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Abstract
Introduction  Convolutional neural network (CNN) has been widely used in bearing fault diagnosis and many satisfying 
results have been reported. As a typical CNN network, the LeNet-5 was improved from three aspects to further enhance its 
diagnosis performance in this paper.
Methods  Firstly, eight hyperparameters were optimized by particle swarm optimization within the predefined discrete 
parameter value sets. Secondly, envelope spectrum and feature vector were adopted as replacements for the original signal 
input. The feature vector consisted of 157 manually extracted features from time and frequency domains. Thirdly, support 
vector machine, decision tree and random forest were applied to replace the default fully connected layer. An overall evalu-
ation method was also proposed in terms of classification accuracy, stability, robustness to noise and computing efficiency.
Experiments  Based on the Case Western Reserve University bearing dataset, two experimental cases were designed from 
four different working loads. In case 1, the training and test datasets of each load were individually collected from the cor-
responding working load. Based on the overall evaluation method introduced, the optimal modification methods were iden-
tified in terms of hyperparameters, input type and fully connected layers. The contributions of modification to CNN in the 
performance improvement were quantitively discussed and compared. In case 2, the optimized CNN was trained with the 
dataset from one working load and tested with the other three different working loads, which resulted in a sharp reduction 
of accuracy. To address this problem, multi-convolutional layer, data augmentation and signal concatenation were proposed 
and adopted individually as well as collaboratively to improve the CNN’s ability in the working condition adaptation.
Conclusion  Experimental results confirmed that all the three approaches effectively enhanced the CNN’s performance. The 
combination of two or three approaches has better performance than the individual one.

Keywords  Bearing fault diagnosis · Convolutional neural network · Data augmentation · Signal concatenation · Working 
condition adaptation

Introduction

With the rapid development of modern industries, there is an 
increasing demand for higher safety and reliability of intel-
ligence and integration mechanical systems. The prognostic 
and health management (PHM) technology, as a promising 
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approach to meet the above demands, has been receiving 
increasing research attention in recent years [1]. As a fun-
damental support component in rotating machines, the per-
formance of rolling bearings directly affects the reliability 
of equipment. Its failures may result in huge damage, eco-
nomic loss and human safety. Therefore, reliable fault diag-
nosis and predictive maintenance of bearings are meaningful 
and practical. The machine learning and deep learning [2, 3] 
as typical data-driven methods for effective intelligent fault 
diagnosis have been established and attracting more and more 
attention from both academia and industry. Among the vari-
ous deep learning networks, CNN has been the most used 
due to its powerful ability in feature extraction and nonlinear 
mapping, many satisfying results have been achieved [4, 5]. 
Most published researches only focus on the performance 
improvement [6, 7], but very few works study the impacts of 
hyperparameters, feature extraction or structure modification. 
To study these impacts is the first task of this research. To 
date, most published works for the CNN-based fault diag-
nosis are based on such prerequisite that the training and 
test datasets are from the same distribution. For example, the 
training and test datasets are required to come from the same 
bearing test bench under the same working condition [8, 9]. 
If the test dataset does not appear in the training phase, the 
CNN’s performance on test dataset is usually sharply reduced 
[10]. However, in practical industrial applications, CNN cer-
tainly has to deal with the measurement data that has never 
appeared in the training process [11]. For example, a bearing 
test bench usually works under various conditions and prob-
ably even under a transient cycle [12, 13]. Only limited data 
under certain conditions are available in the training process. 
Therefore, when trained with the data from one condition but 
tested under other different conditions, how to guarantee the 
CNN’s performance has become a hurdle. This defines the 
second motivation for this research.

To address the two research gaps mentioned above, the 
LeNet-5 is chosen as a CNN benchmark in this study. The 
influence of hyperparameter, input and fully connected layer 
on the performance of CNN is discussed, and the optimal 
modifications from these three aspects are identified. Firstly, 
the particle swarm optimization (PSO) is applied to optimize 
the hyperparameter of CNN. Secondly, the different features 
from both time and frequency domains are extracted and fed 
into CNN rather than the commonly used original signal. 
Thirdly, the fully connected layer is replaced by machine 
learning methods to further improve the CNN’s accuracy. 
An overall evaluation method is proposed to determine the 
best modification in terms of classification accuracy, sta-
bility, robustness to noise and computing efficiency. The 
optimized CNN is compared with the traditional one. With 
respect to the working condition adaptation, three differ-
ent methods, namely the multi-convolutional layers, data 
augmentation and signal concatenation, are proposed to 

enhance the CNN’s performance. These three approaches 
are explored individually as well as collaboratively, and their 
performances are compared and discussed in details. The 
experimental data from the Case Western Reserve Univer-
sity is used as the data source. Validation results confirm the 
effectiveness of the proposed methods.

The remainder of this paper is organized as follows. “Test 
bench” describes the test bench description and data process-
ing. “Methodology of modification” presents the methodology 
of PSO, feature extraction, modification of fully connected 
layer and four indicators for an overall evaluation. “Case 
study and results analysis” validates the modified CNN with 
two design cases. In case 1, the training and test datasets are 
collected from the same working condition, while in case 2, 
the CNN is verified with the test datasets that differ from the 
training one. “Case study and results analysis” introduces the 
proposed methods to solve the problem in the working con-
dition adaptation. “Conclusion” concludes the whole paper.

Test Bench

Experimental Setup

The bearing experimental data used is taken from the 
CWRU bearing dataset center [14]. The test bench shown 
in Fig. 1 comprises of a motor, a torque transducer/encoder, 
a dynamometer, control electronics and test bearings that 
support the motor shaft. Accelerometers are attached to the 
housing to collect the vibration data. There are three failure 
types (ball fault, inner race fault and outer race fault) aside 
from normal bearing. Each failure type has three different 
fault diameters (0.007 in., 0.014 in. and 0.021 in.) and four 
different load states [0 HP (horsepower), 1 HP, 2 HP and 3 
HP]. There are totally 10 types of different bearing condi-
tions. The drive end fault data with a sampling frequency of 
12 kHz is used to validate the proposed CNN described in 
the following text.

Fig. 1   CWRU bearing test bench [14]
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Data Processing

The whole dataset needs to be rescaled into the range of 
[− 1, 1] and then split into small frames. Each frame is taken 
as a sample. Due to the limited data provided, the dataset is 
divided with overlap [15]. Supposed the total length of the 
original signal is L, the length of each small frame is l and 
the shift between two data frames is � , then the number of 
data frames n can be computed as follows:

In this work, l, � are 4096 and 500 respectively. L differs 
from dataset to dataset. The approach is illustrated in Fig. 2. 
Subsequently, all the samples are split into the training and 
test datasets with a ratio of 7:3. The size of the training and 
test datasets under each label is summarized in Table 1.

