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Abstract
Purpose: The objective of the present work is to study the disturbances in a rotating microelongated thermoelastic solid 
half-space with two temperature and temperature dependent properties. The problem has been modeled by employing Lord-
Shulman and Green-Lindsay theories to carry out the investigation.
Methods: To explore the impact of inclined mechanical load on microelongated thermoelastic half space, normal mode 
technique has been applied and the analytical expressions for the displacement components, stresses, temperature fields and 
microelongation are obtained.
Results: In order to illustrate the analytical results, the numerical solution is carried out for aluminum epoxy like material. 
Influences of rotation, two temperatures, temperature dependent properties and time on the physical quantities are analyzed 
for Green-Lindsay theory.
Conclusions: Theoretical and numerical results show the significant dependence of physical fields under consideration on 
rotation, elongation parameter, temperature dependent properties, two temperature parameter and inclination angle. Also 
the results of the present study have been compared with the previously published results for validation.

Keywords Microelongation · Rotation · Inclined mechanical load · Two temperature · Temperature dependent properties · 
Normal mode analysis

Introduction

The topic of generalized thermoelasticity has received a 
lot of attention in recent years. The hyperbolic-type heat 
conduction equations used in the generalized thermoe-
lastic theories allow for thermal signals to travel at finite 

speeds. By introducing one relaxation time in the Fourier’s 
law of heat conduction, Lord and Shulman [1] modified the 
Fourier’s law and developed the first generalized theory of 
thermoelasticity referred as LS theory. Later on, by incor-
porating two different relaxation times in the constitutive 
relations, Green and Lindsay [2] generated a new theory 
of thermoelasticity, known as temperature rate dependent 
thermoelasticity and referred as GL theory. On the basis 
of these theories, a lot of research works have been carried 
out. The effects of temperature-dependent thermal conduc-
tivity on thermoelastic interactions inside a medium with 
a spherical cavity under a two-temperature Green-Lindsay 
thermoelasticity theory were analyzed by Kumar et al. [3]. 
Sheoran et al. [4] examined thermo-mechanical interactions 
in a rotating non local transversely isotropic material under 
LS theory. Sadeghi and Kiani [5] reported the generalized 
magneto thermoelastic response of a layer based on both LS 
and GL theories.

The microcontinuum field theory [6, 7] is characterized 
by a fundamental departure from the classical continuum 
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mechanics. In the latter theory, a material particle occupies 
a certain location within a body at a specific time instant, 
regardless of orientation. Micropolar material particles, 
however, can also be oriented. In other words, each micropo-
lar particle’s orientation is determined by an additional 
characteristic called ‘director’. Comparing a material point 
with three deformable directors to a particle in the classical 
theory, there are nine more degrees of freedom. When the 
directors are characterized by only breathing-type microde-
formation, we have microstretch continuum [8, 9] and the 
number of extra degrees of freedom is reduced to four. In 
contrary to other microcontinuum field theories, including 
those for microstretch and micromorphic continua, the direc-
tors are rigid in the theory of micropolar continua [10, 11]. 
Furthermore, when the directors are orthogonal and allow 
for isotropic expansion or contraction with the exception of 
no further rotation, this special case is termed as microelon-
gational theory [12].

A microelongated elastic solid acquires four degrees 
of freedom: three for translation and one for microelonga-
tion. According to the microelongation theory, the mate-
rial particles can execute only volumetric microelongation 
in addition to classical deformation of the medium. Such a 
medium allows its material points to expand and contract 
independently of their translations. Solid-liquid crystals, 
composite materials reinforced with chopped elastic fibers, 
porous media with pores filled with non-viscous fluid or gas 
can be categorized as microelongated medium. The varia-
tion due to periodical heat source response in a functionally 
graded microelongated medium was studied by Shaw and 
Mukhopadhyay [13]. Shaw and Mukhopadhyay [14] inves-
tigated the thermoelastic interactions in the presence of a 
moving heat source in a homogeneous isotropic microelon-
gated material. The plane strain problem in a thermoelastic 
microelongated solid with an underlying infinite non-viscous 
fluid was discussed by Sachdeva and Ailawalia [15]. Using 
generalized theories of thermoelasticity, Othman et al. [16] 
examined the effects of initial stress on a microelongated 
thermoelastic medium when an elastic layer is lying above 
it. Hilal [17] studied dynamical interactions in a rotating 
microelongated non local thermoelastic solid with laser 
pulse. Sharma and Ailawalia [18] focused their attention on 
two-dimensional deformation in a functionally graded ther-
moelastic microelongated medium. Othman et al. [19] stud-
ied the influence of rotation parameter on a two-dimensional 
microelongated thermoelastic medium in the context of LS 
and DPL models.

Chen and Gurtin [20] and Chen et al. [21, 22] con-
structed a theory of heat conduction in deformable bodies, 
which depends on two different temperatures, the conduc-
tive temperature � and the thermodynamical temperature 
� . For time-independent situations, the difference between 
these two temperatures is proportional to the heat supply 

and in the absence of any heat supply, two temperatures 
are identical. For time dependent problems, however, for 
wave propagation problems in particular, two tempera-
tures are generally different, regardless of the presence 
of heat supply. Warren and Chen [23] studied the wave 
propagation in the two-temperature theory of thermoelas-
ticity. Youssef [24] extended this concept of two tempera-
ture to the generalized thermoelasticity and obtained the 
uniqueness theorem. Abouelregal et al. [25] investigated a 
micropolar thermoelasticity theory with a two-phase delay 
of high-order and two-temperatures. This work examined 
the microstructure of rotating materials when their atomic 
or molecular vibrations change under the effects of Hall 
current.

