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Abstract
Introduction and Purpose  Nonlinear modal coupling via internal resonances and parametric excitation in MEMS resonators 
has been widely used to improve the functionality and performance of a wide range of potential applications. In this paper, 
the bandpass filter based on a 2:1 internal resonance between the second and third modes of a clamped-guided microbeam 
with electrostatic activation is proposed for the first time. Due to internal resonance, the amplitude–frequency response of 
the second mode showed a rectangle-like bandpass behaviour when the third mode is externally excited around the resonance 
by sweeping external excitation frequency.
Methods  In this study, numerical time integration and the method of multiple scales are used to confirm the bandpass char-
acteristics in the amplitude–frequency response curve of the second mode of the beam.
Results  The computational results showed that the mid-plane stretching nonlinearity, excitation amplitude, and damping 
have a significant impact on the bandpass behaviour. We also presented the centre frequency and 3 dB bandwidth of the filter 
as a function of the mid-plane stretching nonlinearity parameter and a combination of excitation amplitude and damping. 
Moreover, we found the bandpass frequency bandwidth 261.64−1130 Hz for various axial excitation amplitude and damp-
ing combinations using a particular beam dimension and material properties from the literature. Specifically, the bandpass 
filter exhibited a 3 dB bandwidth of 954.97 Hz with a centre frequency of 143.09 kHz for a set of beam dimensions and 
material properties.
Conclusions  The internal resonance-based bandpass filter demonstrated here illustrates a novel method for building filters 
using a single MEMS resonator. Here, we consider electrostatically actuated clamped–guided beams, but the concept can 
be applied to any MEMS resonator that exhibits modal coupling based on internal resonance. In addition, it is more durable 
than contemporary electronic filters and is temperature-robust. The work presented here might potentially serve as a guide 
for investigating more MEMS resonators to create bandpass filters based on internal resonances.

Keywords  Bandpass filter · Nonlinear modal coupling · Internal resonance · MEMS · Clamped-guided beams · Method of 
multiple scales

Introduction

Over the past decades, nonlinear modal coupling through 
internal resonances and parametric excitation in microelec-
tromechanical systems (MEMS) has been widely researched 
to investigate many practical applications, such as sensors [1], 
bandpass filters [2, 3], logic gates [4], and energy harvesting 
[5]. Parametric excitation is the external forced manipula-
tion of effective stiffness and coupling coefficients to achieve 
intermodal coupling [6, 7]. On the other hand, internal reso-
nance occurs when two or more frequencies of a multi-degree-
of-freedom MEMS resonator are commensurate or nearly 
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commensurate and interact when one of the modes is exter-
nally excited [7–9]. Here, we study a bandpass filter based 
on nonlinear intermodal coupling via 2:1 internal resonance 
of an electrostatically actuated clamped-guided microbeam.

Mechanical bandpass filters based on MEMS resonators 
have received a lot of attention in recent decades because of 
their narrow bandwidth, low loss, and good stability [9, 10]. 
Earlier, bandpass filters were developed by coupling several 
MEMS resonators through an additional connected mechani-
cal beam to generate the desired bandpass [11, 12]. For exam-
ple, Greywall and Busch [13] used 20 mechanically connected 
drumhead resonators in a closed ring to demonstrate bandpass 
filter characteristics. In a later work, Chivukula and Rhoads 
[14] demonstrated bandpass filters based on cyclically coupled 
MEMS resonators and compared the results with open-chain 
resonator-based filters. Furthermore, Zhu and Kirby [15] pro-
posed a bandpass filter model based on two mechanically cou-
pled silicon cantilevers, where the coupling is induced by a sili-
con linkage. Similarly, Motiee et al. [16] investigated bandpass 
filters in two MEMS resonators: two coupled cantilevers and 
two coupled doubly clamped beams. To generate coupling, they 
used a connected flexural-mode beam for coupled cantilevers 
and a V-shaped element for coupled doubly clamped beams. 
On the other hand, Hammad et al. [17] presented an analytical 
model for a tunable MEMS filter based on two coupled elec-
trostatic resonators by a weak microbeam.

Parallelly, the electrical coupling has been used between 
MEMS resonators to achieve the bandpass filter characteris-
tics and eliminate the need for any physical coupling between 
resonators. For example, Pourkamali et al. [18] presented pas-
sive and active filter synthesis approaches using the electrical 
coupling of capacitive MEMS resonators. In the follow-up 
works, they demonstrated high-order narrow-bandwidth band-
pass filters using an electrostatic force as a coupling source 
between closely spaced microresonators [19, 20]. In another 
work, Galayko et al. [21] reported fourth- and sixth-order band-
pass filters using controlled electrostatic coupling through bias 
voltage in coupled electromechanical resonators. Recently, 
Behzadi and Baghelani [22] investigated weakly connected 
radial contour mode disk MEMS resonators to demonstrate 
tunable narrowband filters.