Methodology of Modification

As outlined in Fig. 3, the CNN modifications are achieved 
from three approaches. Firstly, eight hyperparameters are opti-
mized by PSO within the predefined discrete value sets. Then, 
three kinds of input (original signal, envelope spectrum and 
feature vector) are fed into the CNN individually, and their 
performances are compared to each other. Finally, the default 
fully connected layer in the CNN are replaced by the machine 
learning methods that have stronger ability in classification. 
The optimal modifications in each step are identified and then 
combined to build an optimal CNN structure, which is further 

(1)n = floor
[(

L − �

l

)

+ 1
]

.
Fig. 2   Data segmentation with overlap

Table 1   Bearing data description

Bearing 
condition

Number 
of 
samples

Fault size Training set Test set Labels

Normal 2401 – 1689 712 0
Ball fault 2822 0.007 629 309 1

0.014 654 288 2
0.021 599 243 3

Inner race fault 2822 0.007 664 278 4
0.014 646 294 5
0.021 662 278 6

Outer race 
fault

2589 0.007 660 281 7
0.014 635 306 8
0.021 505 202 9

Improvement in 
input

Improvement in 
hyperparameters

Improvement in 
fully connected layer

Hyperparameters:
dropout rate, learning rate, kernel 

size, filter numbers, batch size, 

density layer

PSO algorithm:

SVM

Decision tree

Random forest

Original signal

Frequency spectrum

Feature vector
• 13 time features

• 144 frequency features
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Fig. 3   Improvements of original LeNet-5 from three approaches
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verified under two cases for the bearing fault diagnosis. The 
modification details are described in the following subsections.

Introduction of LeNet‑5

LeNet-5 is one of the most frequently used CNN structures and 
has achieved great success in the automatic handwritten digit 
classification [16]. It consists of two sets of convolutional and 
pooling layers, one flattening convolutional layer, two fully-
connected layers and one softmax classifier [17]. As shown in 
Fig. 4, the LeNet-5 structure is slightly modified and adopted 
as a representative of CNN in this study.

Particle Swarm Optimization

Besides the network structure, the hyperparameters have 
much influence on the CNN’s performance. Therefore, PSO 
is used to find the best set of hyperparameters like dropout 
rate, learning rate, kernel size, number of filters, batch size 
and size of density layer. In the PSO algorithm, N individual 
particles search within a D-dimensional space to find the best 
solution to fitness function. Each particle has its own velocity 
and position that are updated after each iteration. The update of 
velocity and position of each particle i at the (k + 1)th iteration 
is influenced by the global best position of all particles gbest 
as well as the best position of each particle pbest . This can be 
described by the following equations [18]:

where k denotes the number of iteration, vij the velocity of 
the ith particle in the jth dimension, xij the position of the ith 
particle in the jth dimension. pbest is an i × j matrix, whilst 

(2)
vij(k + 1) =�vij(k) + c1r1

[

pbest
ij

(k) − xij(k)
]

+ c2r2

[

gbest
j

(k) − xij(k)
]

,

(3)xij(k + 1) = xij(k) + vij(k + 1),

pbest
ij

 is the best position of the ith particle in the jth 
dimension. gbest is a j-dimensional vector, while gbest

j
 is the 

global best position of all particles in the jth dimension. � 
is the inertia coefficient, c1 and c2 are the learning factors, r1 
and r2 are random numbers generated from the uniform 
distribution in range of [0, 1] [19].

Eight hyperparameters in CNN are optimized by the PSO 
algorithm. The fitness function is set as the accuracy in test 
set, with the target to find the maximum of fitness function. 
To achieve a trade-off between accuracy and efficiency for 
optimization, the search space of each hyperparameter is 
restricted to a much smaller but reasonable range based on 
both theory and experience [20, 21], as demonstrated in 
Table 2. The PSO parameters are summarized in Table 3.

Feature Extraction

Although CNN has quite strong ability in extracting hidden 
features from data [22], many researchers still prefer to 
process the input before fed into CNN, enabling CNN to 
achieve higher performance [23–25]. For comparison 
with the original input, two kinds of extracted feature are 
proposed. The first one is the envelope spectrum, the other 
one is the feature vector consisting of 157 features extracted 
from time and frequency domains. The detailed process is 
presented hereafter.

Envelop Spectrum

Concerning features in frequency domain for the fault 
diagnosis, the envelope spectrum has been verified to be 
highly effective [26]. Theoretically, two steps are neces-
sary to get this for the input signal: first is to obtain the 
signal envelop and then to conduct the frequency trans-
formation. The Hilbert transform is adopted to capture 
the signal envelope. To this end, the input is decomposed 
by the empirical mode decomposition (EMD) into a finite 

Fig. 4   LeNet-5 structure
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set of small components, namely intrinsic mode functions 
(IMFs). The IMFs are the complete and orthogonal basis 
of initial signal [27, 28]. Once they are obtained, the ana-
lytic signal zi(t) of the ith IMF component is acquired [27]:

where ci(t) is the ith component of IMF and H
[

ci(t)
]

 is the 
Hilbert transform:

After that, the envelope of signal X(t) can be obtained by 
computing the absolute value of zi(t) [27]:

Besides the envelope calculation, the EMD is applied for 
denoising. Generally, the measurement noise mainly comes 
from the high frequency, and the fault characteristic spec-
trum in the low-frequency band is sufficient. Therefore, the 
first component IMF1 is ignored. The other components are 
summed up to achieve the noise reduction. Figure 5 shows 
the IMFs of the vibration signal measured from a bearing 
with an inner race fault.

Once the high-frequency noise has been filtered and 
the signal envelop has been captured, the Fourier trans-
form is applied to calculate the spectrum. Figure 6 shows 
the Fourier transform results, with (a) for the original 

(4)zi(t) = ci(t) + jH
[

ci(t)
]

,

(5)H
[

ci(t)
]

=
1

pi

+∞
∏

−∞

ci(t)

t − �
d�.

