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Abstract
Purpose  Bridges play a crucial role in ensuring regional connectivity and traffic safety. However, their vulnerability to 
environmental factors and material degradation can lead to varying degrees of damage. The bridge structural health moni-
toring system (SHMS) has emerged as an efficient and intelligent alternative to traditional detection methods to tackle these 
challenges.
Methods  This paper presents an improved approach for reconstructing the response of measuring points based on proper 
orthogonal decomposition. First, the novel sensor layout scheme based on orthogonal decomposition is introduced to recon-
struct stress responses at measuring points. Subsequently, the proposed response reconstruction theory is developed by 
decomposing stress responses from known points into random time functions and modes. These components are then com-
bined with verification point modes and random time functions using the interpolation method, enabling the determination 
of stress responses at verification points. Lastly, the proposed response reconstruction theory is validated through numerical 
simulations and laboratory experiments.
Results  The results demonstrate that the proposed method achieves an error rate of less than 5% when comparing the maxi-
mum stress response identified by the proposed method to the actual value. Moreover, it has minimal impact on vehicle 
weight, speed, and complex load factors.
Conclusion  Therefore, the response reconstruction method and sensor layout scheme proposed in this study provide an 
accurate and efficient solution for bridge SHMS.

Keywords  Proper orthogonal decomposition · Response reconstruction theory · Sensor layout scheme · Numerical 
simulation · Experiment verification

List of Symbols
L	� Length of bridge
R	� Covariance matrix
E(m)	� Energy contained in the first m orders
Dj	� Distance from the measurement point to the jth 

prediction point
xi, yi	� Location of the ith measuring point
�(t)	� Strain–time-history response
��(x, y, t)	� Strain response of the verification point (x, y)

�(xi, yi, t)	� Strain–time-history response at the ith measur-
ing point

�i,j	� Stress–time-history response of the point gi,j
�′
i,k

	� Calibrated predicted stress response of the 
verification point ui,k

�i,k	� Predicted stress–time-history response of the 
verification point ui,k

�′′
i,k

	� Stress response of the verification point corre-
sponding operating condition of the FE model

�′′′
i,k

	� Revised response of the verification point
�	� Eigenmatrix
�n	� Basis vector on the nth axis of the orthogonal 

coordinate
�n(xi, yi)	� The value of the eigenmode �n at the measur-

ing point (xi, yi)
��
n
(x, y)	� Approximate eigenmode values of the verifica-

tion point (x, y)
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�n(xj, yj)	� The eigenmode values of the measurement 
points (xj, yj)

��(ui,k)	� The eigenmode of the kth verification point
��(gi,k)	� The eigenmode of the jth known point
aj	� Distance of the jth known point gi,j from the 

leftmost support
an	� Projection of the strain response vector on the 

nth axis
a�
n
(t)	� Approximate principal coordinates
̄a2
n
(t)	 �Root mean square value of the principal 

coordinates
ri,j	� Ratio of the jth known point on the ith main 

beam
ri,k	� Ratio of the kth verification point ui,k
r′
i,k

	� Response ratio of the kth verification point ui,k
fi,k	� Calibration curve of the verification point ui,k
ILi,j	� Value of influence line on the known point gi,j
ILi,k	� Value of the influence line on the verification 

point ui,k
Mi,j	� Maximum value of ILi,j
�i,k	� Criterion for determining the validity of the 

reconstructed response for the verification 
point

�mn	� Kronecker symbol
�i,k	� Distribution of the calibrated predicted stress 

response ratios for the verification point ui,k
�′
i,k

	� Calibration curve of the verification point ui,k 
of the FE model.

�n	� Constant value
�i,k	� Maximum calibration coefficient of the verifi-

cation point ui,k
vm	� Speed of the test trolley
vr	� Speed of the finite-element simulated vehicle
lm	� Length of test bridge
lr	� Length of the finite-element model bridge
F	� Frequency of the motor
v	� Speed of the car
l	� Perimeter of the rotating shaft

Introduction

The development of regional economies and national security 
is closely intertwined with the improvement of transportation 
infrastructure, with bridges playing a crucial role. Monitoring 
the overall response of large-span bridge structures and con-
ducting regular health and safety assessments are essential. The 
structural health monitoring system encompasses various com-
ponents, including the sensing system, signal transmission and 
storage system, structural condition parameter identification, 
damage identification based on monitoring data, and structural 
performance evaluation. Among these components, the sens-
ing system stands as the fundamental cornerstone of the entire 

structural health monitoring system. In recent years, a multi-
tude of innovative sensing technologies have emerged, such 
as optical fiber sensing methods [1–3] and wireless sensing 
means [4, 5]. These advanced sensing technologies are increas-
ingly employed in the health monitoring process of bridges due 
to their notable stability and adaptability to varying environ-
mental conditions.