Later, researchers utilised both mechanical and electrical 
coupling together to enhance the response of bandpass filters. 
For example, Kharrat et al. [23] proposed a tuning strategy for 
mechanically coupled NEMS arrays resonator based on the 
modal control by adjusting actuation and detection configura-
tions separately. Giner et al. [24] reported the CMOS-MEMS 
bandpass filter in two mechanically and electrically coupled 
clamped–clamped beam resonators. To demonstrate a tunable 
narrowband micromechanical filter, Hajhashemi et al. [25] used 
two electrostatically coupled microresonators through a third 
coupling beam. They also showed independent tunability of 
the centre frequency and bandwidth by applying DC voltage 

on an electrode and axial stress on one resonator. In another 
work, Ilyas et al. [26] investigated an H-shaped coupled MEMS 
resonator to demonstrate a wideband tunable filter using mixed-
frequency external electrostatic excitation. Their subsequent 
research studied the same resonator with mixed-frequency 
external excitation to demonstrate low-frequency filtering 
characteristics in the air [27]. Simultaneously, they also dem-
onstrated a bandpass filter using the nonlinear behaviour of two 
electrically coupled microbeam resonators [28]. Recently, Syms 
and Bouchaala [29] proposed MEMS bandpass filters based on 
arrays of electrostatically driven coupled beams. They modified 
the outer beams of the coupled resonator by adding masses to 
them to overcome the DC tuning problems and achieve a syn-
chronised AC response. In addition, Luo et al. [30] reported a 
dual-passband filter with bandwidths of 66 MHz and 112 MHz 
using a dual-mode lamb wave resonator. Hou et al. [31] pre-
sented a frequency–amplitude independently tunable bandpass 
filter in substrate integrated waveguide resonator. Wu et al. [32] 
designed and fabricated a compact fifth-order microstrip inter-
digital filter for aggressive space mapping applications. Widaa 
et al. [33] presented a compact, high-Q, tunable coaxial filter 
based on an inset resonator. Very recently, multimode resona-
tors have also been used to demonstrate multiband bandpass 
filters based on parallel coupled split structures [34, 35].

To obtain bandpass behaviour in MEMS resonators, 
researchers have lately tried to use internal modal coupling 
rather than external mechanical and electrical coupling [2, 3]. 
The modal coupling can be achieved through either internal 
resonance [7, 36–39] or external parametric excitation [6, 7]. 
Hajjaj et al. [2] demonstrated bandpass filter characteristics in 
an electrostatically actuated MEMS arch resonator through 
electrothermal tuning. Moreover, they observed a bandpass fil-
ter with a sharp roll-off from the passband to the stopband using 
nonlinear softening, hardening, and veering phenomena. On the 
other hand, Liu et al. [3] investigated a bandpass filter based on 
two magnetically coupled orthogonal cantilevers. They used 
modal coupling based on 1:2 internal resonance to drive the 
second cantilever while externally driving the first one. In addi-
tion, recently, Wang et al. [40] proposed a narrow bandpass 
filter using 2:1 internal resonance in an inverted T-shaped beam 
resonator. To the best of our knowledge, only a few studies have 
demonstrated bandpass filters based on nonlinear modal cou-
pling induced by internal resonance and parametric excitation. 
However, there are not any studies on bandpass filters based 
on modal coupling through internal resonance in single-beam 
MEMS resonators. Hence, in the present work, we attempt to 
observe the bandpass filter characteristics through modal cou-
pling induced by 2:1 internal resonance in electrostatically actu-
ated clamped-guided microbeams.

In our recent work, we studied the nonlinear modal cou-
pling due to 2:1 internal resonance between the second and 
third modes of electrostatically actuated clamped–clamped 
beams [36]. Further analysis revealed that the dynamical modal 
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coupling between these modes through 2:1 internal resonance 
could be exploited to produce a bandpass filter for a specific 
electrode gap and thickness ratio ( �1 = 1 ). We also found that 
the value �1 = 1 is challenging to achieve experimentally for 
electrostatically actuated clamped–clamped beams. To solve 
this difficulty, we convert the one-clamped end into a guided 
end using a number of flexural beams arranged in a specific 
way to provide axial stiffness sufficient to ensure �1 = 1. Then, 
taking into account the axial spring effect, we first drive the 
governing equation of motion for an electrostatically actuated 
clamped-guided beam. Following that, we present the analytical 
calculation for the axial stiffness of the guided end as well as use 
finite-element analysis in COMSOL to confirm the outcome of 
the analytical expression for a set of parameters. Next, we inves-
tigate the dynamic analysis of the bandpass filter based on non-
linear intermodal coupling between the second and third modes 
via 2:1 internal resonance when the third mode is externally 
excited. Finally, we show the dimensional values of axial stiff-
ness and bandwidth of the bandpass filter using a particular set 
of beam dimensions and material properties from the literature.