(6)ai(t) =

√

c2
i
(t) + H2(ci(t)).

vibration signal without any signal processing and (b) 
for the envelop signal obtained by the EMD and Hilbert 
transform. It can be seen that the signal after the EMD and 

Table 2   Hyperparameter range of CNN

Hyperparameters Range

Drop rate 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5,0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85
Learning rate 0.0001, 0.00015, 0.0002, 0.00025, 0.0003, 0.00035, 0.0004, 0.00045, 0.0005

0.00055,0.0006, 0.00065, 0.0007, 0.00075, 0.0008, 0.00085
Kernel size of the 1st layer 3× 3, 5 × 5, 7 ×7
Kernel size of the 2nd layer 3× 3, 5 × 5, 7 ×7
Number of filters in the 1st layer 16, 32, 64, 128, 256
Number of filters in the 2nd layer 16, 32, 64, 128, 256
Batch size 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125
Dense layer (flatten) 128, 256, 512, 1024, 2048

Table 3   Parameters of PSO Parameter Value

Number of particles 20
c1 0.4
c2 0.6
� 0.2
Number of iterations 30

Fig. 5   IMFs of vibration signal of a bearing with inner race fault

Fig. 6   a Frequency spectrum of original signal, b frequency spectrum 
of envelope signal
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Hilbert transform contains less high-frequency compo-
nents. This indicates that the high-frequency components 
have been significantly reduced by the EMD, while the 
characteristic frequencies of fault bearings are kept. The 
spectrum in Fig. 6b is the so-called envelop spectrum and 
will be used as a kind of input.

Feature Vector

Though the envelope spectrum contains much information for 
fault diagnosis, the input size has to be big enough to guar-
antee the frequency resolution, which inevitably leads to high 
computing load. Thus, the feature vector consisting of manually 
extracted features from time and frequency domains is proposed.

Time‑Domain Features

When a bearing starts to degrade, the time-domain acceleration 
response will gradually present the non-stationary and non-
Gaussian dynamics [29]. Therefore, 13 indexes in total are 
selected from time domain. The kurtosis and skewness 
characterize the non-Gaussian dynamics. The impulse factor, 
crest factor, standard deviation and shape factor identify the 
non-stationary characteristics. A summary of all these features 
and their corresponding formulas is given in Table 4 [30].

Frequency‑Domain Features

In frequency domain, when a defect occurs on bearing, peaks 
will appear at the fault characteristic frequencies (FCFs) of the 
corresponding component. For example, a bearing with the 
outer race fault produces the peaks at the ball pass frequency 
of outer race (BPFO) and its harmonics at frequency spectrum. 
The same is for the inner race and ball faults, corresponding 
to the ball pass frequency of inner race (BPFI) and the ball 
spin frequency (BSF), respectively. These FCFs contain much 
information of bearing condition and therefore are taken to 
extract the frequency-domain features. The theoretical FCFs 
can be calculated as following [31]:

where f is the shaft rotation frequency. n, d, D and � are four 
geometric parameters of bearing, and their specifications are 
detailed in Table 5.

(7)BSF =
Df

d

[

1 −
(

d

D
cos �

)2
]

,

(8)BPFI =
nf

2

(

1 +
d

D
cos �

)

,

(9)BPFO =
nf

2

(

1 −
d

D
cos �

)

,

Figure 7 gives an example of BSF, BPFO and BPFI 
from the first to sixth order. The characteristic frequen-
cies can be affected by many factors such as the shaft 
speed, external load, friction coefficient, raceway groove 
curvature and defect size [32–34]. Therefore, it is often 
the case that there exists bias between the theoretical 
and actual FCFs (BPFO, BPFI, BSF). In addition, side-
bands will inevitably appear in the acceleration spectrum 
[35]. For example, for the ball fault, peaks will occur at 
k × fBSF , k × fFTF , k × fBSF ± j × fFTF , where j, k = 1, 2, ...N  , 
fBSF stands for the FCF of ball fault, and fFTF means the 
fundamental train frequency [36]. This also explains 
the peaks before the first order of BSF in Fig. 7a. Even 
worse, some harmonics of the FCFs influenced by modu-
lation of other vibrations may not be detected in the test 
bench [33]. Thus, to ensure the FCFs included into the 
frequency-domain features, 8 amplitude values around 
the theoretical FCFs, as shown in Fig. 8, are selected for 
each order, and the FCFs from the first to sixth order are 

Table 4   Time-domain features

Feature Formulation

Mean 𝜇̂ =
1

N

∑N

i=1
X(i)

Standard deviation �

1

N−1

∑N

i=1
(X(i) − 𝜇̂)2

�
1

2

RMS �

1

N

∑N

i=1
[X(i)]2

�
1

2

Skewness 1

N

∑N

i=1

�

X(i)−𝜇̂

𝜎̂

�3

Kurtosis 1

N

∑N

i=1

�

X(i)−𝜇̂

𝜎̂

�3

Crest factor max |X|

RMS

Impulse factor max �X�
1

N

∑N

i=1
�X(i)�

Shape factor RMS
1

N

∑N

i=1
�X(i)�

Median
amplitude 

(

N+1

2

)

Range max(X) −min(X)

Variance 1

N−1

∑N

i=1
(X(i) − 𝜇̂)2

Maximum max(X)

Minimum min(X)

Table 5   Parameter specifications for ball bearing

Number of 
rolling elements 
(n)

Ball diameter 
(d)

Pitch diameter 
(D)

Initial contact 
angle ( �)

9 0.3126 in. 1.537 in. 0◦
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considered. This brings 48 amplitude values (8 values for 
each order from 1st to 6th) for each FCF. In this paper, 3 

FCFs are considered (BPFI, BPFO, BSF), which brings 
144 frequency-domain features in total.

Feature Vector Construction

After the manually extracted features from time and 
frequency domains are determined, the next step is to 
build a feature vector. It consists of 157 elements as 
x =

[

x1, x2,… , xN
]

 . The definition of each element is listed 
in Table 6.

Modification of Fully Connected Layer

The fully connected layer in CNN is actually a mere 
classifier which outputs a probability for each label. 
Regarding classification, there are many other preferable 
machine learning algorithms like SVM and decision tree. 
Thus, it may be reasonable to replace the fully connected 
layer with other more promising methods. In this work, the 
fully connected layer is replaced by SVM, decision tree and 
random forest to investigate the impact of different classifiers 
on the accuracy of the bearing fault classification.