As a typical large span and complex structure, a signifi-
cant number of sensing devices are required to capture the full 
response of the bridge. The wired sensors require numerous 
wires for data transfer, resulting in increased monitoring sys-
tem costs. In addition, it is impractical to install sensors in all 
degrees of freedom of the bridge. Optimizing the arrangement 
of sensors and monitoring methods has proved to be a chal-
lenging issue, prompting lots of researchers to conduct relevant 
research [6]. A variety of optimization criteria and computa-
tional methods have been developed to achieve optimal sen-
sor placement based on modal observability. These methods 
predominantly rely on various modal parameters, including the 
minimization of transfer errors [7], energy-based criteria [8], 
model reduction criteria [9], and modal assurance criteria [10]. 
Another approach to sensor placement optimization involves 
focusing on damage recognizability, whereby sensors are posi-
tioned at locations that exhibit high sensitivity to structural 
damage, allowing the resulting performance matrix of struc-
tural responses to contain comprehensive information about the 
damage. However, research on sensor optimization with dam-
age recognition as the objective remains relatively limited [11]. 
In other methods, sensors are typically allocated to surface 
nodes corresponding to the structural system and finite-element 
analysis, resulting in an integer programming problem for com-
bined optimization. The effective independence method [7] and 
the successive reduce method [12] are commonly employed 
techniques for this purpose. In addition, the economy of the 
surveillance system is an important factor to consider. Zhang 
et al. [13] introduced a method that simultaneously detects 
damage and vehicle loads on simply supported girder bridges. 
The long-spaced fiber Bragg grating (FBG) sensors is utilized 
to reducing the number of devices required while maintain-
ing accurate identification results with less cost. Furthermore, 
Zhang et al. [14] explored the application of long-range FBG 
sensors for damage identification in highway bridges, observing 
their high resistance to noise and suitability for uninterrupted 
and long-term monitoring. Similarly, Chen et al. [15] proposed 
a detection method that employs a long-range fiber-optic grat-
ing sensor to identify both the location and extent of bridge 
damage, even under conditions of random vehicular traffic flow.

Apart from optimizing the number of sensors, the acquisi-
tion of bridge parameters with a limited number of sensors is 
an important area of research. Numerous methods proposed 
by researchers have proposed, including the technique of 
structural dynamic response reconstruction. This technique 
decomposes the data measured by the sensors into modal 
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and random time functions. By combining the calculated 
modal data with the random time function, the response at 
the measurement points can be reconstructed. As a result, 
this approach compensates for the limited measurement data 
by providing comprehensive structural response information 
using fewer sensors, reducing economic costs. The structural 
dynamic response reconstruction is mainly divided into three 
methods based on modal analysis [16–19], transmissibil-
ity [20] and Markov parameter [21]. In 1997, Kammer [22] 
first proposed the concept of structural dynamic response 
reconstruction method, using the measured responses of 
other positions on the structure to predict the response of 
discrete unidentified positions. A transformation matrix 
based on Markov parameters was proposed to convert the 
information collected by the sensor into the response of 
the desired position. He [23] presented a dynamic response 
reconstruction method based on empirical mode decomposi-
tion (EMD) [24–26]. Ribeiro  [27] presented a transfer rate 
matrix for multi-degree of freedom systems. This matrix 
was effectively employed to determine the position response 
of an unknown reconstructed structure, assuming the prior 
knowledge of excitation force position. According to the 
above displacement transfer matrix, Law [28] expanded it 
into acceleration transfer matrix, considered the influence of 
sampling time, sampling rate, number of sensors and meas-
urement noise on formula parameters. Wang [29] applied 
Markov parameter matrix in response reconstruction, con-
verted Markov parameter matrix into full rank matrix by 
Jacobi transform and QR decomposition, and optimized 
sensor layout by constructing objective function based on 
reducing noise influence.

The proper orthogonal decomposition (POD) method, 
also known as the Karhunen–Loeve theorem, has been 
widely applied for response reconstruction. MA [30] uti-
lized the lower order modes obtained from Karhunen–Loeve 
decomposition to reconstruct the response of a truss struc-
ture, revealing that the first few modes captured the overall 
structural information. Bienkiewicz [31] performed POD 
decomposition on the pulsating wind pressure of a large-
span flat-top low-rise building, reconstructing the roof wind 
pressure field using the dominant modes and verifying the 
effectiveness of the reconstruction. Ni [32] employed the 
inverse distance weighting method to interpolate the eigen-
modes of predicted points based on the eigenmode values 
obtained from wind tunnel tests, and calculated the wind 
pressure at these points using the time series of predicted 
point positions decomposed by the POD method. Jiang [32] 
conducted a wind tunnel test on a double-slope roof using a 
synchronous method. However, it can be found that the prior 
research on response recognition has predominantly focused 
on one-dimensional structures, neglecting the two-dimen-
sional nature of bridge decks, which encompasses both 

transverse and longitudinal areas. To overcome this limita-
tion, this study introduces an improved response reconstruc-
tion method based on the principle of proper orthogonal 
decomposition.

The paper is organized as follows: “Introduction” intro-
duces the current research on bridge response reconstruction 
and the optimization of wireless sensor placement in bridge 
health monitoring. “Response Reconstruction Theory of the 
Bridge Based on POD Method” presents the theoretical basis 
of bridge response reconstruction using POD method. Sec-
tion 3 compares the finite-element numerical method with 
theoretical results using a real bridge as an example. “Experi-
mental Verification” analyzes the practical accuracy of the 
theoretical approach by developing a simplified model of a 
multi-span bridge in the laboratory. Finally, “Conclusions” 
provides a summary of the overall findings of the paper.