The elastic modulus is an important physical property 
of materials reflecting the elastic deformation capacity of 
the material when subjected to an external load. The mate-
rial properties are assumed to be constant in most of the 
investigations. The physical characteristics of engineering 
materials, however, change with temperature, as is well 
known. At high temperature, Lomakin [26] observed that 
the material characteristics such as modulus of elasticity, 
Poisson’s ratio, coefficient of thermal expansion, thermal 
conductivity and microelongated parameters are no longer 
constant. Ezzat et al. [27] solved a problem of generalized 
thermoelasticity with two relaxation times in an isotropic 
elastic medium with temperature-dependent mechanical 
properties. Othman [28] proposed a mathematical model 
of two-dimensional generalized thermoelasticity with two 
relaxation times in an isotropic medium with the modulus of 
elasticity dependent on the reference temperature and solved 
analytically by applying state-space technique. Aouadi [29] 
examined the effect of temperature dependency of elastic 
modulus on the behavior of two-dimensional solutions in 
micropolar thermoelastic medium. Thermo-mechanical 
interactions in a generalized thermoelastic medium with 
gravity and temperature dependent properties under three 
different theories have been analyzed by Othman et al. [30]. 
In another article, Othman et al. [31] investigated the distur-
bances in a homogeneous isotropic temperature dependent 
magneto-thermo-diffusive medium with fractional order heat 
transfer. Othman and Said [32] investigated the influence 
of magnetic field and temperature dependent properties on 
the plane waves in a fiber-reinforced thermoelastic medium 
in the context of three-phase-lag theory and Green-Naghdi 
theory without energy dissipation. Mamen et al. [33] high-
lighted the influence of porosity on thermodynamic response 
of FGM beams with effective temperature dependent proper-
ties by using a novel integral three variable quasi-3D high 
order shear deformation theory. The effects of temperature-
dependent properties and non local elasticity in the presence 
of a magnetic field in an infinitely long solid conductive 
circular cylinder have been studied by Khader et al. [34].
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It seems more realistic to analyze the thermo-mechani-
cal disturbances in a rotating medium as most of the large 
bodies, such as the earth, the moon and other planets have 
an angular motion. The propagation of waves in a rotating, 
homogeneous isotropic linear elastic medium had been 
investigated by Schoenberg and Censor [35]. By employ-
ing normal mode technique, Othman [36] investigated a two 
dimensional thermo-viscoelasticity problem with one relaxa-
tion time under the effect of rotation. Bijarnia and Singh [37] 
examined the propagation of plane waves in a transversely 
isotropic two temperature generalized thermoelastic solid 
half space with voids and rotation. Abo-Dahab et al. [38] 
discussed the effect of rotation and magnetic field on the 
general model of equations of generalized thermoelasticity 
for a homogeneous isotropic elastic half-space. Bayones and 
Abd-Alla [39] employed the linear theory of thermoelastic-
ity to study the effect of rotation in a thermoelastic half-
space containing heat sources. The normal mode analysis 
has been applied and the resulting equations were written 
in the form of a vector–matrix differential equation, which 
was then solved by eigenvalue approach. Deswal et al. [40] 
studied the reflection and transmission phenomena of plane 
waves between a rotating thermoelastic transversely iso-
tropic solid half space and a fiber-reinforced thermoelastic 
rotating solid half space in the framework of Lord-Shulman 
and Green-Lindsay theories.

Although various investigations do exist to observe the dis-
turbances in a homogeneous, isotropic, rotating thermoelastic 
medium with two temperatures, the work in its present form 
has not been studied by any researcher till now. The novelty of 
the present research resides in the fact that it aimed at inves-
tigation of dependence of various field quantities on micro-
elongation parameter, rotation, temperature dependent prop-
erties, two-temperature parameter, inclination angle and their 
evolution with time. The introduction of these parameters in 
the thermoelastic medium provides a realistic model for these 
studies. Since the present work is carried out for a rotating 
thermoelastic material under the effect of temperature depend-
ent properties and two temperatures, it has many applications 
for earth and other planetary systems where the occurrence of 
these parameters is very common. Problem assumes great sig-
nificance in an earthquake preparation region when we think 
of the variation in particle motion as a possible precursor for 
earthquake prediction.

Governing Equations

Following Kiris and Inan [12] and Youssef [24], the con-
stitutive relations and field equations for a rotating micro-
elongated two temperature thermoelastic solid in the con-
text of LS and GL theories of generalized thermoelasticity 
are given as Constitutive relations:

Equations of motion

Heat conduction equation

The relation between two temperatures

where � , � are Lame’s constants, � is the thermal elastic 
coupling tensor, a0 , �0 , �1 are microelongational constants, 
� is the microelongational thermal expansion, ui are the dis-
placement components, Ψ is microelongational scalar, eij are 
the components of strain, a is the two temperature parameter, 
mk are the components of microelongation vector, K is the 
thermal conductivity, sij are the components of stress tensor, 
s = skk , �ij are the components of microelongational stress 
tensor, � = �kk , � is the thermodynamical temperature, 
� = T − T0 where T is the absolute temperature and T0 
denotes temperature of the medium in its natural state 
assumed to be | 𝜃

T0
| ≪ 1 , � is the conductive temperature, j0 

is microinertia and �0, �1 are the thermal relaxation times, CE 
is the specific heat at constant strain, � is the mass density, 
�ij is the Kronecker delta function.

The displacement equation of motion (5) has two addi-
tional terms: the centripetal acceleration Ω⃗×(Ω⃗×u⃗) due to 
time-varying motion only and the Coriolis acceleration 
2Ω⃗× ̇⃗u because of moving reference frame, where Ω⃗ is 
angular velocity (Schoenberg and Censor [35]).

Moreover, the use of the relaxation times �0, �1 and unifying 
parameter n0 makes the fundamental equations valid for these 
theories of generalized thermoelasticity:

(i) Lord and Shulman’s theory [1]

(1)
�ij = �uk,k�ij + �(ui,j + uj.i)

− �(1 + �0
�

�t
)��ij + �0�ijΨ,

(2)mk = a0Ψ,k,

(3)s − � = �0uk,k + �1Ψ − �
(
1 + �0

�

�t

)
�,

(4)eij =
1

2
(ui,j + uj,i).

(5)𝜎ji,j = 𝜌[üi + (Ω⃗×(Ω⃗×u⃗))i + (2Ω⃗× ̇⃗u)i],

(6)a0Ψ,ii + 𝛾
(
1 + 𝜈0

𝜕

𝜕t

)
𝜃 − 𝜆1Ψ − 𝜆0uj,j =

1

2
𝜌j0Ψ̈.

(7)
K𝜙,ii = 𝜌CE

(
1 + 𝜈1

𝜕

𝜕t

)
�̇�

+ 𝛽
(
1 + n0𝜈1

𝜕

𝜕t

)
T0u̇i,i + 𝛾T0Ψ̇.

(8)� − � = a�,ii ,
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n0 = 1, 𝜈0 = 0, 𝜈1 > 0.
(i) Green and Lindsay’s theory [2]
n0 = 0, 𝜈0 > 𝜈1 > 0.
Our goal is to investigate the impact of the material’s tem-

perature dependency on thermo-mechanical interactions. 
Therefore, one can assume that

where �∗ , �∗ , �∗ , �∗
0
 , �∗

1
 , �∗ , a∗

0
 are constants and f (T0) is 

a given non-dimensional function of reference temperature 
such that f (T0) = (1 − �∗T0) , where �∗ is an empirical mate-
rial constant. In case of temperature independent properties, 
we have f (T0) = 1.