Definition of Four Indicators

In most published researches, only the algorithm accuracy 
have been considered, while the performance in other aspects 
have been ignored [37–39]. Apart from accuracy, a good algo-
rithm should also perform stably and robustly, which means 
stable results under different measurements and keeping stable 
enough when noise is added. Computing efficiency should also 
be addressed. Therefore, accuracy, stability, robustness and 

Fig. 7   Illustration of a BSF, b BPFO and c BPFI

Fig. 8   Process to obtain frequency-domain features in feature vector

Table 6   Feature vector description

Number Feature Number Feature

1 Mean 38–45 2nd BPFI
2 Standard deviation 46–53 2nd BPFO
3 Skewness 54–61 2nd BSF
4 Kurtosis 62–69 3rd BPFI
5 Max 70–77 3rd BPFO
6 Min 78–85 3rd BSF
7 Range 86–93 4th BPFI
8 Median 94–101 4th BPFO
9 Variance 102–109 4th BSF
10 RMS 110–117 5th BPFOI
11 Impulse factor 118–125 5th BPFO
12 Crest factor 126–133 5th BSF
13 Shape factor 134–141 6th BPFI
14–21 1st BPFI 142–149 6th BPFO
22–29 1st BPFO 150–157 6th BSF
30–37 1st BSF
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efficiency as four indicators are first proposed to evaluate the 
CNN performance. Their definitions are introduced as follows.

•	 Accuracy The accuracy under each time is defined as the 
percentage of samples that are correctly classified. CNN 
runs N times, the final accuracy is defined as the average 
accuracy under N times of simulations as follows: 

 where yi is the number of correctly classified samples, 
L is the number of the whole samples, and N is the times 
of simulation. The values of L under each label are 
summarized in Table 1. Without loss of generality, N is 
chosen as 20 in this study.

•	 Stability The stability is defined as the standard deviation 
of accuracy under the N times of simulation, with the 
formulation as follows: 

•	 Robustness The robustness is proposed to evaluate the 
CNN’s performance under noise. It is characterized by the 
accuracy when 20 dB signal-to-noise ratio (SNR) noise 
is added into the input and calculated by the following 
equation: 

 where Y ′

i
 is the accuracy of the i-th simulation under 20 

dB SNR noise.
•	 Efficiency The consumed time Ti for a simulation is defined 

as the interval from the beginning of training to the end 
of validation. The efficiency is defined as the average 
consumed time of N simulations: 

 In our research, the algorithm is implemented at the 
Amazon Web Service platform with p2.xlarge instance.

Case Study and Result Analysis

In this section, two cases are designed to validate the 
modified CNN. In case 1, the training and test datasets 
come individually from the same distribution for all the four 

(10)Accuracy =

∑N

i=1
Yi

N
,

(11)Yi =
yi

L
,

(12)Stability =

�

∑N

i=1

�

Yi − Accuracy
�2

N − 1
.

(13)Robustness =

∑N

i=1
Y

�

i

N
,

(14)Efficiency =

∑N

i=1
Ti

N
,

working loads. The optimal modifications are determined in 
terms of hyperparameters, input and fully connected layer. 
In case 2, the optimized CNN is further verified under the 
working condition adaptation scenario, where the CNN is 
trained with the dataset from one working load and then 
tested with the datasets from the other three different 
working loads. Afterward, three methods are proposed to 
enhance the CNN’s adaptation performance across different 
working conditions.

Case 1: Training and Test Datasets from the Same 
Working Load

Results of Three Modifications for CNN

Hyperparameters Optimization

As discussed above, the hyperparameters of CNN are deter-
mined by PSO. One thing that must be mentioned is that 
the optimization in this study is carried out in the order of 
input, hyperparameters, and fully connected layer. When 
optimizing the hyperparameters, the input type is fixed as 
the envelope spectrum. Figure 9 shows the optimization pro-
cess of PSO over 30 iterations. It can be found that the PSO 
almost converges to the maximum accuracy after only five 
iterations, and the CNN’s accuracy on fault classification 
increases from 98.9 to 99.81%. Table 7 shows the optimized 
hyperparameters that are used in CNN for the further modi-
fication exploration.

Comparison of the Three Kinds of Input Data

To study the impact of manual feature extraction on the per-
formance of bearing fault classification, the CNN is trained 
with three kinds of input data: (1) original signal, (2) enve-
lope spectrum and (3) feature vector extracted from time 
and frequency domains. CNN with each kind of input data 

Fig. 9   Fitness value of each iteration
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is trained for 20 times. Figure 10 shows the training accu-
racy and loss. As seen, the training accuracy of both the 
envelope spectrum and the feature vector need 90 steps to 
reach 100% for the first time and is then consistently around 
100% after 100 steps. On the contrary, for CNN with the 
original signal as input, 250 steps and 360 steps are needed, 
respectively. This confirms that the CNN with the original 
signal as input has much lower training speed and needs 
much more steps to achieve the same results. When CNN is 
fed with the envelope spectrum and feature vector, despite 
the difference in training speed, the final training accuracy 
and loss are almost the same.

Figure 11 shows the accuracy boxplot of three differ-
ent input data types for complete comparison. It is obvious 
that the envelope spectrum signal has a more concentrated 
25%-75% range and higher mean of accuracy. The CNN 
with the feature vector as input also has quite good results, 
but is slightly lower than that with the envelope spectrum. 
Moreover, both of the proposed input data types have better 
performance than the input of original signal on all the four 
evaluation metrics.

An overall comparison among three input types over 
four evaluation metrics are summarized in Table 8. It can 
be found that CNN with the envelope spectrum as input 
performs the best in accuracy (99.94%) and robustness 
(99.69%), while CNN with the feature vector as input 
shares the best stability (0.04) and training speed (20 (s)). 
By contrast, CNN using the original signal as input shows 
the worst results in all the four indicators. Briefly, according 
to the above analysis, CNN with the envelope spectrum 
achieves the best test accuracy and robustness, the most 
concentrated 25–75% range and the highest median line. 
Therefore, the envelope spectrum is identified as the best 
input type and applied in the further experiments.

Modification for the Fully Connected Layer

To find the best modification candidate for the fully con-
nected layer among SVM, decision tree and random forest, 
the performance of CNN is compared and discussed in this 
subsection. Figure 12 indicates that the replacement of fully 
connected layer by SVM and random forest improves the 
performance of CNN and reaches 100% test accuracy 18 and 
10 times during 20 tests, respectively. The lowest accuracy 
of CNN + SVM and CNN + Random forest reaches up to 
99.96%, but is still higher than the average accuracy of the 
general CNN. Conversely, the decision tree has no positive 
effect on the accuracy of CNN.