Response Reconstruction Theory 
of the Bridge Based on POD Method

Fundamental Principle of Proper Orthogonal 
Decomposition

The POD method, which effectively characterizes the wind 
pressure field on the surface of the structure, reconstructs 
the field using a limited number of first eigenmodes while 
disregarding higher order covariance modes [34]. The POD 
method has been commonly employed in studying wind loads 
on buildings [35, 36], analyzing wind-induced responses [37], 
reconstructing wind pressure fields [38, 39], conducting wind 
tunnel tests [40], and model order reduction [41]. Various 
approaches have been utilized to establish the POD princi-
ple [42], such as the Karhunen–Loeve decomposition theorem, 
Tamura and Bienkiewicz’s projection extreme value principle, 
the Lagrange multiplier method, and the Rayleigh quotient 
concept in structural dynamics. In this study, the POD princi-
ple is derived from the Rayleigh quotient concept in structural 
dynamics and applied to identify the strain response of bridge 
structures.

It is assumed that the strain vector �(t) represents the strains 
of N measuring points on the model surface, obtained from the 
dynamic experiment conducted on the bridge. This is illus-
trated as follows:

where �i(t) = �(xi, yi, t) is the strain–time-history response 
of the ith measuring point located at (xi, yi).

Consider �n as the basis vector along the nth axis of the 
orthogonal coordinate system, and an(t) as the principal coor-
dinate, representing a random time function. The projection 
of the strain response vector onto this axis is denoted as an(t) , 
and can be expressed as

(1)�(t) =
{
�1(t), �2(t),⋯ �N(t)

}T



4360	 Journal of Vibration Engineering & Technologies (2024) 12:4357–4372

1 3

To maximize the projection of positive and negative stress, 
the mean square method is commonly used by regularizing 
Eq. (2) and it can be written as

 where a2
n
(t) represents the mean square value of the princi-

pal coordinate; R is the covariance matrix; �n is the constant 
value involved in the equation.

The Rayleigh quotient problem involves determining the 
value of vector �n when �n reaches its maximum. Based on 
the extreme value property of the Rayleigh quotient, a station-
ary value can be obtained from Eq. (3) using the eigenvector 
of the covariance matrix R. �n is an eigenvector of R, the 
mean square value a2

n
(t) reaches a stationary point equal to 

the eigenvalue �n of the covariance matrix R. Therefore, the 
relationship between them can be expressed as

It is assumed that the eigenvectors have been regularized. 
The eigenmatrix � and the principal coordinate vector a(t) 
are defined as

Then, Eq. (2) can be rewritten as

The orthogonality of the eigenmatrix � can be obtained from 
the equations mentioned above, as shown in Eq. (7).

The response expression for strain–time history at the ith 
measurement point is, therefore, written as Eq. (8):

where �n(xi, yi) is value of the intrinsic mode at the specific 
measurement point. Furthermore, it has been demonstrated 
that the principal coordinates exhibit orthogonality among 
themselves, which can be expressed as

(2)an(t) = �(t)T�n = �T

n
�(t), (n = 1, 2⋯N)

(3)a2
n
(t) =

�T
n
�(t)�(t)T�n

�T
n
�n

=
�T
n
R�n

�T
n
�n

= �n

(4)R�n = �n�n, (n = 1, 2⋯N)

(5)
{

� =
{
�1,�2,… ,�N

}
a(t) =

{
a1(t), a2(t),… , aN(t)

}T

(6)a(t) = �T�(t)

(7)�(t) = �a(t) =

N∑
n=1

an(t)�n

(8)�(xi, yi, t) = �i(t) =

N∑
n=1

an(t)�n(xi, yi)

(9)
am(t)an(t) = �T

m
�(t)�(t)T�n

= �T

m
R�n

= �m�mn

where �mn is the Kronecker symbol. Let m = n , then we have

Moreover, it can be observed that

The eigenvalue can be regard as the indicator of the eigen-
vector’s contribution to the mean square value of the 
strain–time-history response. By arranging the eigenvalues 
in descending order, the initial m eigenmodes tend to possess 
a substantial amount of energy, which can be harnessed for 
strain field reconstruction and computational load reduction. 
The determination of m adheres to the equation presented 
as follows:

where E(m) is the energy contained within the eigenvec-
tors, with a higher percentage indicating a greater amount 
of energy captured and a closer resemblance of the recon-
structed strain field to the original state. For this study, the 
solution is determined by selecting m such that the energy 
contained reached 99%. Based on Eq. (8), the strain field can 
be reconstructed accordingly:

Let ��(x, y, t) represent the strain response at the verification 
point (x, y). According to the POD principle, the response 
can be expanded with the first m eigenmodes:

If the measuring points are uniformly arranged, the deter-
mination of principal coordinates and eigenmodes can be 
obtained based on Eqs. (15) and  (16):

where a�
n
(t) is the approximate principal coordinate; (xj, yj) 

refers to the coordinates of the known point; ��
n
(x, y) is the 

approximate value of the intrinsic mode of the verification 

(10)a2
n
(t) = �n

(11)�2(xi, yi, t) =

N∑
n=1

�n�
2

n
(xi, yi)

(12)E(m) =

∑m

i=1
(�i)

2

∑N

i=1
(�i)

2

(13)�(x, y, t) =

m∑
n=1

an�n(x, y)

(14)��(x, y, t) =

m∑
n=1

a�
n
��

n
(x, y)

(15)a�
n
(t) =

∑N

i=1
�(xi, yi, t)�n(xi, yi)∑N

i=1
�2
n
(xi, yi)

(16)��

n
(x, y) =

∑k

j=1

1

(Dj)
p
�n(xj, yj)

∑k

j=1

1

(Dj)
p
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point; �n(xj, yj) denotes the known intrinsic mode value at 
the surrounding measuring points. The number of measuring 
points involved in the calculation is at least 6, which means 
k = 6 . Dj is the distance from the corresponding measuring 
point to the predicted point (x, y) ; p is the power of the 
distance, which is determined based on the minimum error 
criterion.