In the aforementioned equations, the superposed dot 
denotes a partial derivative with respect to time, while the 
comma notation indicates a derivative with respect to spatial 
coordinates.

Problem Formulation

In the framework of the unified LS and GL theories, let us con-
sider an infinite microelongated isotropic thermoelastic solid 
with rotation. Introducing the rectangular cartesian coordinate 
system (x, y, z), where the surface of the half-space is repre-
sented by the plane x = 0 and the x−axis is displayed pointing 
vertically downwards into the medium. The surface of the half-
space (x = 0) is acted upon by an inclined mechanical load 
(Fig. 1). The current investigation is only allowed to take place 
in the xy−plane and thus all the physical field quantities will be 
functions of the space variables x, y and time t. The medium 
is assumed to be rotating with an angular velocity Ω⃗ = Ωn̂ , 
where n̂ is a unit vector that represents the direction of rotation.

For a two-dimensional problem in cartesian coordinates x 
and y, the displacement vector u⃗ and angular velocity Ω⃗ will 
have the components:

Keeping in view the expression (9), the stresses arising from 
Eq. (1) in xy−plane can be written as:

(9)
(�,�, �, �0, �1, � , a0)

= (�∗,�∗, �∗, �∗
0
, �∗

1
, �∗, a∗

0
)f (T0),

(10)u⃗ = (u, v, 0), Ω⃗ = (0, 0,Ω).

(11)
�xx = f (T0)[(�

∗ + 2�∗)
�u

�x
+ �∗

�v

�y

− �∗
(
1 + �0

�

�t

)
� + �∗

0
Ψ],

(12)
�yy = f (T0)[�

∗ �u

�x
+ (�∗ + 2�∗)

�v

�y

− �∗
(
1 + �0

�

�t

)
� + �∗

0
Ψ],

Plugging the stress components defined in Eqs. (12), (13) 
into Eq. (5), we obtain

In view of relations (9) and (10) and using summation con-
vention, Eqs. (6) and (7) take the form respectively:

(13)�xy = f (T0)�
∗

(
�u

�y
+

�v

�x

)
.

(14)

f (T0)

[
(�∗ + 2�∗)

�2u

�x2
+ (�∗ + �∗)

�2v

�x�y
+ �∗ �

2u

�y2

]

− f (T0)�
∗
(
1 + �0

�

�t

)
��

�x

+ f (T0)�
∗
0

�Ψ

�x
= �

[
�2u

�t2
− Ω2u − 2Ω

�v

�t

]
,

(15)

f (T0)

[
�∗ �

2v

�x2
+ (�∗ + �∗)

�2u

�x�y
+ (�∗ + 2�∗)

�2v

�y2

]

− f (T0)�
∗
(
1 + �0

�

�t

)
��

�y

+ f (T0)�
∗
0

�Ψ

�y
= �

[
�2u

�t2
− Ω2u + 2Ω

�v

�t

]
.

(16)

f (T0)a
∗
0

(
�2Ψ

�x2
+

�2Ψ

�y2

)

− f (T0)�
∗
(
1 + �0

�

�t

)
� − f (T0)�

∗
1
Ψ − f (T0)�

∗
0(

�u

�x
+

�v

�y

)
=

1

2
�j0

�2Ψ

�t2
,

Fig. 1  Geometry of the problem



4057Journal of Vibration Engineering & Technologies (2024) 12:4053–4074 

1 3

In order to get the non-dimensional governing equations, we 
will make use of the following non-dimensional variables:

where   �∗ =
�CEc

2

1

K
, c2

1
=

�∗+2�∗

�
.

Following Helmholtz decomposition theorem, the relations 
connecting displacement components and potential functions 
in dimensionless form are as:

The usage of dimensionless parameters described in (18), 
the potential functions given by Eq. (19) along with Eqs. (8) 
and (14)-(17), elicit the following connections by dropping 
the prime notation

(17)

K

[
�2�

�x2
+

�2�

�y2

]
= �CE

(
1 + �1

�

�t

)

��

�t
+ f (T0)�

∗T0

(
1 + n0�1

�

�t

)

�

�t

(
�u

�x
+

�v

�y

)
+ f (T0)T0�

∗ �Ψ

�t
.

(18)

(x�, y�, u�, v�) =
�∗

c1
(x, y, u, v),

[t�, �0
�, �1

�] = �∗[t, �0, �1],

�ij
� =

�ij

�c2
1

, �� =
�

T0
, �� =

�

T0
,

Ω� =
Ω

�∗
, Ψ� =

�∗
0

�∗T0
Ψ,

(19)u =
��

�x
+

��

�y
, v =

��

�y
−

��

�x
.

(20)
f (T0)∇

2� −
�2�

�t2
+ Ω2� − 2Ω

��

�t

− A3

(
1 + �0

�

�t

)
(1 − A10∇

2)� + A3Ψ = 0,

(21)
2Ω

��

�t
+ (f (T0) − A1)

�2�

�x2

+ A2

�2�

�y2
−

�2�

�t2
+ Ω2� = 0,

(22)
A4∇

2� − A5

(
1 + �0

�

�t

)
(1 − A10∇

2)�

+ A6

�2Ψ

�t2
− ∇2Ψ + A7Ψ = 0,

(23)

A8

(
1 + n0�1

�

�t

)
�

�t
(∇2�)

+
(
1 + �1

�

�t

)
�

�t
(1 − A10∇

2)� − ∇2�

+ A9

�Ψ

�t
= 0,

where

Solution Methodology

In the current section, the technique of normal mode analysis 
is employed. In this technique, the solution of the various 
physical quantities is divided in terms of normal modes and 
one gets exact solution without any assumed restrictions on 
the physical fields that appear in the governing equations of 
the problem considered. Normal mode analysis considers the 
assumed solution in Fourier transform domain. The whole 
dynamics of a complex system can be described in terms of 
a few generalized coordinates, such as normal modes, which 
is one of the main objectives of the normal mode technique. 
So, the physical variables under consideration can be decom-
posed in terms of normal modes in the following form:

where u∗, v∗, �∗, �∗,�∗ and Ψ∗ are the amplitudes of the phys-
ical quantities, � is the angular frequency, � is the imaginary 
unit and m is the wave number in y−direction.