Mathematical Modelling and Problem 
Formulation

A schematic of an electrostatically actuated clamped-guided 
microbeam for a bandpass filter is shown in Fig. 1a. The guided 
end of the beam is modelled using a series of flexural beams by 
arranging them in a certain orientation. These flexural beams 

can be used to tune the total axial stiffness and coefficient of 
the mid-plane stretching nonlinearity. Hence, to ensure �1 = 1, 
the dimensions of each flexural beam can be modified, so 
that they can produce desired axial stiffness when combined. 
Figure 1b shows equivalent schematics of an electrostatically 
actuated clamped-guided beam with an axial spring of stiffness 
Ka representing the combined axial spring effect of flexural 
beams. We first systematically derive the reduced-order model 
(ROM) for n-coupled modes, taking into account the effects 
of axial spring, mid-plane stretching, and electrostatic force. 
We then provide the estimation of total axial stiffness Ka of 
the guided end using analytical technique and finite-element 
analysis (FEA) in COMSOL.

Equation of Motion

The mechanical beam vibrates transversely as a result of 
applied external electrostatic force, which is a combination of 
DC and AC voltages, as shown in Fig. 1a and b. The governing 
equation of motion for the transverse displacement of the beam 
w(x, t) can be expressed as [36, 41, 42]

(1)

𝜌A ̈̂w + EIŵ��� + c ̇̂w =
KaEA

2
(
EA + KaL

)
L

∫
0

ŵ�2dx

ŵ�� +
∈0 b

[
Vdc + Vaccos(Ωt)

]2
2(g − ŵ)2

,

Fig. 1   a Schematic of an electrostatically actuated clamped-guided microbeam. b An axial spring is accounted for the guided end of the resona-
tor to approximate the total axial stiffness Ka of flexural beams in an equivalent model
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with the following boundary conditions:

Here, · and ʹ represent time, t, and space, x, derivatives, 
respectively (for derivation see Appendix). The first term 
on the right side of Eq. 1 describes the effect of mid-plane 
stretching and axial spring. The beam dimension and mate-
rial properties parameters are length L, thickness h, width B, 
cross-section area A, second moment of area I, mass den-
sity ρ, and Young’s modulus of the beam E. The effective 
damping experienced by the beam is represented by c. In the 
second term on the right-hand side, the external electrostatic 
force is expressed as a combination of DC (Vdc) and AC (Vac) 
voltages, where g and ϵ0 represent the electrode gap and free 
space permittivity, respectively. The total axial stiffness of the 
spring or guided end is indicated by Ka. The effective axial 
spring allows tuning the mid-plane stretching nonlinearity.

The transverse displacement w, spatial x, and time t in Eq. 1 
are non-dimensionalized with respect to length scales g and 
L, and a time scale T =

√
�AL4∕EI , respectively, as follows:

Next, we obtain the following non-dimensionalized equa-
tion by substituting Eq. 3 into Eq. 1

with boundary conditions

The non-dimensionalized parametersof Eqs. 4 and 5 are

T h e  t o t a l  t r a n s v e r s e  d i s p l a c e m e n t 
w(x, t) = wdc(x) + wac(x, t) is the sum of static displacement 
wdc(x) and dynamic motion wac(x, t) induced by DC and 
AC voltages, respectively. Similar to the clamped–clamped 
beam, the static displacement of an electrostatically actu-
ated clamped-guided beam can be obtained using the same 
procedure [36, 43]. Now, for the dynamic motion, we obtain 
the multimode coupled reduced-order model (ROM) from 
Eq. 4 using the standard procedure of assuming a solution as 
wac(x, t) =

∑p

i=1
ui(t) �i(x) , where �i(x) is the ith mode shape 

(2)ŵ(0, t) = 0, ŵ
�

(0, t) = 0, ŵ(L, t) = 0,

ŵ
�

(L, t) = 0.

(3)ŵ =
w

g
, x̂ =

x

L
, t̂ =

t

T
.

(4)

ẅ + w��� + cẇ =

⎛⎜⎜⎝
𝛼1

1

∫
0

w�2dx

⎞⎟⎟⎠
w��

+𝛼2

�
Vdc + Vaccos(Ωt)

�2
(1 − w)2

,

(5)w(0, t) = 0,w
�

(0, t) = 0,w(1, t) = 0,

w
�

(1, t) = 0.

(6)
�1 = 6

(
g

h

)2
KaL

EA+KaL
, �2 =

6�0L
4

Eg3h3
,

and c =
cL4

ETI
.

of a clamped-guided straight beam and p is the total num-
ber of modes [36, 43]. The resulting n-mode coupled ROM 
equations are

where · represents derivative with respect to time. The coeffi-
cients of quadratic and cubic nonlinear terms are expressed as

Equation 7 describes n-modes coupled nonlinear ordinary 
differential equations of electrostatically actuated clamped-
guided microbeams. From Eq. 7, we can obtain the dynamical 
governing equations of two coupled modes based on 2:1 inter-
nal resonance condition, which later use to observe dynami-
cal modal coupling between these modes for bandpass filter 
behaviour. In the following section, we present the calculation 
of the total axial stiffness ( Ka ) of the guided end, which is 
essential for maintaining �1 = 1.