Figure 13 indicates the outstanding performance of 
CNN + SVM due to its small 25–75% range and high 
median line. A summary of comparison results for the four 
indicators is presented in Table 9, which also verifies the 
superiority of CNN + SVM over other algorithms in three 
aspects (accuracy: 99.9969%, robustness: 99.02%, stabil-
ity: 0.0097) except training speed. Therefore, it can be 
concluded that replacing the fully connected layer by SVM 
and random forest can improve the CNN’s classification 

Table 7   hyperparameters used in CNN

Hyperparameter Value

Drop rate 0.55
Learning rate 0.0006
Kernel size of the first layer 5×5
Kernel size of the second layer 3×3
Number of filters in the first layer 128
Number of filters in the second layer 256
Batch size 110
Density layer (flatten) 512

Fig. 10   Training accuracy and loss comparison of three different 
input data types

Fig. 11   Boxplot of three different input data types
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performance. SVM is slightly better than random forest in 
all aspects except training speed, which makes SVM the 
best replacement of the softmax classifier.

Overall Validation of the Proposed Model

Based on the above results, a conclusion can be drawn that 
the performance of CNN on the bearing default classifica-
tion can be enhanced after three modifications proposed in 
this work. Therefore, PSO, envelope spectrum signal and 
SVM are integrated into the general CNN. This optimized 
CNN is expressed as CNN + PSO + Spectrum + SVM, 
with the terms behind CNN standing for the combination of 
improvements. To further verify its performance, Gaussian 
noise is added to the signal manually. The SNRs of the new 
data are 5 dB, 10 dB, 15 dB, and 20 dB. As shown in Fig. 14, 
the average accuracy under 20 tests remains nearly the same. 
The distribution is centralized when SNR changes from 20 
to 10 dB, and it is still higher than 99% even when the SNR 
is 5 dB. This indicates the significant robustness, stability 
and accuracy of our method proposed.

Analysis of the Three Modifications for CNN

To further investigate the hidden reasons behind the facts, 
the quantitative comparisons and causal analysis are con-
ducted. Figure 15 demonstrates the average classification 
accuracy of CNN in 20 tests. Over the whole data under 
four different working conditions (0 HP, 1 HP, 2 HP, 3 HP), 
the general CNN has achieved a high accuracy of 98.8027% 

Table 8   Result summary of 
three input data types

Evaluation metric Original signal Envelope spectrum Feature vector

Test set average accuracy 99.25% 99.94% 99.92%
Stability 0.65 0.11 0.04
Robustness 98.90% 99.69% 99.59%
Training speed (s) 143 141 20
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Fig. 12   Accuracy of modification for fully connected layer with enve-
lope spectrum signal
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Fig. 13   Boxplot of four different classifiers

Table 9   Result summary 
of fully connected layer 
modification

Evaluation metric CNN CNN + SVM CNN + decision tree CNN + random forest

Test set average accuracy 99.9436% 99.9969% 99.2965% 99.9843%
Stability 0.11 0.0097 0.24 0.02
Robustness 99.69% 99.92% 99.79% 99.73%
Training speed (s) 143 176 162 164
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in fault classification. The accuracy increases from 98.8027 
to 99.2463% after the hyperparameter optimization, then 
further from 99.2463 to 99.9436% after the use of enve-
lope spectrum as input data. The further use of SVM results 
in only 0.0533% improvement, indicating that the most 
potential way to optimize CNN is first the use of appropri-
ate manually extracted input features and subsequently the 
implementation of hyperparameter optimization.

These results can be well explained by visualization of the 
fully connected layer output as shown in Fig. 16, in which 
each colour represents one bearing fault label. From Fig. 16a, 
b, there is no significant improvement in the boundaries 
between labels. However, the boundaries between every two 
labels in Fig. 16c appear much clearer, with better compact-
ness in one label and separateness between labels.

For simplicity, the optimized CNN expressed as 
CNN+PSO+Spectrum+SVM above is hereafter referred to 
as CNN*.

Case 2: Training Dataset from One Working Load 
and Test Dataset from Other Working Loads

Problem Formulation

According to the above results, the CNN* performs quite 
well in the bearing fault diagnosis. However, the training and 
test datasets are individually collected from one load condi-
tion of four working loads. This means that the training and 
test datasets have the same data distribution. In practice, nev-
ertheless, it is often the case that the test dataset is collected 
from a working condition that is different from that for the 
training dataset. This leads to a crucial problem since the 
training and testing datasets present different distributions. 
To simulate this practical scenario, the optimized CNN* in 
case 1 is trained with dataset from one working load and 
then tested with datasets from the other three working loads 
that have never been used in the training phase. As shown in 
Table 10, there are totally four groups, each group takes data 
from only one working load as training set and data from the 
other three working loads as test sets.

Fig. 14   Results of robustness validation test

Fig. 15   Contributions to CNN’s performance improvement from dif-
ferent modifications

Fig. 16   Visualization of fully 
connected layer: a general 
CNN, b CNN optimized by 
PSO (CNN + PSO) and c CNN 
+ PSO with envelope spectrum 
input (CNN + PSO + spectrum)
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As shown in Table 11, when the CNN* is trained with data 
from one working condition and then transferred directly to the 
other working conditions, the CNN*’s performance reduces 
sharply. Take group 1 as an example, the CNN* achieves an 
accuracy of 100% under load 0. However, when it is applied 
to load 1, load 2 and load 3, the accuracy reduces to 80.13%, 
86.67% and 82.41% respectively. In group 2, when a well-
trained CNN* is transferred directly from load 1 to load 0, the 
accuracy decreases even to 58.63%. The test results indicate that 
the previously optimized CNN* remain the highest accuracy 
in the training phase but is not able to detect the fault correctly 
in the test phase. Considering that the extracted and learned 
features during the training phase tend to overfit the data in one 
working condition, the CNN*’s performance reduction in the 
working condition adaptation can be explained. Therefore, the 
trained CNN* fails to identify more common features shared 
by the data from other various working conditions.

The above results naturally raise a question: how do we 
maintain the performance of CNN* when transferring it 
from one working condition to other working conditions? In 
this paper, this phenomenon is termed as working condition 
adaptation, which has been regarded as an urgent issue to 
be solved before deploying CNN in practical industrial 
applications. In the following, three effective solutions are 
introduced to deal with this problem.

Methodology for Condition Adaptation

Multiple Convolutional Layers (MCL)

In general, the CNN’s ability to extract complex features 
improves as the number of convolutional layers increases. 