Hence, the POD method decomposes the measured point 
response into eigenmodes and random time functions. The 
point mode is then validated to reconstruct the response using 
the aforementioned formulation. Additionally, Eq. (16) is 
referred to as the inverse distance weighting method, which 
necessitates a minimum of six known points. However, acquir-
ing the response of a verification point demands a substan-
tial number of sensors, imposing position restrictions that 
are neither cost-effective nor practical in engineering appli-
cations. Moreover, this approach is time-consuming and 
energy-intensive.

To tackle the aforementioned challenges, we propose a 
sensor layout scheme to mitigate these concerns. By incor-
porating interpolation techniques based on modal character-
istics, the verification point modes are obtained to facilitate 
response reconstruction. This innovative approach involves 
utilizing two known points to reconstruct the response of 
the measured points. Through modification of the formula 
derived from the binding force method and finite-element 
method, precise outcomes can be attained.

Response Reconstruction Combining with Force 
Method

Figure 1 illustrates the configuration of a multi-span bridge. 
To aid in explaining the proposed algorithm, we make the 
following assumptions. The bridge comprises s main gird-
ers, each consisting number of Q know points. On each main 
girder, there exist a set of known points denoted as gi,j and a 
set of validation points denoted as ui,k . Here, the subscript i 
represents each main girder (i = 1,… , s) , j indicates the jth 
known point, and k denotes the kth validation point.

The m-order eigenmodes presented for the known points, 
which capture the structural information, are written as 
Eq. (17):

Then, the eigenmode ��(ui,k) of the verification point ui,k is 
expressed as

(17)��

n
=
{
��

n
(gi,1),�

�

n
(gi,2),…��

n
(gi,Q)

}
(n = 1, 2…m)

(18)��

n
(ui,k) =

��
n
(gi,j) + ��

n
(gi,j+1)

2
(n = 1, 2…m)

 where ��(ui,k) and ��
n
(gi,j) are the eigenmode of the kth verifi-

cation point and the (j + 1)th known point on the ith main beam, 
respectively, (i = 1, 2,… , s;j = 1, 2,⋯ ,Q;k = 1, 2,… , Z).

Based on Eq. (14), the structural response can be deter-
mined using the eigenmodes and random time functions 
obtained from Eq. (18). The response obtained at the veri-
fication point is referred to as the predicted stress response, 
which may have limited accuracy. To improve the accuracy, a 
combination of mechanical methods and finite-element analy-
sis is considered to modify the predicted stress response. This 
approach aims to establish a formulation for reconstructing 
the structural response and introduces the coefficient � based 
on the proportion distribution law to evaluate the results. The 
formulation of the influence line at any measuring point on 
a simply supported beam under a unit load can be expressed 
as follows:

where ILi,j represents the influence line of the jth known 
point gi,j on the ith section of the main beam; L is the total 
length of the bridge; aj is the distance between the jth known 
point on the ith girder and the leftmost support.

The ratio ri,j is determined by comparing the maximum 
stress response at the known point with the maximum 
value of the corresponding the influence line of the meas-
uring point, as expressed as follows:

where ri,j and �i,j are the ratio  and stress–time-history 
response of the jth known point gi,j on the ith section of the 

(19)ILi,j =

⎧
⎪⎨⎪⎩

x

L
(L − aj) (0 ≤ x ≤ aj)

[10pt]
(L − x)aj

L
(aj ≤ x ≤ L)

(20)ri,j =
max(�i,j)

Mi,j

Fig. 1   The simulated arrangement of sensors at the bottom of the 
bridge
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main beam, respectively; Mi,j is the maximum value of when 
the unit force acted. Therefore, the ratio ri,k of the verifica-
tion points is written as

where ri,k and ri,j+1 are the ratio of the kth verification point 
ui,k and the (j + 1)th known point gi,j+1 on the ith main beam, 
respectively. And the value of ri,j and ri,j+1 can be obtained 
by Eq. (20).

The ratio r′
i,k

 can be obtained by comparing the maximum 
value of the predicted stress response at the verification point 
with the influence line corresponding to the measurement 
point:

where r′
i,k

 and �i,k are the predicted response ratio and the 
predicted stress–time-history response respect to the kth 
verification point on the ith main beam; Mi,k is the maxi-
mum value of ILi,k when the unit force only acts on the kth 
verification point ui,k . After that, the maximum calibration 
coefficient � for each verification point can be deduced from 
Eqs. (20) and (22):

where �i,k is the maximum calibration coefficient of the kth 
verification point ui,k on the ith main beam.

The maximum calibration coefficient �i,k of each verifica-
tion point is taken as the peak value, and the time when the 
peak value occurs is when the load acts on the position of the 
verification point. A calibration curve fi,k can be obtained by 
linearly decreasing from the verification point towards the 
left and right ends. The predicted value of calibration stress 
response of verification point is

where �′
i,k

 and fi,k are the predicted stress response after cali-
bration and the calibration curve of the kth verification point 
ui,k on the ith main beam, respectively. And fi,k is deduced 
linearly from the peak value to both ends according to the 
maximum calibration coefficient �i,k.