Estimation of Axial Stiffness

We found from our previous study that the modal interaction 
based on �3 = 2�2 internal resonance can further be used to 
develop bandpass filters based on electrostatically actuated 
clamped–clamped microbeams when �1 = 1 [36]. However, 
to achieve �1 = 1 , the resonator electrode gap must be less than 
the beam thickness, which is difficult to do experimentally. 
To overcome this challenge, we use a set of flexural beams to 
change one end of the beam, such that it functions as a guided 
end [44, 45]. As a result, the total axial stiffness of the flexible 
guided end allows us to achieve �1 = 1 for a variety of elec-
trode gap and thickness ratios.

To calculate the axial stiffness of the flexible guided end, 
we first obtain the tip displacement of bent beam ABCD due 
to applied force P , as shown in Fig. 2a. In this analysis, we 
assume that the guided support only allows the axial motion 
and constrains the transverse and rotational motions. To deter-
mine the deflection, we consider reaction force R and moment 
M at the tip of the beam due to guided support. The tip dis-
placement of the beam in x-directions is

(7)

ün + cnu̇n + 𝜔2

n
un +

4∑
i=1

4∑
j=1

𝛽ijnuiuj

+

4∑
i=1

4∑
j=1

4∑
k=1

Γijknuiujuk = fncos(Ωt),

�ijn =

⎡⎢⎢⎣
�1

1

∫
0

w
��

dc
�ndx

1

∫
0

�i�jdx + �1

1

∫
0

�
��

i

�ndx

1

∫
0

2�j�wdc�dx + 3�2V
2

dc

1

∫
0

�i�j�n�
1 − wdc

�4 dx
⎤⎥⎥⎦

andΓijkn =

⎡
⎢⎢⎣
�1

1

∫
0

�
��

i
�ndx

1

∫
0

�j��k�dx + 4�2V
2

dc

1

∫
0

�i�j�k�n�
1 − wdc

�5
⎤
⎥⎥⎦
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The tip displacement of the beam in z-direction is

The slope of the beam is

To satisfy the boundary conditions, the displacement 
�z and slop �y must both be zero. The reaction force and 

�x =
Pa3

3EI
+

Pb

EA
+

Pa2b

3EI
+

Pac2

EI
+

Pa2c

2EI
+

Rab2

2EI
+

Rbc2

2EI
+

Rabc

EI
+

Ma2

2EI
+

Mba

EI
+

Mc2

2EI
+

Mca

2EI
.

�z =
Pab3

2EI
+

Pc2b

2EI
+

Pacb

EI
+

R(a+c)

EA
+

Rb3

3EI
+

Rb2c

EI
+

Mb2

2EI
+

Mcb

EI
.

�y =
Pc2

2EI
+

Pac

EI
+

Pab

EI
+

Pa2

2EI
+

Rbc

EI
+

Rb2

2EI
+

Mc

EI
+

Mb

EI
+

Ma

EI
.

moment are calculated using �z = 0 and �y = 0 and substi-
tuted in �x equation to obtain the x-axial stiffness ( KI ) of 
the ABCD beam. After mathematical manipulation, the KI 
can be expressed as

In addition, for example, we also independently verify 
the value of KI and axial tip displacement �x using the 
finite-element analysis in COMSOL. For the COMSOL 
calculation, we choose parameters such as a = 200 μ m, 
b = 100 μ m, c = 100 μ m, cross-section 60 × 4 μm2, and 
Young’s modulus E = 160 × 10

9 N/m2. Based on these 
parameters, we calculate the tip displacement of ABCD 
beam �x and KI using Eq. 10 and COMSOL. The values of 
�x and KI for both analytical and COMSOL approaches are 
shown in Table 1. Although, here, we show the calcula-
tion of axial stiffness ( KI ) for one set of beam dimensions 
and material properties, this approach can be used further 
for any other combination of beam parameters to get the 
desired KI for the total axial stiffness of guided end.

Similarly, the axial stiffness of the other three identi-
cal bent beams can also obtain using the above approach. 
However, these beams have the same axial stiffness as the 
ABCD beam due to their same dimensions, as shown in 
Fig. 1(a). To obtain the total axial stiffness ( Ka ) of guided 
support, the rigidity of the first two cantilever flexural 
beams is also taken into account with four ABCD types 
of beams. Hence, the total axial stiffness can be written as

The total axial stiffness described in Eq. 8 can be used 
�1 = 1 with experimentally feasible electrode gap and 
beam thickness, which is essential to observe the bandpass 
characteristics in the resonator. Next, we obtain the first 
three frequencies as a function of �1 and axial stiffness Ka.

KI =

3AEI

⎛⎜⎜⎝
Ab2(4a(b + 3c) + b(b + 4c))

+12I(a + c)(a + b + c)

⎞⎟⎟⎠
(a + b + c)(A2b2

�
a2 − ac + c2

�
(a(b + 3c)+

bc) + 3AI(a4 + 3a3b − 3a2b2 + c(4a3 − 3a2

b + 6ab2 + 3b3) + 3ab3 + c3(4a + 3b) + 3c2

(a − b)(2a + b) + b4 + c4) + 36bI2(a + c))

.