By owing expression (24), Eqs. (20)-(23) reduce to the 
following equations:

where

A1 =
f (T0)(�

∗ + �∗)

(�∗ + 2�∗)
,A2 =

f (T0)�
∗

(�∗ + 2�∗)
,A3 =

f (T0)�
∗T0

(�∗ + 2�∗)
,

A4 =
�∗
0

2c2
1

a∗
0
�∗T0�

∗2
,A5 =

�∗�∗
0
c2
1

a∗
0
�∗�∗2

,

A6 =
�j0c

2

1

2f (T0)a
∗
0

,A7 =
�∗
1
c2
1

a∗
0
�∗2

,

A8 =
f (T0)�

∗c2
1

K�∗
,A9 =

f (T0)�
∗�∗T0c

2

1

�∗
0
K�∗

,

A10 =
a�∗2

c2
1

.

(24)
[u, v, �, �,�,Ψ](x, y, t)

=
[
u∗, v∗, �∗, �∗,�∗,Ψ∗

]
(x)e(�t+�my),

(25)
(f (T0)D

2 − B1)�
∗ − B2�

∗

+ (B3D
2 − B4)�

∗ + A3Ψ
∗ = 0,

(26)B2�
∗ + (A2D

2 − B5)�
∗ = 0,

(27)
(A4D

2 − B6)�
∗ + (B7D

2 − B8)�
∗

− (D2 − B9)Ψ
∗ = 0,

(28)
(B10D

2 − B11)�
∗ − (B12D

2 − B13)�
∗

+ B14Ψ
∗ = 0,
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The non-trivial solution of the system of Eqs. (25)-(28) satis-
fies the following condition

where

The solution of Eq. (29), which is bounded as x → ∞ , is 
given by

where �i (i = 1, 2, 3, 4) with positive real parts are the char-
acteristic roots of Eq. (29), Mi(m,�) (i = 1, 2, 3, 4) are arbi-
trary constants and H1i,H2i and H3i (i = 1, 2, 3, 4) are the 
coupling parameters directly obtained from Eqs. (25)-(28) as:

D =
�

�x
,B1 = f (T0)m

2 + �2 − Ω2,B2 = 2�Ω,

B3 = A3A10(1 + �0�), B4 = A3(1 + �0�)(1 + A10m
2),

B5 = m2A2 + �2 − Ω2, B6 = m2A4,

B7 = A5A10(1 + �0�), B8 = A5(1 + �0�)(1 + m2A10),

B9 = m2 + A7 + �2A6, B10 = A8�(1 + n0�1�),

B11 = m2B6, B12 = 1 + �A10(1 + �1�),

B13 = m2 + �(1 + �1�)(1 + m2A10), B14 = A9�.

(29)
[
D8 − Y1D

6 + Y2D
4 − Y3D

2 + Y4
]

(�∗(x), �∗(x),�∗(x),Ψ∗(x)) = 0,

Y1 =
X2

X1

, Y2 =
X3

X1

, Y3 =
X4

X1

, Y4 =
X5

X1

,

X1 = B12F1 + F4B10,

X2 = B12F2 + B10F5 + F1G3 + F4G1,

X3 = B12F3 + B10F6 + F1G4 + F2G3 + F5G1 + F4G2,

X4 = F3G3 + F2G4 + F5G2 + F6G1,

X5 = F3G4 + F6G2, F1 = B14E1 − E7B10,

F2 = −E7B11 − E8B10 + E2B14, F3 = B14E3 − E8B11,

F4 = E7B12 + E4B14, F5 = E7B13 + E8B12 + E5B14,

F6 = E8B13 + E6B14, G1 = B11 + B9B10 − B14A4,

G2 = B9B11 − B6B14, G3 = B13 + B9B12 + B7B14,

G4 = B9B13 + B8B14, E1 = f (T0)A2, E2 = A2B1 + f (T0)B5,

E3 = B1B5 + B2

2
, E4 = A2B3, E5 = A2B4 + B3B5,

E6 = B4B5, E7 = A2A3, E8 = A3B5.

(30)

[�∗, �∗,�∗,Ψ∗](x)

=

4∑
i=1

[1,H1i,H2i,H3i]Mi(m,�)e
−�ix,

H1i = −
B2

A2�
2

i
− B5

,H2i =
B10�

4

i
− G1�

2

i
+ G2

B12�
4

i
− G3�

2

i
+ G4

,

H3i =
(B12�

2

i
− B13)H2i − (B10�

2

i
− B11)

B14

.

Using expressions (24) and (30) in Eqs. (19) and (8), we get

where   H4i = −�i + �mH1i, H5i = �m + �iH1i, H6i = [1 − A10(�2i − m2)]H2i.
The usage of non-dimensional quantities given in (18) 

and normal mode analysis defined in (24), converts the stress 
expressions (12)-(13) to the form

where

Application: Inclined Mechanical Load 
on the Surface of half‑Space

We take into account a homogeneous, isotropic rotating 
microelongated thermoelastic half-space with a quiescent 
initial state occupying the region x ≥ 0 . An inclined mechan-
ical load R = (R1,R2, 0) with an angle � , measured from the 
negative x-axis, is applied to the half-space. The applied 
load is divided into two components: a normal component 
R1 = Rcos� and a shear component R2 = Rsin� . The elonga-
tion scalar function can be freely chosen with the boundary 
of the half-space being considered to be isothermal. Math-
ematically, the boundary conditions can be expressed as:

where �1 = e(�t+�my).

Inducing non-dimensional variables given by (18) with 
R� =

R

�c2
1

 and after applying normal mode technique defined 

in (24), the above boundary conditions reduce to

(31)[u∗, v∗, �∗](x) =

4∑
i=1

[H4i,H5i,H6i]Mi(m,�)e
−�ix,

(32)[�∗
xx
, �∗

yy
, �∗

xy
](x) =

4∑
i=1

[L1i, L2i, L3i]Mi(m,�)e
−�ix,

L1i = −f (T0)�iH4i + (A1 − A2)�mH5i − A3(1 + �0�)H6i + A3H3i,

L2i = f (T0)�mH5i − (A1 − A2)�iH4i − A3(1 + �0�)H6i + A3H3i,

L3i = A2(�mH4i − �iH5i).