The aforementioned formulas serve to validate the initial 
calibration of the predicted structural response, while the 
effectiveness of the calibration results is evaluated through 
the coefficient of lateral proportional distribution law. A 
finite-element model is developed using parameters specific 
to the existing bridge, such as its length, width, material, 
section shape, and number of main beams. By simulating 
identical lane loading conditions, the stress–time-history 

(21)ri,k =
ri,j + ri,j+1

2

(22)r�
i,k

=
max(�i,k)

Mi,k

(23)�i,k =
ri,k

ri,k
�

(24)��
i,k

= fi,k ⋅ �i,k

response �′
i,k

 is extracted for all verification points. For veri-
fication points located on the same cross-section, the pro-
portion distribution law �′

i,k
 is calculated using the following 

formula:

where �′
i,k

 and �′′
i,k

 are the calibration curve and the stress 
response of the kth verification point ui,k of the ith section 
of the finite-element model under corresponding working 
conditions.

Similarly, using the calibrated predicted stress response 
�′
i,k

 obtained from the first calibration, we can derive the 
proportional distribution law �i,k for the calibrated pre-
dicted response of verification points located on the same 
cross-section:

where �i,k is the proportional distribution law of predicted 
stress response after calibration of the kth verification point 
ui,k.

Using Eq. (24), the response prediction value of the 
measuring point is calculated and the validity of the cal-
culation result is assessed by the coefficient of lateral pro-
portional distribution law. Therefore, the coefficient � can 
be obtained by combining Eqs. (25) and (26), as shown as 
follows:

where �i,k is the basis for assessing the reconstruction 
response effectiveness of the kth verification point of the 
ith section main beam. If �i,k ≈ 1 , it indicates that the cali-
brated predicted stress response �′

i,k
 at the verification point 

satisfies the desired accuracy and can be considered as the 
final reconstructed stress response. However, if �i,k ≠ 1 , it 
suggests that further revision is needed for the verification 
point.

Taking the peak value � as the maximum calibration 
coefficient, it can be determined that the load is applied at 
the position of the verification point when the peak value 
occurs. Therefore, the calibration curve f ′

i,k
 is obtained, 

which decreases from the position of the verification point 
towards both ends. The revised response of the verification 
point is then expressed as follows:

(25)
��
i,k

=
max(���

i,k
)

s∑
i=1

max(���
i,k
)

(26)
�i,k =

max(��
i,k
)

s∑
i=1

max(��
i,k
)

(27)�i,k =
��
i,k

�i,k

(28)����
i,k

= f �
i,k
⋅ ��

i,k
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The Step for the Response Reconstruction 
of the Bridge

As mentioned in “Response Reconstruction Combining with 
Force Method” and “The Step for the Response Reconstruc-
tion of the Bridge”, the POD principle is applied to recon-
struct and predict the structural response, incorporating the 
influence line formulation for simply supported beams. The 
stress response at the measurement points is then calibrated 
and predicted, and the coefficients of the scaled distribu-
tion law are determined by finite-element model analysis for 
secondary calibration. The combination of these evaluation 
methods improves the accuracy of the reconstructed meas-
urement point responses and facilitates the identification of 
responses within the bridge area. Integrating the previous 
sections, the entire step is summarized as shown in Fig. 2.

In Finite-Element Numerical Simulation, the effective-
ness of the proposed method is demonstrated using a real 
bridge as a case study. The results of the bridge measure-
ment point response reconstruction method presented in this 
paper show high accuracy and validity over different bridge 
decks. The method successfully identifies the responses of 
all measurement points across the entire bridge deck, includ-
ing both lateral and longitudinal directions. This enables 
the acquisition of comprehensive two-dimensional structural 
information through regional response reconstruction.

Finite‑Element Numerical Simulation

Model Introduction

To investigate regional response reconstruction in bridges 
using long-gauge sensing methods, we simulate a T-shaped 
simply supported beam with a total length of 48 m using 
the finite-element method. The simply supported T-beam 
is constructed using C55 concrete, and the section of the 
main beam of the superstructure comprises five prestressed 

T-beams. The single T-beam of the bridge has a height of 
2.75 m and a width of 2.64 m, while the width of the entire 
bridge is 13.2 m, excluding the sidewalks and railings on 
both sides. The bridge is hinged on both ends. We employ 
the grillage method to establish the finite-element model 
of the bridge based on the given parameters, and virtual 
beam materials with zero capacity transversely connect the 
five T-beams.

The single T-beam of the bridge model is divided into 16 
units, each spanning 3 m. The entire bridge model is com-
posed of 80 units and 85 nodes. Diaphragms are positioned 
at 6 m intervals from the bridge support, with a height of 2.4 
m calculated from the top plate of the T-beam flange, which 
has a thickness of 0.2 m. In total, there are 9 diaphragms, 
including those at both ends of the support and the middle. 
Figure 3 illustrates the cross-section of the model girder and 
the overall structure of the model.

The internal measurement points are selected as the veri-
fication points in the blue dotted line box in Fig. 4. A total 
of 20 verification points are obtained from the placement of 
4 measurement points, distributed among the 5 beams. The 
bridge sensor layout scheme, illustrated in Fig. 4, depicts 
the placement of 25 long standard distance FBG sensors, 
represented by the red mark (“ ”).