Therefore, the CNN optimized in case 1 is initially modified 
by increasing the number of convolutional layers from 2 to 
6. The improved CNN’s structure is presented in Table 12. 
The optimized CNN* is applied in present case 2 study, the 
same PSO, input data type and softmax clasifier as in case 1 
are used for consistent performance comparison.

Data Augmentation (DA)

Data augmentation consists in generating more data based 
on the given limited one, which has been often used for 
image classification to overcome the overfitting problem 
[40]. The most common way is shifting, rotation, rescaling 
or noise addition to the existing data. In this way, not only 
the number, but also the variety of data is increased. As a 
result, the increasing diversity of training set makes it pos-
sible for CNN to have a stronger ability to yield important 
and general features from the provided data. Consequently, 
even though the training and test datasets are collected from 
different working conditions, the CNN will still be able to 
figure out the common features shared by both and make the 
correct predictions. The implementation of data augmen-
tation is detailly explained below. Four data augmentation 

Table 10   Data description for working load adaption

Sub-case Training set Test sets

Group 1 Load 0 Load 1, Load 2, Load 3
Group 2 Load 1 Load 0, Load 2, Load 3
Group 3 Load 2 Load 0, Load 1, Load 3
Group 4 Load 3 Load 0, Load 1, Load 2

Table 11   Results of CNN* 
directly transferred between 
different working conditions

Training set Load 0 Load 1
Training set accuracy 100.00% 100.00%
Test set Load 1 Load 2 Load 3 Load 0 Load 2 Load 3
Test set accuracy 80.13% 86.67% 82.41% 58.63% 83.06% 77.16%
Training set Load 2 Load 3
Training set accuracy 100.00% 100.00%
Test set Load 0 Load 1 Load 3 Load 0 Load 1 Load 2
Test set accuracy 86.33% 96.20% 94.48% 74.27% 75.87% 83.35%

Table 12   CNN modified with MCL

Layer type Kernel size Stride Filters number Padding

Convolutional layer 1 1 × 7 1 × 1 16 Same
Pooling layer 1 1 × 2 1 × 2 16 Same
Convolutional layer 2 1 × 7 1 × 1 32 Same
Pooling layer 2 1 × 2 1 × 2 32 Same
Convolutional layer 3 1 × 5 1 × 1 64 Same
Pooling layer 3 1 × 2 1 × 2 64 Same
Convolutional layer 4 1 × 5 1 × 1 64 Same
Pooling layer 4 1 × 2 1 × 2 64 Same
Convolutional layer 5 1 × 3 1 × 1 64 Same
Pooling layer 5 1 × 2 1 × 2 64 Same
Convolutional layer 6 1 × 3 1 × 1 64 Same
Pooling layer 6 1 × 2 1 × 2 64 Same
Fully connected layer 512 – 1 –
Softmax layer 10 – 1 –
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operators will be defined. After data augmentation, the num-
ber of samples in the new training set will be 20 times larger 
than that in previous one.

•	 Shifting The measurement signals are shifted upward or 
downward, to the left or to the right with some distance. 
Supposed p(x, y) is a point in the two-dimensional space, 
m and n stand for the steps, with which p is shifted along 
the x and y axes, respectively, p′

(

x′, y′
)

 is then the new 
point after shifting: 

 with m ∈ {−250, 0, 250}, n ∈ {−0.2, 0, 0.2} in this 
paper. Figure 17 demonstrates the results of shifting.

•	 Rotation The measurement signals are rotated clockwise 
or counterclockwise around the origin by a certain 
degree. Given a point p(x, y) in the 2-dimensional space 
and � as the rotation angle, the coordinates of the new 
point p′

(

x′, y′
)

 after rotation can be calculated as: 

 with � ∈ {-0.005, -0.01, -0.015, 0.005, 0.01, 0.015} . 
Figure 18 demonstrates the results of rotation.

•	 Noise addition The measurement signals from different 
working conditions contain different noises. Therefore, 
adding noise to the training data obtained from one work-
ing condition is a reasonable way to increase its informa-
tion and generality. In this study, noise is characterized 
by Signal to Noise Ratio (SNR), the value set is defined 
with 3 elements as SNR ∈ {20dB, 15dB, 10dB} . Figure 19 

(15)p�
(

x�, y�
)

= p(x + m, y + n),

(16)
(

x�

y�

)

=

(

cos � − sin �

sin � cos �

)(

x

y

)

,

demonstrates the new signals with different SNR (left) 
and the corresponding noise (right) which is added to the 
original signal.

•	 Rescaling Rescaling is employed to raise the richness 
of measurement data from the perspective of scale. The 
original signal is rescaled by a factor k. It is zoomed out 
when 0 < k < 1 , zoomed in when k > 1 , and unchanged 
when k = 1 . Take p(x, y) as a sequence in the 2-dimen-
sional space, then p′

(

x′, y′
)

 identifies the new point after 
being rescaled. If 0 < k < 1 , then 

 If k > 1 , then 

 In this research, k ∈
{

1

3
,
1

2
, 1, 2, 3

}

 . Figure 20 shows the 
results of rescaled signals.

To sum up, shifting, rotation, noise addition and rescal-
ing are four basic operators defined in this study to raise 
the information richness of signals from different aspects. 
For example, shifting changes the signal position and 
amplitude, rotation and noise addition can modify the sig-
nal shape, while rescaling regenerates signals with different 

(17)x�
i
=x i

k

,

(18)y�
i
=ky i

k

.

(19)x�
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=x�
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= ⋯ = x�
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(20)y�
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=y�
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Fig. 17   Signal after shifting for inner race fault sample
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scales. Figure 21 presents the process of sample generation 
with data augmentation, which mainly includes three steps: 
selecting an operator Qi , defining the parameters for Qi , and 
generating new samples with Qi.

Signal Concatenation (SC)

To further increase the variety of training dataset, signal 
concatenation is proposed. The main idea is to divide the 

original signal into small parts, then all the four data aug-
mentation operators introduced above are applied to each 
small part instead of the whole signal. Finally, the aug-
mented parts are concatenated to form new signal that has 
the same length as the original one. Since each new signal 
contains multiple subparts that are modified with different 
data augmentation operators, its complexity and diversity 
are certainly increased. To well illustrate this method, a 

Fig. 18   Signal after rotation for inner race fault sample

Fig. 19   Noise signal of different SNR for inner race fault sample
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set Q is defined as a collection of four data augmentation 
operators:

(21)Q ∈ {shifting, rotation, noise addition, rescaling}.