(8)Ka = 4KI + 2

(
3EI

(a+c)3

)
.

Fig. 2   a Three flexural beams’ combination from the axially guided 
mechanism as shown in Fig. 1a. This combination is used to modify 
the axial stiffness by varying the length of each flexural beam. b The 
axial displacement distribution of three flexural beams is estimated 
using finite-element analysis (FEA) in COMSOL

Table 1   The value of tip displacement �x and axial stiffness KI of the 
ABCD beam

Quantities Analytical (Eq. 10) FEA in COMSOL

�
x

0.02P 0.018P

K
I
=

P

�
x

52.5 55.5
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Frequencies of the Beam at Various ̨
1
 and K

a

To obtain the first three frequencies of the beam as a func-
tion of �1 and axial stiffness Ka , we obtain a system of lin-
ear-coupled differential equations from three-mode ROM 
of Eq. 4 by eliminating the damping and nonlinear terms as

Solution of the linearized eigenvalue problem associ-
ated with these coupled equations gives the first n natural 
frequencies, which are a function of the non-dimensional 
parameters �1 , �2V2

dc
 , static deflection wdc(x) , and mode 

shapes �n(x).
Figure 3a shows the variation of the first three frequen-

cies of the beam with �1 , which is obtained using three-
mode ROM and FEA in COMSOL. Next, to see the role 
axial stiffness Ka on the frequencies of the beam, we first 
calculate the Ka using �1 expression described in Eq. 6 with 
beam dimensions (L = 800 μm, b = 30 μm, h = 2 μm, and 
electrode gap g = 2 μm) and material properties (E = 169 
GPa and � = 2332 kg/m3). Figure 3b shows the first three-
dimensional frequencies of the beam as a function of axial 
stiffness Ka for an applied DC voltage Vdc = 3.5259 V. How-
ever, the variation of the frequencies is the same for both �1 
and Ka , but values are different due to dimensional conver-
sion. In the next section, we investigate the dynamic analy-
sis of the coupled second and third modes due to �3 = 2�2 
internal resonance to analyse bandpass filter characteristics 
in electrostatically actuated clamped-guided microbeams.

Dynamic Analysis of Bandpass Filter

In this section, to observe bandpass filter characteristics, we 
study the dynamic of the coupled second and third modes 
through �3 = 2�2 internal resonance when the third mode is 

(9)𝜔̄2

n
= 𝜔2

n
−

⎡⎢⎢⎣

1

∫
0

𝜙
��

i
𝜙ndx+2𝛼1

1

∫
0

w
��

dc
𝜙ndx

1

∫
0

𝜙
�

i
w

�

dc
dx + 2𝛼2V

2

dc

1

∫
0

𝜙i𝜙n�
1 − wdc

�3 dx
⎤⎥⎥⎦

externally excited. We also examine the effect of mid-plane 
stretching nonlinearity, damping, and excitation amplitude 
and frequency on the frequency bandwidth of the bandpass 
filter.

For the dynamic analysis, we obtain the coupled govern-
ing equations corresponding to the second and third modes 

from multimode Eq. 7 by neglecting the terms linking with 
uncoupled modes. As a result, the final coupled equations 
are as follows:

where ⋅ represents derivative with time, and the coef-
ficients of quadratic and cubic terms are expressed as 
�
n1 = �22n, �n2 = �23n + �32n, �n3 = �33n, �n11 = Γ222n, �n12 =

Γ223n + Γ232n + Γ322n, �n13 = Γ233n + Γ323n + Γ332n, �n14 = Γ333n, 
where n = 2 and 3 corresponding mode-2 and 3. The quan-
tities �ijn and Γijkn were stated above.

To observe the existence of intermodal coupling 
between the second and third modes due to internal 
resonance, we first obtain the time history of the cou-
pled modes by numerically integrating Eqs. 10 and 11. 
Figure 4 shows the time history of the second and third 
modes when the third mode is externally excited with dif-
ferent excitation frequencies around its normalized fre-
quency �3 . It can be observed that the third mode only 
shows the steady-state response, while the second mode 
response dies out with time when Ω = 120.1 . When the 
excitation frequency further increases to Ω = 120.2 , the 

(10)
ü2 + c2u̇2 + 𝜔2

2
u2 + 𝛼21u

2

2
+ 𝛼22u2u3 + 𝛼23u

2

3

+𝛼211u
3

2
+ 𝛼212u

2

2
u3 + 𝛼213u

2

3
u2 + 𝛼214u

3

3
= 0,

(11)