Verification by Finite‑Element Method

The purpose of the numerical simulation is to validate the 
effectiveness of the proposed method. For the sake of sim-
plifying the verification process, a centralized moving load 
is employed to emulate the actual bridge crossing scenario. 
Specifically, a two-axle trolley with a total weight of 3 tons 
is simulated to traverse the bridge at a constant speed. The 
simulation involves applying a moving load to the middle 
No.3 main girder, with the trolley moving at a speed of v = 3

m/s. To represent the axle weights of the simplified two-axle 
trolley, two concentrated forces, P1 and P2 , are utilized with 
a specific time interval. P1 is set to 10 kN, P2 is set to 20 kN, 

Fig. 2   The flowchart for the bridge’s response reconstruction based 
on POD method
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Fig. 3   The diagram of the overall structure of the model
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and the wheelbase of the two-axle trolley is 3 m. This setup 
reflects a standard working condition, as shown in Fig. 5. 
Meanwhile, the stress response data from the sensor arrange-
ment points depicted in Fig. 4 are collected for analysis and 
verification. It should be noted that the analysis takes into 
account the influence of 10% white noise.

The predicted stress response values (PV) obtained through 
POD, the actual stress response values (RV) and the optimal 
stress response values (OV) calculated using the proposed 
response method are compared across all verification points. 
For demonstration and comparison purposes, the verification 
points of No. 42 and No. 59 are selected, as depicted in Fig. 4. 
Therefore, the stress value of PV, RV and OV are obtained, as 
drawn in Fig. 6. The error diagrams for the remaining verifi-
cation points are presented in the measurement points error 
diagram under standard working conditions.

In Fig. 6, the PV and RV curves exhibit the error, which is 
more pronounced at the peak, particularly for the measuring 
points on the middle main beam. In contrast, the OV curve 

aligns closely with the RV curve for each validation point, 
showing a high level of agreement, except for a few distinct 
points. This demonstrates the effectiveness and accuracy of 
the proposed response reconstruction method in identifying 
all measurement points within the bridge deck area. Further-
more, to ensure consistency and avoid the influence of varying 
working conditions such as vehicle weight, speed, and load, 
the same verification points are selected for analyzing and 
comparing the results.

The effectiveness of the proposed method is evaluated 
under varying trolley weights to assess its performance 
in different working conditions. Specifically, the trolley 
load is adjusted to P1 = 30 kN and P2 = 50 kN, resulting 
in a total weight of 80 kN, while keeping the wheelbase 
and trolley speed constant. The same verification and 
reference points are selected as in the standard working 
conditions. Stress response data are collected from the 
sensor locations, accounting for 10% white noise, and 
the results are analyzed and verified. For comparison, 

Fig. 4   The layout of verifica-
tion points and the sensor in the 
bridge model
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verification points No. 42 and No. 59 are chosen from 
all the verification points and displayed in Fig. 7. The 
error diagram of the measurement points under the vehi-
cle load condition presents the results for the remaining 
verification points.

In addition to adjusting the trolley weight, the vehicle 
speed is another parameter that can impact the proposed 
response reconstruction method. In this study, the simu-
lated vehicle speed is increased from v = 3 m/s to 4 m/s, 
while maintaining the small axle weight and wheelbase 
constant. The selection of verification points and known 
points remains the same as in the standard working condi-
tions. Stress response data from the sensor locations are 
collected and analyzed, considering 10% white noise. The 
results for verification points No. 42 and No. 59, selected 
from all the verification points, are presented and com-
pared in Fig. 8. The measuring point error of the vehi-
cle speed shows the results for the remaining verification 
points. The comparison demonstrates the effective identi-
fication of all measurement points within the bridge deck 

area and the accurate reconstruction of stress response 
values achieved by the proposed method.

A moving load, representing by a two-axle trolley, is 
applied to the two main beams of the bridge to simulate 
the scenario of two lanes traveling together. The combined 
weight of both cars is 3 tons. Car A has front and rear axles 
with a wheelbase of 3 m and a speed of v1 = 3 m/s, with 
axle loads P11=10 kN and P12 = 20 kN, respectively. Car 
B also has front and rear axles with a wheelbase of 3 m and 
a speed of v2 = 3 m/s, with axle loads P21=10 kN and P22
=20 kN, respectively. The driving lanes of the two cars are 
depicted in Fig. 9. The verification points of No. 42 and 
No. 59 are selected for comparison and displayed in Fig. 10, 
while the results for other verification points are presented 
in the measuring point error diagram under vehicle speed 
conditions.

When comparing the responses of measuring points 
under vehicle load, vehicle speed, and complex load condi-
tions, a certain level of error is observed between the PV 
curve and RV curve. This error is particularly pronounced 
at the peak, with the measuring points on the middle girder 

Fig. 7   Comparison of the 
measurement point response 
considering the vehicle load 
condition
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Fig. 8   Comparison the measur-
ing point response considering 
the vehicle speed condition
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exhibiting higher values of error. However, the coincidence 
between the OV curve and RV curve for each verification 
point is higher compared to the PV curve. The results shown 
in Fig. 10 are generally consistent, except for a few promi-
nent points, with the highest level of agreement at the peak. 
This demonstrates the effectiveness of the proposed response 
reconstruction method. To further analyze the errors, the 
maximum response values of other measuring points are 
compared in each working condition, and the error graphs 
of the measuring points are obtained, as shown in Fig. 11.

In Fig. 11, only 8 points have a relative error between the 
PV curve and RV curve below 3%, while the remaining points 

have errors above 6%, with a maximum error exceeding 10%. 
Through the proposed response reconstruction method, the 
relative errors between the OV curve and RV curve for all 
points are below 3%, with only a few points showing higher 
errors compared to the relative errors between the PV curve 
and RV curve. Among them, the maximum error is 2.3862%, 
while the minimum error is 0.0028%.

