N4 is predicted using the present FEM formu-
lation and are presented in Table 14 for different chord-
wise taper ratios of �y = 0.291, 0.50 and 0.75 

(
�x = 1.0

)
 . 

The fan blade is assumed to have only chord-wise taper 
where �x and �y denotes the span-wise and the chord-wise 
tapers, respectively. It is observed that for a certain ther-
mal gradient (ΔT), there is an increase in the fundamental 
frequency values with an increase in the chord-wise taper 
ratio �y for all the power index and porosity types consid-
ered. This may be explained from the fact that an increase 
in the chord-wise taper results in additional flexibility of 
the fan blade, which increases both the bending and the 
torsional modes of vibration of the cantilever FGM plate. 
It is also noted that with an increase in the thermal gra-
dient (ΔT) between the ceramic and the metallic layers, 

there is a reduction in the frequency values for the tapered 
fan blade configuration considered. This may again be 
attributed to the reduction of the structural stiffness of the 
fan blades and the degradation of the effective material 
properties (Peff) with a rise in the temperature across the 
ceramic and metallic interfaces of the FGM plate.

Conclusions

A finite element-based formulation is developed to study 
the influence of porosity distribution on the free vibration 
response of FGM twisted plates considering some trigger-
ing parameters like rotational speed, blade taper ratio and 
thermal gradient across ceramic and the metallic interfaces 
of the FGM plate. This may be inferred that the poros-
ity distribution pattern inside the FGM structures plays a 
crucial role in the vibration behaviour of plates and shells. 
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Fig. 10   Thickness variation of the Young’s modulus (E) for SUS304/Si3N4 FGM square plates at different temperatures (ΔT) of the ceramic (Tc) 
and the metallic (Tm) layers for different Porosity types and power index, k = 1.0 [a = b = 0.1, h = 0.01, k = 1.0 ψ = 0°]
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For a certain value of the power index (k), the maximum 
value of the first natural frequencies is observed for the 
untwisted plate (ψ = 0°) and decreases with an increase in 
the twist angle (ψ). This is due to the fact that the stiffness 
of the plate decreases with an increase in the pre-twist 
angle. In case of both twisted and untwisted plates, the first 
natural frequencies are found to decrease with an increase 
in the power index value (k) for all the porosity types con-
sidered. This is due to the fact that the contribution of 
the metallic constituents predominates with an increase 
in the power index value (k) which has lower strength 
compared to their ceramic counterparts. For all the FGM 
combinations considered in the present work, the highest 
values of the fundamental frequencies of the FGM plates 
are observed for Porosity Type 1 whilst the lowest value is 
observed for Porosity Type 2. This is because the average 
material properties are highest for Porosity Type 2 and 
lowest for Porosity Type 1 considering the plots of their 
variation presented across the thickness of the FGM plate. 
For a certain value of the power index k, the maximum 
value of the first natural frequencies is observed for the 
square plate (a/b = 1) and decreases with an increase in the 
aspect ratio for all the porosity types. This clear trend of 
decrease in the natural frequency values is due to the fact 
that the stiffness of the plate decreases with an increase in 
the aspect ratio (a/b). Also, for a certain value of the power 
index (k), the first natural frequencies are found to increase 

with an increase in the non-dimensional rotational speeds 
(Δr) at all the porosity types considered. This increase is 
due to the gradual increase in the structural stiffness of the 
FGM plate owing to the inclusion of the spinning matrix 
with rise in rotation in addition to the structural stiffness. 
The first natural frequency values are however found to 
decrease with an increase in the temperature gradient (ΔT) 
from 0 to 300 K for all values of the power index (k) and 
porosity types. This is due to the fact that internal thermal 
strains (negative in nature) tend to develop inside the FGM 
plates with temperature rise which results in a decrease in 
the overall stiffness of the plates. In addition, there is a 
reduction in the effective material properties with rise in 
the temperature gradient (ΔT) resulting in strength reduc-
tion of the FGM structures. The study of the fundamental 
frequency response for a typical curved cylindrical fan 
blade geometry with FGM constituent combinations of 
SUS304/Si3N4 having a chord-wise taper (βy = 0.291, 0.50 
and 0.75, βx = 1.0) suggests a gradual increase in the fre-
quency values with an increase in the chord-wise taper 
ratio (βy).
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Table 14   The first natural 
frequencies (in Hz) of 
cantilevered both untwisted 
and twisted tapered SUS304/
Si3N4 FGM cylindrical fan 
blade for chordwise taper ratios 
of (I) �y = 0.291 (hmax = 0.165 
in, hmin = 0.048in), (II) 
�y = 0.50 (hmax = 0.165in, 
hmin = 0.0825in) and (III) 
�y = 0.75 (hmax = 0.165in, 
hmin = 0.12375in) with Porosity 
distribution patterns and 
power index, k [E = 200 GPa, 
ρ = 7860 kg/m3, ν = 0.30, ψ = 0°; 
Ry = 30.0 in, a = b = 12.0 in, 
hmax = 0.165 in]

�
x
 = 1.0 ψ = 0 ΔT = 300 ΔT = 500 K ΔT = 700 K

�
y

0.291 0.5 0.75 0.291 0.5 0.75 0.291 0.5 0.75

No porosity k = 0.0 178.99 192.97 213.81 175.51 189.25 209.65 172.62 186.13 206.19
k = 0.5 123.43 132.95 147.16 120.94 131.56 144.17 117.72 126.77 140.28
k = 1.0 107.67 115.96 128.35 105.46 113.61 125.69 102.09 109.92 121.62
k = 5.0 86.79 93.53 103.61 84.96 91.23 101.41 81.49 87.79 97.24

k = 10.0 82.41 88.79 98.34 80.64 86.87 96.22 77.09 83.03 91.96
Porosity Type 1 k = 0.0 192.72 208.56 231.96 188.97 204.5 227.45 185.86 201.13 223.70

k = 0.5 131.86 142.56 158.43 129.19 131.25 155.21 125.7 135.87 150.96
k = 1.0 115.79 125.17 139.11 113.41 123.24 136.23 109.74 118.59 131.76
k = 5.0 94.97 102.72 114.24 92.97 100.04 111.81 89.22 96.47 107.28

k = 10.0 89.96 97.29 108.19 88.05 95.20 105.87 84.22 91.06 101.26
Porosity Type 2 k = 0.0 180.67 195.13 216.39 177.16 191.34 212.19 174.24 188.19 208.69

k = 0.5 129.13 139.31 154.32 126.53 136.21 151.20 123.20 132.89 147.17
k = 1.0 112.94 121.83 134.93 110.64 119.78 132.16 107.15 115.53 127.92
k = 5.0 89.69 96.81 107.33 87.81 94.55 105.06 84.24 90.91 100.77

k = 10.0 84.49 91.23 101.12 82.69 89.25 98.95 79.08 85.34 94.62
Porosity Type 3 k = 0.0 180.89 195.35 216.65 177.37 191.55 212.44 174.45 188.39 208.94

k = 0.5 120.46 130.20 144.14 118.03 128.63 141.22 114.86 123.95 137.39
k = 1.0 105.12 113.47 125.82 102.97 110.32 123.22 99.66 107.55 119.23
k = 5.0 86.38 93.29 103.52 84.56 91.57 101.33 81.13 87.59 97.19

k = 10.0 82.58 89.16 98.91 80.82 87.26 96.79 77.26 83.41 92.53
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