ü3 + c3u̇3 + 𝜔2

3
u3 + 𝛼31u

2

2
+ 𝛼32u2u3 + 𝛼33u

2

3

+𝛼311u
3

2
+ 𝛼312u

2

2
u3 + 𝛼313u

2

3
u2 + 𝛼314u

3

3

= f3cos(Ωt),

Fig. 3   The first three frequen-
cies of the beam as a function of 
a non-dimensional parameter α1 
and b axial stiffness Ka
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response amplitude of the second mode increases due to 
intermodal coupling with the third mode and the steady-
state amplitude is higher than the driving mode. Then, the 
response amplitude of the second mode is almost constant 
for a specific range of excitation frequency before sharply 
decreasing near zero due to the end of the intermodal cou-
pling, whereas the third mode response amplitude initially 
decreases for a certain range before gradually increasing 
until it reaches back to the single-mode response. In addi-
tion, we also obtain the frequency spectra of the second 
and third modes using MATLAB fft function, which we 
display alongside the time history in Fig. 4.

It can be noted that the frequency spectra also confirm 
the range of intermodal coupling and response amplitude 
variation with excitation frequency. Next, the steady-state 
amplitude is extracted from the time history as a function 

of the excitation frequency to determine whether or not the 
coupled response can exhibit bandpass behaviour.

First, we investigate the amplitude–frequency response 
curves of the second and third modes under different exci-
tation amplitudes f3 when the third mode is externally 
excited and normalize damping c = 0. Figure 5 shows the 
amplitude–frequency response curves of the second and 
third modes at varied f3 . From Fig. 5, we can note that the 
intermodal coupling due to 2 ∶ 1 internal resonance does 
not initiate till f3 = 0.8 and after it continues. Interestingly, 
we observe that the second mode response shows band-
pass in the amplitude–frequency curve for a certain range 
of excitation amplitude, while the third mode response 
curve shows concave-like behaviour for all values of f3 , 
but the range of this concave varies with increasing f3 . 
However, the perfect bandpass flatness does not observe at 
the initial value of f3 ; instead, it appears at some specific 

Fig. 4   Time history of the second and third mode of the beam at vari-
ous excitation frequencies when the third mode is externally excited 
while the second mode is driven by intermodal coupling due to 

ω3 = 2ω2 internal resonance. The frequency spectrum corresponding 
to time history is also plotted, which supports the coupling through 
internal resonance

Fig. 5   The amplitude–frequency response curve of the second and third modes at various excitation amplitudes f3 for c = 0.2. The bandpass char-
acteristic is seen in the amplitude–frequency response of the second mode for the range of f3
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value of f3 and then continues for a range of f3 until ripple 
starts appearing in the bandpass. It can also be noted that 
the frequency bandwidth of bandpass and modal interac-
tion is also increased with increasing f3 . Therefore, the 
bandpass filter can be realized without distortion within 
specific range parameters via intermodal coupling based 
on internal resonance. Furthermore, to check bandpass 
performance, we examine a specific amplitude–frequency 
response curve of the second and third modes from Fig. 5, 
which shows an almost flat bandpass.

The bandpass ripple is an important aspect in deter-
mining the performance of a filter. Hence, to check the 
flatness behaviour of bandpass, we investigate an ampli-
tude–frequency curve of the second mode corresponding 
to f3 = 1.5 from Fig. 5. Figure 6 shows the amplitude–fre-
quency response curve of the second and third modes 
when normalized excitation amplitude f3 = 1.5 and damp-
ing c = 0.2 . It can observe that the amplitude–frequency 
response curve of the second mode exhibits the flat band-
pass when the second mode is driven through intermodal 
coupling with the externally excited third mode. Moreo-
ver, the response amplitude of the second mode is stable 
in the intermodal coupling region (passband) and sharply 
decreases to zero outside the coupling region (stopband). 
As a result, the frequencies of external excitation in the 
bandpass range can be seen in the output, while those in 
the stopband zone can be filtered away.

In addition, we also use the method of multiple scales 
(MMS) to check the numerical integration computation of 
bandpass behaviour in the amplitude–frequency response 
curve of the second mode. For MMS calculation, we 
solve the following coupled equation of amplitudes and 
phases [36]:

where a2 ( a3 ) and �2 ( �3 ) represent the amplitude and phase 
of the second (third) mode. The steady-state response ampli-
tudes of both modes are obtained by equating the a′

n
 and 

�
′

n
 to zero. Therefore, the resulting four coupled nonlinear 

algebraic equations are solved using the Newton–Raphson 
method with an appropriate initial guess.

For the same set of parameters, the MMS results are 
presented alongside the numerical time integration calcu-
lation in Fig. 6, and they match well with time integration 
findings. As we can see from Fig. 6, the MMS results are 
denoted by solid red circles, while the time integration find-
ings are represented by a combination of the blue dotted 
line and solid circles. It can be noted that the MMS results 
are also shown the bandpass characteristics in the second 
mode amplitude–frequency response curve. Moreover, the 
MMS data also demonstrate a passband region with a sharp 
transition from stable response amplitude to zero. The band-
pass has the same frequency bandwidth as time integration 
computations. The third mode response amplitude produced 
by both approaches matches the intermodal coupling region.