(33)�xx(0, y, t) = − R1�1(y, t),

(34)�xy(0, y, t) = − R2�1(y, t),

(35)�(0, y, t) =0,

(36)Ψ(0, y, t) =0,

(37)�∗
xx
(x) = − R1,

(38)�∗
xy
(x) = − R2,
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Taking into account the non-dimensional expressions from 
Eqs. (30) and (32), the above mentioned boundary condi-
tions transform into a set of non-homogeneous system of 
four equations, which can be simply written in matrix nota-
tion as follows:

The expressions of parameters Mi (i = 1, 2, 3, 4) can be 
obtained as a result of solving the system of Eqs. (41):

where

Substituting Mi (i = 1, 2, 3, 4) from (42) into expressions 
(30–32) along with (24) to obtain the expressions for field 
quantities i.e. displacement components, temperature distri-
butions, stresses and microelongation for a homogeneous, 
isotropic, rotating microelongated thermoelastic medium, 
one can get

(39)�∗(x) =0,

(40)Ψ∗(x) =0 at x = 0.

(41)

⎡⎢⎢⎢⎣

L11 L12 L13 L14
L31 L32 L33 L34
H21 H22 H23 H24

H31 H32 H33 H34

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

M1

M2

M3

M4

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

−R1

−R2

0

0

⎤⎥⎥⎥⎦
.

(42)M1 =
Δ1

Δ
, M2 =

Δ2

Δ
, M3 =

Δ3

Δ
, M4 =

Δ4

Δ
,

Δ = H21[H32(L13L34 − L14L33) − H33(L12L34 − L14L32)
+ H34(L12L33 − L13L32)]
+ H22[H31(L14L33 − L13L34) + H33(L11L34 − L14L31)
− H34(L11L33 − L13L31)]
+ H23[H31(L12L34 − L14L32) − H32(L11L34 − L14L31)
+ H34(L11L32 − L12L31)]
+ H24[H31(L13L32 − L12L33) − H32(L11L33 − L13L31)
− H33(L11L32 − L12L31)],
Δ1 = H22[H33(L14R2 − L34R1) − H34(L13R2 − L33R1)]
+ H23[H34(L12R2 − L32R1) − H32(L14R2 − L34R1)]
+ H24[H32(L13R2 − L33R1) − H33(L13R2 − L32R1)],
Δ2 = H21[H34(L13R2 − L33R1) − H33(L14R2 − L34R1)]
+ H23[H31(L14R2 − L34R1) − H34(L11R2 − L31R1)]
+ H24[H33(L11R2 − L31R1) − H31(L13R2 − L33R1)],
Δ3 = H21[H32(L14R2 − L34R1) − H34(L12R2 − L32R1)]
+ H22[H34(L11R2 − L31R1) − H31(L14R2 − L34R1)]
+ H24[H31(L12R2 − L32R1) − H32(L11R2 − L31R1)],
Δ4 = H21[H33(L12R2 − L32R1) − H32(L13R2 − L33R1)]
+ H22[H31(L13R2 − L33R1) − H33(L11R2 − L31R1)]
+ H23[H32(L11R2 − L31R1) − H31(L12R2 − L32R1)].

Special cases

Ignoring rotation effect

In this situation, setting the angular velocity to zero i.e. Ω = 0 
into the equation of motion to get a different set of equations 
from (25) and (26). Thus the set of equations analogous to 
Eqs. (25–28) provide

Then the corresponding expressions for displacement com-
ponents, temperature distributions, stresses and microelon-
gation for a homogeneous isotropic microelongated ther-
moelastic medium are obtained as:

(43)

[�, �,�,Ψ](x, y, t)

=
1

Δ

4∑
i=1

[1,H1i,H2i,H3i]Δie
−�ixe(�t+�my),

(44)

[u, v, �](x, y, t)

=
1

Δ

4∑
i=1

(H4i,H5i,H6i)Δie
−�ixe(�t+�my),

(45)

[
�xx, �yy, �xy

]
(x, y, t)

=
1

Δ

4∑
i=1

(L1i, L2i, L3i)Δie
−�ixe(�t+�my).

(46)
[
D6 − Y �

1
D4 + Y �

2
D2 − Y �

3

]
(�∗(x),�∗(x),Ψ∗(x)) = 0,

(47)
[
A2D

2 − B�
2

]
�∗(x) = 0.

(48)

[�,�,Ψ](x, y, t)

=
1

Δ�

7∑
i=5

[1,H�
1i
,H�

2i
]Δ�

i
e−�ixe(�t+�my),

(49)�(x, y, t) =
Δ�

8

Δ�
e−�8xe(�t+�my),

(50)[u, v](x, y, t) =
1

Δ�

8∑
i=5

(H�
3i
,H�

4i
)Δ�

i
e−�ixe(�t+�my),

(51)�(x, y, t) =
1

Δ�

7∑
i=5

H�
5i
Δ�

i
e−�ixe(�t+�my),
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where above defined �i(i = 5, 6, 7) are the roots of the char-
acteristic Eq. (46) and �8 is the solution of Eq. (47) with 
coefficients

where 

Coupling parameters in this case are given as:

(52)

[
�xx, �yy, �xy

]
(x, y, t)

=
1

Δ�

8∑
i=5

(L�
1i
, L�

2i
, L�

3i
)Δ�

i
e−�ixe(�t+�my),

Y �
1
=

X�
2

X�
1

, Y �
2
=

X�
3

X�
1

,

Y �
3
=

X�
4

X�
1

, B�
2 = m2A2 + �2,

X′
1 = B3E′

1 − f (T0)E′
3,

X′
2 = B3E′

2 + E′
1F

′
3 − f (T0)E′

4 − F′
1E

′
3,

X′
3 = E′

2F
′
3 + E′

1F
′
4 − F′

1E
′
4 − F′

2E
′
3,

X′
4 = F′

4E
′
2 − F′

2E
′
4, E

′
1 = f (T0)B10 − A3B6,

E′
2 = B10B′

1 − A3B7, E′
3 = B3B10 + A3B8, E′

4 = B4B10 + A3B9,

F′
1 = B′

1 + f (T0)B14 − A3A7, F′
2 = B14B′

1 − A3B11,

F′
3 = B4 + B3B14 − A3B12, F′

4 = B4B14 − A3B13,

B′
1 = f (T0)m2 + �2,

Δ′ = H′
15[H

′
26(L

′
17L

′
38 − L′18L

′
37)

− H′
27(L

′
16L

′
38 − L′18L

′
36)]

+ H′
16[H

′
25(L

′
18L

′
37 − L′17L

′
38)

+ H′
27(L

′
15L

′
38 − L′18L

′
35)]

+ H′
17[H

′
25(L

′
16L

′
38 − L′18L

′
36)

− H′
26(L

′
15L

′
38 − L′18L

′
35)],

Δ′
5 = H′

16H
′
27(L

′
18R2 − L′38R1)

− H′
17H

′
26(L

′
18R2 − L′38R1),

Δ′
6 = −H′

15H
′
27(L

′
18R2 − L′38R1)]

+ H′
17H

′
25(L

′
18R2 − L′38R1),

Δ′
7 = H′

15H
′
26(L

′
18R2 − L′38R1)

− H′
16H

′
25(L

′
18R2 − L′38R1),

Δ′
8 = H′

15[H
′
27(L

′
16R2 − L′36R1)

− H′
26(L

′
17R2 − L′37R1)]

+ H′
16[H

′
25(L

′
17R2 − L′37R1) − H′

27(L
′
15R2 − L′35R1)]

+ H′
17[H

′
36(L

′
15R2 − L′35R1) − H′

25(L
′
16R2 − L′36R1)].