Considering the condition of vehicle speed and com-
plex load conditions, the error between different methods is 
present, as depicted in Fig. 12. The relative error between 
the PV curve and RV curve is below 3%, while the remain-
ing measuring points have larger errors, with a maximum 

Fig. 9   Multi-lane moving load 
layout

Fig. 10   Comparison of the 
measuring point response under 
complex load conditions
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Fig. 11   Errors of the measuring 
points under different working 
conditions
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exceeding 6%. In addition, the relative errors between 
the OV curve and RV curve, identified by the proposed 
response reconstruction method, are all below 3%, with 
only a few points having higher errors than the relative 
errors between the PV curve and RV curve. Among them, 
the maximum error is 2.5787%, and the minimum error is 
0.1758%.

Based on the tests conducted, various potential param-
eters have been considered and it was observed that the 
proposed response reconstruction method accurately iden-
tifies the OV curve of the measuring points. This curve 
exhibits a high level of consistency with the RV curve, 
indicating that the method is robust and unaffected by 
vehicle weight, speed, and complex load conditions. Con-
sequently, the method can be regarded as accurate and 
reliable.

Experimental Verification

Setup of the Experimental

The response reconstruction theory has been validated in 
a finite-element model in “Model Introduction”, and to 
further confirm its validity, an isometric scale model of the 
actual bridge has been created in the laboratory. The actual 
bridge is constructed with concrete grade C55, and its sin-
gle T-beam has a cross-sectional area of 1.313 m2 and a 
cross-sectional moment of inertia Iy = 1.23m4 . In addition, 

the bridge has a transverse width of 13.2 m, with a 1 m 
wide pavement and parapet on both sides, and a beam 
height of 2.75 m. The distance from the neutral axis to the 
top surface of the T-shape beam is 1.796 m, and to the bot-
tom surface is 0.954 m. For the scaled-down model, vari-
ous materials were considered, including micro-concrete, 
plaster, and plastic. Plexiglass is ultimately chosen due 
to its high transparency, ease of manufacturing, and abil-
ity to detect production defects. Furthermore, plexiglass 
is a durable material with a small modulus of elasticity, 
which reduces the weight of the model car and eases trac-
tion requirements during testing. Therefore, plexiglass is 
chosen to produce a scaled-down model of the real bridge, 
featuring an equal scale T-shaped simply supported beam.

Based on geometric similarity analysis, the research-
ers determined the scale of the organic-glass model bridge 
to be 20:1, with dimensions of 2.4 m in length, 0.66 m 
in width, and 0.1375 m in height. To maintain consist-
ency with the actual bridge, the model includes five cross 
partitions with a thickness of 0.01 m, positioned approxi-
mately 0.106 m away from the bottom plate of the T-shaped 
beam flange. In addition, to achieve the desired speed of 
the model car on the bridge, acceleration and deceleration 
sections are set up before and after the main bridge, with 
lengths of 5 m and 2 m, respectively. The speed of the 
model car is ensured using a motor. Figure 13 illustrates 
the overall layout of the test system. During the test, a 
long-scale fiber-optic sensor is attached to the bottom of 
the model bridge to collect data, as shown in Fig. 14.

Fig. 12   Errors of measuring 
points under different conditions
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The Chinese road code [43] mandates that highways 
display the speed limits for each lane, ranging from a max-
imum of 120 km/h to a minimum of 60 km/h. To determine 
the model car speeds corresponding to actual speeds of 
100 km/h, 80 km/h, and 60 km/h, dimensional analysis is 
employed, considering the speed similarity constants of 
the vehicles. Consequently, the model car speeds are 1.4 
m/s, 1.12 m/s, and 0.84 m/s, respectively.

The laboratory tests involve dividing the single main 
girder into 12 cells of 20 cm each, resulting in a total of 60 
cells and 65 nodes for the entire bridge. For practical rea-
sons, the width between the two wheel centers of the test car 
is measured to be 18.5 cm. This bridge deck is set at 22 cm 
for each lane, allowing a gap of 1–2 cm on either side of the 
vehicle. During the single vehicle loading tests, the model 
car was positioned and driven in the middle lane. The sen-
sor attachment area is chosen to be within 80–180 cm from 

the approach end of the bridge, with the center point of the 
first column of sensors located at 90 cm from the approach 
end. A total of 25 sensors are arranged for the entire bridge, 
with 15 sensors collecting data for the known points and the 
remaining 10 sensors collecting data for the comparison of 
the calculation results, as shown in Fig. 15. The verification 
points are labeled A ∼ J and the known points are denoted 
as S1∼S15.

The experimental setup includes two prototype cars: a two-
axle car and a three-axle car. The two-axle car has a weight 
of approximately 4.3 tonnes and an axle distance of 5 m. In 
contrast, the three-axle car weighs about 7 tonnes, with the 
front wheels positioned 3.46 m away from the middle axle, 
and the middle axle located 4.04 m from the rear axle. The test 
car configuration is depicted in Fig. 16. Car A represents the 
two-axle car, measuring 365 mm in length, 185 mm in width, 
and weighing 19.3 kg. Car B corresponds to the three-axle 
car, with dimensions of 500 mm in length, 185 mm in width, 
and a weight of 15.5 kg.