The basic parameters of the bandpass filter also esti-
mate based on the amplitude–frequency response of the 
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Fig. 6   The amplitude–frequency response curve of the second and 
third modes when external excitation is applied around the third 
mode frequency ω3 with excitation amplitude f3 = 1.5 and damping 
c = 0.2. The solid blue line represents the results of numerical time 

integration, the red solid points represent the findings of the method 
of multiple scales, and the dotted blue line represents the bandpass 
boundaries
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second mode. Figure 6 shows −3 dB level, 3 dB band-
width, centre frequency ( fc ), and start ( fL ) and end ( fH ) 
frequencies of passband. The maximum amplitude is rep-
resented by 0 dB level, and −3 dB level is about 0.707 
or 1∕

√
2 relative to the maximum amplitude. The non-

dimensional centre frequency ( fc ) is 120.2685 . In addi-
tion, the non-dimensional 3 dB bandwidth of the passband 
is 0.321 . The start frequency ( fL ) of passband is 120.108 
and end frequency ( fH ) is 120.429 . The centre frequency 
is an average of fL and fH.

So far, we investigate the response of the second and 
third modes as a function of the excitation frequency Ω 
around the third mode �3 . Now, we examine the involve-
ment of the second mode response in the bandpass char-
acteristics while varying Ω about �3 . To do so, we obtain 
the frequency spectrum of the second mode at different Ω 
from time history using MATLAB function fft. Figure 7 
shows the frequency spectrum of the second mode around 
�2 at different Ω as well as the range of modal coupling or 
bandpass around the second mode frequency �2 (see inset 
Fig. 7). It can be observed that the frequency bandwidth 
of intermodal coupling is almost half around the second 
mode frequency compared to its range with the third 
mode frequency. Interestingly, the frequency bandwidth 
of the bandpass with excitation frequency is twice what 
it was around the second mode frequency, implying 2 ∶ 1 
internal resonance between bandpass frequencies. The 
frequency spectrum results also support the bandpass fre-
quency bandwidth with respect to Ω (see Figs. 6 and 7). 
Next, we investigate the role of non-dimensional param-
eter �1 and damping c in the bandpass characteristics.

Effects of ̨
1
 and Damping c on Bandpass

In this section, we investigate the effects of �1 and c on the 
bandpass characteristics by obtaining the amplitude–fre-
quency response curves of the second and third modes over 
a range of these parameters. Thus far, to observe the band-
pass characteristics, we used �1 = 1 and c = 0.2 throughout 
the investigation. However, it is challenging to obtain these 
parameters precisely through experimentation, because they 
are so particular. Therefore, we now explore the coupled 
response for additional values of �1 and c to see how robust 
the bandpass behaviour is when these variables are changed.

Figure 8 shows the amplitude–frequency response curves 
of the second and third modes for six different values of �1 
around �1 = 1 when the third mode is externally excited with 
f3 = 1.5 and c = 0.2 . It can be observed that the flatness of 
the bandpass starts deviating when �1 is decreased to 0.9 
from 1 . On the other hand, the bandpass characteristics con-
tinue to hold as �1 increases until the flatness of the bandpass 
disappears due to emergent ripple behaviour in the second-
mode response at a given letter value of �1 . Moreover, the 
amplitude–frequency response of both modes shifts right 
side with increasing the value of �1 . It can be noted that the 
symmetry in the amplitude–frequency response curve of the 
third mode breaks away from �1 = 1 , and this asymmetry 
shift changes the flatness behaviour of the bandpass in the 
second mode response. We can conclude that the �1 plays a 
very crucial role in generating the bandpass behaviour in the 
coupled response due to intermodal coupling via 2 ∶ 1 inter-
nal resonance. However, in the current analysis, to overcome 
this challenge, we propose modifying the one-clamped end 
of the beam as flexible support to tune the �1 parameter by 
utilising the axial stiffness of flexible support.

Fig. 7   Frequency spectrum of the second mode at different excitation frequencies as well as shows the range of intermodal coupling with the 
third mode. The frequency range of modal interaction around the second mode frequency ω2 is also plotted in the inset figure



3792	 Journal of Vibration Engineering & Technologies (2024) 12:3783–3796

1 3

In addition to �1 , we found that the damping c also plays 
an essential role in the bandpass characteristics, and it is 
also a critical design parameter for MEMS resonators [46]. 
Therefore, to see the feasible experimental range of the 
bandpass with respect to damping c , we now study the 
amplitude–frequency response of the second mode for a 
range of c. Figure 9 shows bandpass characteristics in the 
second-mode response for four different values of c . It can 
be seen that the bandpass behaviour in the second-mode 
response is observed for each case of damping with different 
f3 ranges. We also see that a low initial value of f3 is required 

for lower c and vice versa for higher c . Furthermore, the fre-
quency bandwidth of the bandpass increases with increasing 
c as well as required f3 for respective c . We conclude that 
bandpass characteristics can be achieved using our analysis 
for any feasible value of damping c and adequate excitation 
amplitude f3.