Further by ignoring the microelongation effect (i.e. 
�0 = �1 = a0 = � = j0 = 0 ) in this specific case, our results 
match with those obtained by Othman et al. [41] (after 
neglecting gravity field and voids) with an appropriate 
change in the boundary conditions and theory used.

Without Two Temperature

To neglect two temperature effect, it is sufficient to adjust the 
value of two temperature parameter a = 0 . With this modifi-
cation, we get the corresponding analytic expressions for all 
the field variables with one temperature i.e. thermodynami-
cal temperature.

Neglecting Temperature Dependent Properties

In this case, we assume that the material’s constants are 
independent of temperature. It is sufficient to adjust the 
value of �∗ = 0 i.e. f (T0) = 1 in the governing equations 
to obtain the suitable expressions for rotating two tempera-
ture microelogated thermoelastic medium under LS and GL 
theories. If we further consider one temperature case only, 
then the outcomes coincide with those of Othman et al. [42] 
(ignoring DPL model), by making suitable changes in the 
boundary conditions.

Computational Results and Discussion

An analytical numerical procedure is conducted to investigate 
the effects of rotation, two temperatures, temperature depend-
ence of material’s constants and time on the field variables for 
GL theory. We have selected a material that resembles alu-
minum-epoxy for illustrative purposes. The material constants 
are taken as (Shaw and Mukhopadhyay [14]):

H�
1i
= −

E�
1
�2
i
− E�

2

E�
3
�2
i
− E�

4

,

H�
2i
= −

(f (T0)�
2

i
− B�

1
) + (B3�

2

i
− B4)H

�
1i

A3

,

H�
3i
= −�i, H

�
4i
= �m, H�

5i
= [1 − A10(�

2

i
− m2)]H�

1i
,

L�
1i
= −f (T0)�iH

�
3i
+ (A1 − A2)�mH

�
4i

− A3(1 + �0�)H
�
5i
+ A3H

�
2i
,

L�
2i
= f (T0)�mH

�
4i
− (A1 − A2)�iH

�
3i

− A3(1 + �0�)H
�
5i
+ A3H

�
2i
,

L�
3i
= −2�mA2�i, (i = 5, 6, 7), H�

38
= �m, H�

48
= �8,

L�
18

= �m�8[(A1 − A2) − 1],

L�
28

= −L�
18
, L�

38
= −A2(�

2

8
+ m2).
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Since � = �0 + ��1 is the complex constant term, so that 
e�t = e�0t[cos(�1t) + � sin(�1t)] . When time is small, we 
might consider � to be real i.e. � = �0 . The additional mate-
rial constants used for numerical computation purpose in the 
problem are taken as: � = 5,m = 1.2m = 1.2 . Adjusting R 
and � with 1 and 60o respectively, we get R1 =

1

2
 and R2 =

√
3

2
 

from the relation R1 = Rcos� and R2 = Rsin�.
With these mentioned numerical data, the values of non-

dimensional field variables have been calculated using the 
MATLAB software and the results are presented in the form 
of graphs at various points of x at t = 0.1 and y = 1 . The 
graphical depiction has been broken into five groups for 
clarity:

Group I: In Figs. 2, 3, 4, 5, 6 and 7, we have shown the 
ascendancy of rotation parameter on the various physical 
fields under GL theory. Here, the solid line indicates the 
medium rotating with angular velocity ( Ω = 0.3 ), the dashed 
line represents the medium rotating with angular velocity 
( Ω = 0.2 ) and the dotted line corresponds to the medium 
rotating with angular velocity ( Ω = 0.1).

Group II: Figs. 8, 9, 10, 11, 12 and 13 examine the vari-
ations of field variables for different values of the inclina-
tion angle of load ( � = 60o(solid line), � = 30o(dashed line), 
� = 0o(dotted line)) for GL theory.

Group III: Figs. 14, 15, 16, 17, 18 and 19 are concerned 
with the investigation of the influence of temperature 
dependent properties and two temperature parameter on a 

�∗ = 7.59 × 1010N∕m2, �∗ = 1.89 × 1010N∕m2,

�∗ = �∗ = 0.05 × 105N∕m2K,

� = 2.19 × 103Kg∕m3, CE = 966J∕KgK,

K = 252J∕msK, j0 = 0.196 × 10−4m2,

�∗
0
= �∗

1
= 0.37 × 1010N∕m2, a∗

0
= 0.61 × 10−9N,

T0 = 293K, a = 0.74 × 10−15m2,

�∗ = 0.0001K−1, �0 = 0.03s, �1 = 0.01s, Ω = 0.3.

rotating microelongated solid. Solid line refers to a rotating 
microelongated solid with two temperature and temperature 
dependent properties (RMTTTDP). The dashed line shows 
the rotating microelongated solid with two temperature 
(RMTT) and dotted line indicates the rotating microelon-
gated solid with temperature dependent properties (RMTDP) 
for GL theory.

Group IV: This group consisting of Figs. 20, 21, 22, 
23, 24 and 25, displays the impact of three different values 
of microelongational parameter: a∗

0
= 0.61 × 10−9 (solid 

line), a∗
0
= 0.61 × 10−4 (dashed line), a∗

0
= 0.61 × 10−1 (dot-

ted line) on all the physical fields.
Group V: For a wide range of dimensionless variables 

x (0 ≤ x ≤ 3) and t (0 ≤ t ≤ 0.3) , the solution curves of non-
dimensional physical quantities in 3-dimensional variations 
for GL theory are presented in Figs. 26, 27, 28, 29, 30 and 
31.