As given in Table 13, each operator has the same value set as 
defined in previous section. Algorithm 1 gives the algorithm 
implementation process. Firstly, the size of new training set 
needs to be defined. For example, the number of samples in 
the new training set is j times larger than that of the original 
one. Secondly, the original sample is divided into l subparts. 
For each subpart, an operator is randomly chosen from Q and 
the corresponding parameters of the chosen operator are also 
randomly determined. Thirdly, the chosen operators with the 
corresponding parameters are implemented in the l subparts. 
Finally, the augmented subparts are concatenated to form a 
new signal that has the same length as the original one.

Fig. 20   Signals after rescaling for inner race fault sample

Fig. 21   The flowchart of data augmentation

Table 13   Operator and value set

Operator set Q Value set

Shifting m ∈ {−250, 0, 250}, n ∈ {−0.2, 0, 0.2}

Rotation � ∈ {−0.005,−0.01,−0.015, 0.005, 0.01, 0.015}

Noise addition SNR ∈ {20dB, 15dB, 10dB}
Rescaling

k ∈
{

1

3
,
1

2
, 1, 2, 3

}
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In this work, j is defined as 20 and l as 4. An example 
is given below to illustrate the concatenation process and 
results. The original signal is shown in Fig. 22, and the 5 
new signals generated by means of data augmentation and 
signal concatenation are presented in Fig. 23. The involved 
operators and corresponding parameters are summarized in 
Table 14.

Results of Working Condition Adaption

In this section, three methods proposed above are applied 
individually as well as collaboratively to improve the 
CNN*’s performance in working condition adaptation. 
There are totally four modified CNNs: CNN* + MCL, 
CNN* + DA, CNN* + MCL + DA and CNN* + MCL + 

DA + SC. The terms behind CNN* stand for the improve-
ment approach. All of the four improved CNN*s are trained 
with the dataset from one load and then tested with the data-
sets from the other three different loads. The fault classifica-
tion accuracies under the CNN*s are compared with each 
other, especially with the CNN*. As detailed in Table 16, 
when the CNN* + MCL is trained with the dataset from 
load 1 and transferred to load 0, load 2 and load 3 directly, 
the accuracy increases from 58.63 to 95.11%, from 83.06 
to 100% and from 77.16 to 98.41%, respectively. However, 
the improvement percentages under load 3 and load 1 as 
the training datasets are not so significant. When CNN* 
+ MCL is transferred from load 2 to load 0, the accuracy 
even drops from 86.33 to 78.39%. When DA is additionally 

Table 14   Operator series of 
five generated samples based on 
signal concatenation

New sample First part Second part Third part Fourth part

1 Original signal Noise SNR 20 dB Rotation 0.015 0.2 downward
2 Rotation 0.005 Rescale × 3 Noise SNR 15 dB 0.2 up 250 right
3 Rotation −0.01 0.2 down 250 left Rescale × 1/2 Noise SNR 10 dB
4 Rescale × 2 Rotation 0.01 0.2 upwards Rotation −0.005
5 0.2 up 250 left Rotation −0.015 0.2 down 250 right Rescale × 1/3

Fig. 22   Original signal divided into four parts for inner race fault sample
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applied, the performance of transfer learning under all the 
four working loads is improved. Accuracies under load 1, 
load 2 and load 3 are higher than 90%, while the accuracy 
under load 0 is still a little bit low. CNN* + MCL + DA 
performs better than CNN*, CNN* + MCL and CNN* + 
DA under all 12 working condition adaptation tasks, which 
means that MCL + DA is a better solution than individual 

MCL or DA to the CNN*’s working condition adaptation 
problem. When compared with CNN* + MCL + DA, the 
last variant CNN* + MCL + DA + SC performs a little bit 
worse but still much better than CNN* + MCL and CNN* 
+ DA. This confirms that all three proposed methods (MCL, 
DA and SC) have positive effect to improve the CNN*’s 
performance in the working condition adaptation, while the 

Fig. 23   Five generated samples based on signal concatenation for inner race fault sample
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Fig. 24   Comparison of condition adaptation results

Table 15   Average classification 
accuracy comparison of 
different methods

Method Load 0 (%) Load 1 (%) Load 2 (%) Load 3 (%) Overall (%)

CNN* 83.07 72.95 92.33 77.83 81.55
CNN*+MCL 89.29 97.84 91.44 83.88 90.61
CNN*+DA 89.78 97.59 96.02 96.76 95.03
CNN*+MCL+DA 96.40 99.78 97.36 95.82 97.34
CNN*+MCL+DA+SC 94.01 99.41 94.67 91.48 94.89



4092	 Journal of Vibration Engineering & Technologies (2024) 12:4075–4095

1 3

combination of different methods should be carefully tackled 
with. Figure 24 gives a more intuitive comparison among 
CNN*, CNN* + MCL + DA and CNN* + MCL + DA + 
SC on the condition adaptation performance within every 
two different working loads.

Analysis of Working Condition Adaption

Table 15 presents the overall average accuracy. It is only 
81.55% when CNN* is directly transferred from one work-
ing condition to the other three different working conditions. 
When MCL, DA, MCL + DA and MCL + DA + SC are 
integrated to CNN* on training data, they lead to signifi-
cant improvements. Actually, regarding overall classification 
accuracy under four working loads, an individual combina-
tion of MCL and DA with CNN* already yields an accuracy 

improvement percentage of 9.06% and 13.48%, respectively. 
The combination of two or three improvement methods with 
CNN* performs even better. The results confirm that the 
combination of MCL + DA achieves the highest accuracy 
(97.34%), which means the best way to improve the CNN*’s 
working condition adaptation performance is to add more 
convolutional layers and augment the training data based 
on the data augmentation operators (shifting, rotation, noise 
and rescaling).