The experiment included the evaluation of a single model 
car and two model cars under different weight and speed 
conditions. The standard case, referred to as case 1, involved 
model car A with a weight of 19.3 kg, moving with the speed 
of 1.12 m/s on the bridge. Weight adjustments are made in 
Case 2, while speed adjustments were implemented in Case 

Fig. 14   The long-gauge FBG sensor

Fig. 15   Sensor layout diagram

Fig. 16   The model car A (two axles)
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3 for model car A. Case 4 represented a complex scenario 
where both model cars A and B are simultaneously driven 
on the road. As for the velocity with the motor, the speed of 
the model car in the finite element is converted to the test 
trolley speed by the speed similar constant of the vehicle, as 
shown in Eq. (29):

where vm is speed of the test trolley; vr is the speed of the 
finite-element simulated vehicle; lm is the test bridge length; 
lr is the length of the finite-element bridge model.

(29)vm = vr × lm∕lr

After the speed of the test trolley is known, the motor 
frequency is obtained according to the conversion formula of 
motor frequency and vehicle speed. During the test, the fre-
quency on the motor is adjusted to the corresponding value 
to obtain the ideal vehicle speed. The conversion formula of 
motor frequency is

where F is the motor frequency; v is the car speed; l is the 
perimeter of the rotating shaft. The specific weight and 
speed conditions for each case can be found in Table 1. 
Multiple tests are conducted for each condition, and a set of 
stable conditions is selected for further verification.

Analysis of Test Results

Prior to commencing the test, adjustments are made to the 
parameters such as sensor amplitude and frequency in the 
data acquisition software to ensure clear data visualization. 
The test officially commences when no alarms are trig-
gered on the sensor interfaces and the standard deviation 
(STD) value meets the required stability criteria. Once the 

(30)F = v∕(l × 0.5)

Table 1   Configuration of different cases

Case1 Case2 Case3 Case4

Two-axis model car (Car A)
 Weight (kg) 19.30 27.70 19.30 19.30
 Speed (m/s) 1.12 1.12 1.40 1.12

Three-axis model car (Car B)
 Weight (kg) – – – 15.50
 Speed (m/s) – – – 1.12

Fig. 17   The stress response for 
different methods and cases
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acquisition software initiates, the motor and vehicle are set 
in motion, and data collection concludes when the model car 
exits the bridge and the STD value stabilizes. Subsequently, 
the collected data is subjected to filtering and other neces-
sary operations, enabling the calculation of predicted stress 
response values at all validation points. A comparison of the 
predicted values (PV), optimum values (OV), and real values 
(RV) for the four cases at validation point S4 is depicted in 
Fig. 17.

Comparing the results of the four cases at the same vali-
dation point, errors are observed between the predicted and 
actual PV curve for strain response, particularly at the peak. 
However, the overall trend between the OV curve and the 
RV curve remains consistent, and the error at the peak is 
significantly smaller compared to the error between the PV 
curve and the RV curve. Hence, the proposed method effec-
tively validates the response. Furthermore, the results exhibit 
relative consistency between the OV and PV curves at the 
same validation point across the four operating conditions. 
This indicates the proposed method’s insensitivity to fac-
tors such as weight, movement speed, and complex loading 
effects, further affirming its effectiveness. The maximum 
stress errors between OV and RV, PV and RV at the remain-
ing validation points are depicted in Fig. 18.

As illustrated in Fig. 18, the results indicating that the 
maximum errors between the OV and RV curves are consist-
ently below 5%. Although the maximum error between the 
PV and RV curves is typically below 5%, there are instances 
where it exceeds 10%. Apart from a few exceptions, the 
maximum error between the OV and RV curves is smaller 
than that between the PV and RV curves at all measurement 
points. These findings provide additional evidence support-
ing the effectiveness, accuracy, and validity of the proposed 
response reconstruction method, which remains unaffected 
by factors such as vehicle weight, speed, and complex load-
ing effects.

Conclusions

In this paper, a response reconstruction method is introduced 
that combines the POD method, finite-element analysis to 
obtain the stress response of structural measuring points. It 
provides an overview of the fundamental principles of the 
eigen orthogonal decomposition method and explores the 
research on structural response reconstruction. In addition, it 
presents a sensor layout scheme and response reconstruction 
method utilizing the fusion force method and finite-element 
method. The effectiveness of the proposed method is vali-
dated by numerical simulations and laboratory tests, yielding 
the following key findings: 

1.	 The proposed method underwent verification through 
numerical simulations, considering various factors such 
as vehicle speed, weight, and complex loads. The results 
demonstrate the accurate reconstruction of measuring 
point responses, highlighting the high precision of this 
method.

2.	 Verification of the proposed method was performed 
by numerical simulations and laboratory tests. Under 
different load conditions, including standard, vehicle 
speed, and vehicle weight, the error between the identi-
fied measuring point response and the actual response 
remained below 3%. This robust and effective method 
exhibits strong performance.

3.	 A flexible sensor layout scheme is introduced that can 
adapt to different scenarios, accommodating both con-
venient and challenging sensor arrangements within 
the target identification area. By employing a longitu-
dinal measurement point mode and a time function, it 
becomes possible to separately identify a main beam 
measurement point and combine multiple main beams 
to assess response measurements in both vertical and 
horizontal bridge areas.

Fig. 18   The error for different 
working conditions
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4.	 The laboratory experiment has been conducted using 
an isometric scaling model of the bridge, analyzing 
measurement data obtained from long-scale FBG sen-
sors. The test results indicate that the maximum error 
between the identified point and its actual response time 
curve is less than 5%. Although the test point errors were 
slightly higher compared to the numerical simulations, 
it still remained within acceptable limits.
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