Group I: Figs. 2, 3, 4, 5, 6 and 7 focus on the variations 
of all the physical field quantities with distance x for three 
particular values of rotation parameter (i.e. angular velocity 
Ω = 0.3, 0.2, 0.1 ). Figure 2 depicts the spatial variations 
of normal displacement component for different values of 
Ω . The figure shows that a decrease in the value of angular 
velocity results in a decrease in the value of the displacement 
field, which means that the angular velocity is having a nota-
ble increasing impact on the profile of normal displacement. 
In Fig. 3, effect of variation of Ω on conductive tempera-
ture � is depicted. A decrease in angular velocity results in 
a decrement in the magnitude of conductive temperature. 
Conductive temperature is having a coincident starting point 
with a value zero for all the curves, which is in quite good 
agreement with the boundary condition. All the curves show 
a similar pattern for all the three values of Ω and the effect 
of angular velocity fades as we move away from the bound-
ary. Figure 4 presents the variations of thermodynamical 
temperature � versus distance x for different values of Ω , 
which decreases with the decrease in the value of angular 

Fig. 2  Impact of rotation on 
normal displacement distribu-
tion
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Fig. 3  Impact of rotation on 
conductive temperature distri-
bution

Fig. 4  Impact of rotation on 
thermodynamical temperature 
distribution

Fig. 5  Impact of rotation on 
normal stress distribution
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velocity. The profile of � exhibits an increasing effect of 
angular velocity.

The normal stress variations against location x for dif-
ferent values of angular velocity are shown in Fig. 5. The 

normal stress component starts with negative values for all 
the three values of angular velocity and its absolute value 
decreases with decreasing value of angular velocity. Figure 6 
depicts the effect of angular velocity on tangential stress 

Fig. 6  Impact of rotation on 
tangential stress distribution

Fig. 7  Impact of rotation on 
microelongation distribution

Fig. 8  Impact of angle of incli-
nation on normal displacement 
distribution
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distribution. The nature of tangential stress corresponding 
to all the three values of angular velocity is same as that 
of normal stress. Both, normal stress and tangential stress 

tend to zero after starting with some negative values, which 
is in favour of boundary conditions and generalized theory 
of thermoelasticity. Variation in microelongation has been 

Fig. 9  Impact of angle of incli-
nation on conductive tempera-
ture distribution

Fig. 10  Impact of angle of 
inclination on thermodynamical 
temperature distribution

Fig. 11  Impact of angle of 
inclination on normal stress 
distribution
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exposed in Fig. 7 for three values of angular velocity. It is 
observed from the figure that the numerical value of micro-
elongation increases with the decrease in angular velocity. 

All the solution curves reveal the same behavior with differ-
ent magnitudes for all the three values of angular velocity.

Group II: Figs. 8, 9, 10, 11, 12 and 13 display the varia-
tions of field quantities against the horizontal distance x for 

Fig. 12  Impact of angle of 
inclination on tangential stress 
distribution

Fig. 13  Impact of angle of 
inclination on microelongation 
distribution

Fig. 14  Impact of two tempera-
ture parameter and tempera-
ture dependent properties on 
displacement distribution
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different values of the inclination angle ( � = 60o, 30o, 0o ). In 
Fig. 8, a similar trend of distribution of normal displacement 
is observed for the three considered values of inclination 

angle � (i.e., � = 60o, 30o and 0o ). The figure reveals that the 
value of normal displacement for inclination angle 30o is 
higher than that for inclination angle 60o . Corresponding to 

Fig. 15  Impact of two tempera-
ture parameter and temperature 
dependent properties on con-
ductive temperature distribution

Fig. 16  Impact of two tempera-
ture parameter and tempera-
ture dependent properties on 
thermodynamical temperature 
distribution

Fig. 17  Impact of two tempera-
ture parameter and temperature 
dependent properties on normal 
stress distribution
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� = 0o , the inclined load becomes the normal load; therefore 
normal load has a significant increasing effect on the normal 
displacement to a specific range of x and has different effects 
in rest of the domain. The impact of inclination angle on 

conductive temperature is analyzed through Fig. 9. It can be 
visualized from the figure that the trend remains same for all 
the three cases and all the curves have a coincident starting 
point with value zero, which leads to satisfy the boundary 

Fig. 18  Impact of two tempera-
ture parameter and temperature 
dependent properties on tangen-
tial stress distribution

Fig. 19  Impact of two tempera-
ture parameter and temperature 
dependent properties on micro-
elongation distribution

Fig. 20  Impact of microelonga-
tion parameter on displacement 
distribution
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condition. The effect of inclination angle on thermodynami-
cal temperature is shown in Fig. 10. The behavior of the 
thermodynamical temperature field is almost same for all 

the considered values of inclination angle and normal load 
shows a mixed kind of effect against the inclination angle 
60o.

Fig. 21  Impact of microelonga-
tion parameter on conductive 
temperature distribution

Fig. 22  Impact of microelonga-
tion parameter on thermody-
namical temperature distribu-
tion

Fig. 23  Impact of microelonga-
tion parameter on normal stress 
distribution
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Fig. 11 clarifies the variations in the normal stress �xx 
corresponding to different inclination angles. It is observed 
that the absolute value of normal stress is higher for inclina-
tion angle � = 30o as compared to � = 60o but in case, when 
the normal load (i.e. � = 0o ) is applied, it provides a mixed 
kind of effect with respect to inclination angles 60o and 30o . 

The tangential stress experiences a significant impact cor-
responding to different inclination angles as depicted in 
Fig. 12. Tangential stress starts with some negative numeri-
cal values and then tends to zero as x increases, correspond-
ing to � = 60o and 30o . As expected, the value of tangen-
tial stress starts from zero for normal load and it exhibits 

Fig. 24  Impact of microelonga-
tion parameter on tangential 
stress distribution

Fig. 25  Impact of microelonga-
tion parameter on microelonga-
tion distribution

Fig. 26  Profile of normal dis-
placement distribution
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extremely small values in comparison with the other curves. 
Figure 13 provides the detail about the microelongation field 
variable under different inclination angles. It is manifested 
from the plot that microelongation starts with a zero value 
for all the curves, which is in quite a perfect accord with the 
boundary condition and its magnitude increases with chang-
ing inclination angle from 60o to 30o.