As to the reason why CNN* + MCL + DA + SC does 
not perform better than CNN* + MCL + DA as expected, 
it can be explained from two aspects (Table 16). Firstly, in 
the signal concatenation, a complete and continuous accel-
eration sample is divided into many short subparts, and the 
augmentation operators for each part are randomly selected. 
This may bring discontinuity, long zero-padding and even 
abrupt peaks in the new generated signals, which can be seen 

Table 16   Transfer results under different working conditions

Training set Load 0 Load 1

Test set Load 1 (%) Load 2 (%) Load 3 (%) Load 0 (%) Load 2 (%) Load 3 (%)

CNN* 80.13 86.67 82.41 58.63 83.06 77.16
CNN* + MCL 90.89 92.36 84.62 95.11 100.00 98.41
CNN* + DA 95.35 90.80 83.19 99.15 98.08 95.52
CNN* + MCL+DA 99.93 99.93 89.33 99.88 100.00 99.45
CNN* + MCL + DA + SC 98.41 98.89 84.72 99.50 100.00 98.73

 Training set Load 2 Load 3

Test set Load 0 (%) Load 1 (%) Load 3 (%) Load 0 (%) Load 1 (%) Load 2 (%)

CNN* 86.33 96.20 94.48 74.27 75.87 83.35
CNN* + MCL 78.39 99.19 96.76 81.66 84.72 85.27
CNN* + DA 97.11 98.31 92.63 97.03 95.22 98.02
CNN* + MCL+DA 94.26 98.37 99.45 96.96 90.76 99.74
CNN* + MCL + DA+SC 89.48 95.97 98.57 92.26 88.13 94.05

Table 17   Comparison between CNN* + MCL + DA + SC and CNN + MCL + DA + SC

Training set Load 0 Load 1

Test set Load 1 (%) Load 2 (%) Load 3 (%) Load 0 (%) Load 2 (%) Load 3 (%)

CNN* + MCL + DA + SC 98.41 98.89 84.72 99.50 100.00 98.73
Average 94.01 99.41
CNN*-SVM + MCL + DA + SC 99.97 99.90 90.17 99.50 100.00 99.09
Average 96.68 98.94

 Training set Load 2 Load 3

Test set Load 0 (%) Load 1 (%) Load 3 (%) Load 0 (%) Load 1 (%) Load 2 (%)

CNN* + MCL + DA + SC 89.48 95.97 98.57 92.26 88.13 94.05
Average 94.67 91.48
CNN*-SVM + MCL + DA + SC 94.34 97.79 99.77 96.11 92.94 97.30
Average 97.30 95.45
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from the five generated signals in Fig. 23, especially the fifth 
signal. Secondly, in CNN* + MCL + DA + SC, the default 
fully connected layer in CNN has been replaced by SVM, 
which has much stronger mapping and classification abil-
ity. Consequently, some generated signals from SC, which 
have unnecessary and unimportant local characteristics, may 
also be classified as fault, resulting in the inevitable CNN*’s 
accuracy reduction. Take a look at Table 17, it can be found 
that once SC combined with MCL and DA for data aug-
mentation, CNN* without SVM (expressed as CNN*-SVM) 
performs better than or at least the same as CNN* under 
all condition adaptation cases, which also proves the above 
analysis to some extent.

To further explain the obtained results, the t-Distrib-
uted Stochastic Neighbor Embedding (t-SNE) which is 
a non-linear technique for high-dimension reduction, is 

applied to visualize the fully connected layer of CNN* 
(a), CNN*+MCL+DA (b) and CNN*+MCL+DA+SC (c) 
in Fig. 25. It is obvious that the margins between classes 
become bigger in Fig. 25b and c, which indicates that the 
proposed methods indeed contribute to the improvement of 
classification performance of CNN* in the working condi-
tion adaptation. Additionally, it can be found that CNN* + 
MCL + DA + SC performs better than CNN* + MCL + DA 
in fully connected layer in terms of classifiability, namely the 
in-class compactness and between-class separateness, but 
the final classification accuracy presents opposite results, 
which further confirms our above second explanation.

Last but not least, to validate the proposed method 
with data from other sources, the experimental data from 
Paderborn University (PU) bearing test bench was used. 
Generally, the PU dataset provides bearing measurement 

Fig. 25   Visualization of fully 
connected layer
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data in three categories: normal, inner race failure, and 
outer race failure. According to the damage size, the fail-
ure severity can be further divided into two levels, with 
damage size smaller than 2 mm as level 1 and damage 
size above 2 mm, but smaller than 4.5 mm as level 2 [41]. 
In addition, to keep the acceleration fed into CNN having 
nearly the same sampling frequency as the acceleration 
measurement from the CWRU dataset, a downsampling 
factor of 4 is applied to filter the raw acceleration that is 
collected with an initial sampling frequency of 64 kHz. 
With the PU dataset, transfer learning between two dif-
ferent fault levels was implemented. The structure and 
parameters of the CNN* model for this dataset can be 
found in [42], with the three proposed methods (MCL, 
DA, and SC) in “Methodology for condition adaptation” 
to improve the CNN*’s transfer learning performance. As 
shown in Fig. 26, we can find that under both the transfer 
scenarios from level 1 to level 2 and from level 2 to level 
1, when the CNN* is combined with the proposed meth-
ods, its performance in condition transfer learning can be 
enhanced, which further confirms the effectiveness of the 
proposed methods. Regarding the low values of accuracy, 
it maybe caused by the mismatch between the operator 
parameters and the measurement data from PU dataset. 
Nevertheless, the change tendency is consistent with the 
result obtained from the CWRU dataset.

Conclusion

CNN has been widely used in the bearing fault diagnosis. 
To further enhance its performance, CNN has been 
improved by three aspects. Firstly, eight hyperparameters 
are optimized by the particle swarm optimization. 
Secondly, the normal original signal input is replaced by 
the envelope spectrum and feature vector (157 features 
extracted from time and frequency domain). Finally, the 
fully connected layer is substituted by the SVM, decision 
tree and random forest to improve its classification ability. 
The contributions to the CNN’s performance improvement 
from each modification are quantitively discussed and 
compared. Furthermore, an overall evaluation method is 
introduced in aspects of classification accuracy, stability, 
robustness to noise and computing efficiency. Test 
results have shown that training the CNN model with 
the optimized hyperparameters and envelope spectrum 
as input data can improve its performance. Moreover, 

the proposed method sustains high accuracy under the 
noise condition. However, when the training and test 
datasets are obtained from different working conditions, 
the CNN’s performance cannot be maintained. To 
solve the performance reduction problem, the multi-
convolutional layer (MCL), data augmentation (DA) 
and signal concatenation (SC) have been proposed and 
investigated. Validation results based on experimental 
data have shown that DA has better performance than 
MCL and the combination of two or three approaches has 
better performance than the individual one. As for further 
research, the data augmentation-based signal change 
dynamics and physics across working conditions will be 
explored. Data augmentation on spectrum instead of time-
domain signal will also be addressed in a future work.
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