Group III: In Figs. 14, 15, 16, 17, 18 and 19, we have 
plotted the solution curves of non dimensional physical 
quantities for three different cases: (i) Rotating micro-
elongated medium with two temperature and tempera-
ture dependent properties (RMTTTDP), (ii) Rotating 
microelongated medium with two temperature (RMTT), 
(iii) Rotating microelongated medium with temperature 

Fig. 27  Profile of conductive 
temperature distribution

Fig. 28  Profile of thermody-
namical temperature distribu-
tion

Fig. 29  Profile of normal stress 
distribution
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dependent properties (RMTDP). Figure 14 exhibits that 
the distribution of normal displacement shows a similar 
pattern for with and without two temperature and also for 
with and without temperature dependent properties with 
difference in magnitude. The presence of two temperature 
and temperature dependent properties increases the mag-
nitude of normal displacement. Figures 15, 16, 17, 18 and 
19 indicate that temperature dependent properties have a 
similar effect (i.e. decreasing) on these field variables. In 
the absence of two temperature parameter, the conduc-
tive temperature becomes the thermodynamical tempera-
ture. Thermodynamical temperature firstly undergoes an 
increasing effect of two temperature parameter in a cer-
tain range of distance x and thereafter a reverse pattern 
of the profile is observed in Fig. 16. Figures 17 and 19 
display that two temperature parameter has a numerically 
decreasing effect on normal stress and microelongation 
respectively. Tangential stress experiences an absolutely 
increasing impact in the presence of two temperature, 
which is shown by Fig. 18. Therefore, the presence of two 
temperature parameter and temperature dependent proper-
ties have a significant impact on all the field quantities.

Group IV: In Figs.  20, 21, 22, 23, 24 and 25, 
we have explored the effect of elongation param-
eter by taking three different values of a∗

0
 (i.e. 

a∗
0
= 0.61 × 10−9, 0.61 × 10−4, 0.61 × 10−1 ) for GL theory. 

A comparison of normal displacement profile for differ-
ent values of a∗

0
 has been made in Fig. 20. It is evident 

from the plot that there is an increment in magnitudes 
of normal displacement with an increasing value of a∗

0
 . 

Figures 21–23 show the dynamic effects of elongational 
parameter on conductive temperature, thermodynamical 
temperature and normal stress. It is found that these fields 
experience a decreasing effect with a∗

0
 . The behavior of 

tangential stress and microelongation under the three con-
sidered values of a∗

0
 are observed by Figs. 24 and 25. Tan-

gential stress and microelongation have a notable increas-
ing effect with a∗

0
 . It is also noticed from the figures that 

all the field variables are following the same trend for the 
considered values of a∗

0
.

Group V: We have illustrated the variations of field 
distributions with distance x and time t by Figs. 26, 27, 
28, 29, 30 and 31. From Fig. 26, it is clearly observed that 
displacement field firstly increases to a small extent and 
then decreases gradually and tends to zero. The increase 

Fig. 30  Profile of tangential 
stress distribution

Fig. 31  Profile of microelonga-
tion distribution
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in the value of time results in an increase in the numerical 
values of normal displacement. The variation of conduc-
tive temperature versus distance x and time t is depicted 
in Fig. 27. Numerical values of conductive temperature 
after starting with value zero increase for some values of 
x and then decrease towards zero as we move far from 
the boundary. It also exhibits an increasing effect with 
time t. Figures 28 and 30 indicate that the numerical val-
ues of thermodynamical temperature and tangential stress 
show the maximum values in the locality of source which 
decrease with the increase in distance x. Both fields expe-
rience an increasing trend with time. From the Figs. 29 and 
31, one can observe that the numerical values of normal 
stress and microelongation firstly increase to a maximum 
value, then undergo a decreasing pattern and approach to 
zero for higher x. Normal stress and microelongation also 
experience an increasing behavior with time t.

Concluding Remarks

The primary objective of the current research is to develop 
a mathematical model that predicts the behavior of normal 
displacement, normal stress, tangential stress, tempera-
ture distributions and microelongation in a rotating ther-
moelastic medium with two temperature and temperature 
dependent properties under the LS and GL theories. The 
normal mode approach used here provides an exact solu-
tion without imposing any assertions on the real physical 
quantities. It may be used to solve a broad variety of ther-
modynamic-related issues. Theoretical and numerical find-
ings show that the physical variables under consideration 
are significantly influenced by rotation, two temperature 
parameter, temperature dependent properties, inclination 
angle and elongational parameter. From this research, one 
can infer that

• The generalized thermoelasticity hypothesis is sup-
ported by the fact that all the physical variables have 
non-zero values only in the small domain of space, 
which is evident from all the figures.

• It is clearly observed from the figures that all the physi-
cal fields satisfy the boundary condition.

• It can be concluded that rotation parameter significantly 
affects the variations of the obtained physical quan-
tities. Normal displacement, conductive temperature, 
thermodynamical temperature, normal stress and tan-
gential stress attain an increasing effect in their abso-
lute values with increasing value of rotation parameter.

• All the physical quantities are quite sensitive towards 
the two temperature parameter. Normal displacement 

and tangential stress show increasing effect while nor-
mal stress and microelongation experience decreasing 
effect in the presence of two temperature parameter. A 
mixed kind of effect of two temperature parameter is 
observed on thermodynamical temperature. Also in the 
absence of two temperature parameter, the conductive 
temperature coincides with the thermodynamical tem-
perature which supports the theoretical formulation.

• Temperature dependency of material’s constants 
strongly affects all the field variables. It has a decreas-
ing effect on conductive temperature, thermodynamical 
temperature, normal stress, tangential stress and micro-
elongation while an increasing effect is observed on 
normal displacement distribution.

• All the field variables show a similar pattern for differ-
ent values of inclination angle � of the applied mechan-
ical load except for � = 0o . With the decrease in the 
value of angle of inclination from 60o to 30o , there can 
be seen an increase in the magnitude of all the field 
quantities except tangential stress. Also, in the case 
of normal load (� = 0o) , a different behavior of all the 
field quantities can be observed.

• Changing the value of a∗
0
 (i.e. elongational parameter) 

plays an important role in the distribution of the field 
quantities. Microelongation parameter has an increasing 
effect on normal displacement, tangential stress, micro-
elongation distribution but a reverse effect is observed on 
all other distributions.

• A similar pattern of variations of all the physical quan-
tities is observed for different values of time t and an 
increment in the value of time causes an increment in the 
magnitude of all the field variables.

The above research is of fundamental importance and finds 
its applications for experimental researchers/engineers work-
ing in the field of geophysics, seismology, material science 
and earthquake engineering. Microelongated materials can 
be widely used for various sensors, medical devices, com-
puter processors, accelerometers, inertial sensors and elec-
trical circuits etc.
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