Using the similar process describe in Fig. 6, we also esti-
mate the centre frequency and 3 dB bandwidth of passband 
at various �1 and combination of damping c and excitation 
amplitude f3 from Figs. 8 and 9. Table 2 shows the centre 
frequency fc and 3 dB bandwidth of passband at different �1 

Fig. 8   The amplitude–frequency response curves of the second and third modes for six different α1 when the third mode is externally excited 
with f3 = 1.5 and c = 0.2

Fig. 9   The amplitude–frequency response curve of the second mode for four different damping c values as a function of excitation amplitude. 
The frequency bandpass behaviour is seen for a certain range of excitation amplitude in each case
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and combination of c and f3 . It can be noted that the centre 
frequency fc and 3 dB bandwidth increase with increasing 
�1 and c.

Numerical Estimates of the Axial Stiffness 
K
a
 of Guided End and Frequency Bandwidth 

1Ä of Bandpass

Up to this point, we have presented the bandpass charac-
teristics in terms of the normalized parameters �1 , f3 , and 
Ω . To investigate how the current analysis might be bet-
ter applied in actual bandpass filter applications, we col-
lect typical experimental dimensions ( L = 800 μm, B = 30 
μm, and h = 2 μm) and material properties ( E = 160 GPa 
and � = 2332 kg/m3) from Hajjaj et al. [2]. Additionally, 
the electrode gap g is chosen to be between 2 and 6 μm to 
provide a practical range for the axial stiffness of the guided 
end with retaining �1 = 1 . For each electrode gap, we calcu-
late the values of total axial stiffness ( Ka ) and show them in 
Table 3. However, the required axial stiffness value might 
be generated by an infinite number of different combinations 
of length, width, and thickness of the guided end’s flexural 
beams. The combination of length, width, and thickness of 
each flexural beam of flexible guided support can thus be 
estimated using these axial stiffnesses in Eq. 8. For exam-
ple, to show the exact dimensions of flexural beams, here, 
we assume the width ( Bf  ) and thickness ( hf  ) of all flexural 
beams of the guided end are the same as well as

Now, we can calculate the value of a by solving Eq. 8 
after inserting expressions of Eq. 13 and value of Ka from 

(13)b = a∕2, c = a∕2,Bf = a∕5, and hf = Bf∕5.

Table 3. The obtained value of a corresponding to the axial 
stiffness of the guided end is also shown in Table 3.

Above, we saw the dimensional conversion of axial stiff-
ness and dimensions of flexural beams of the guided end 
from non-dimensional quantities. Now, we obtain the dimen-
sional value of frequency bandwidth ΔΩ of bandpass using 
frequency dimensional conversion factor 1∕2�L2

�√
EI∕�A

�
 . 

The cross-section area A and second moment of area I are 
calculated using the previously specified beam dimensions. 
Table 4 shows real frequency bandwidth ΔΩ of bandpass 
filter for different combination of excitation amplitude f3 and 
damping c that are chosen from Figs. 6 and 9. We also note 
that the frequency bandwidth ΔΩ of the filter increases with 
increasing the value of f3 and c combinations. It can be noted 
from Table 5 that the bandwidth observed in the current 
analysis using 2 ∶ 1 internal resonance is less than that 
observed in parametric excitation-based veering phenomena 
in an electrostatically driven arch clamped–clamped 
beam [2]. However, the fabrication of the arch beams is more 
challenging than the fabrication of the straight electrostati-
cally driven clamped-guided beams. On the other hand, Liu 
et al. [3] reported 6.2 Hz bandwidth of bandpass using 1 ∶ 2 
internal resonance in coupled 35 × 5 × 0.8 mm3 size canti-
levers, whereas we observed 954.97 Hz bandwidth of 

Table 2   The centre frequency 
and 3 dB bandwidth of 
bandpass filter at various α1 and 
combination of damping c and 
excitation amplitude f3

Role of α1 when c = 0.2 and f3 = 1.5

α1 0.9 1 1.5 2 3

Centre frequency (fc) 120.217 120.268 120.259 120.335 120.465
3 dB bandwidth 0.285 0.321 0.329 0.350 0.409
Role of combination of c and f3 when α1 = 1
c & f3 0.1 & 0.5 0.15 & 1.2 0.2 & 1.5 0.3 & 4.5 0.4 & 7
Centre frequency (fc) 120.237 120.250 120.268 120.292 120.321
3 dB bandwidth 0.205 0.315 0.321 0.675 0.803

Table 3   The axial stiffness ( Ka ) of the guided end at various elec-
trode gap g

Electrode gap g ( � m) 2 3 4 5 6

Axial Stiffness K
a
 (N/m) 2400 900 521.74 328.77 226.42

a(� m) 407 163 88.5 64.3 38.4

Table 4   The frequency bandwidth ΔΩ of bandpass filter at different 
combinations of excitation amplitude f3 and damping c

f3&c 0.45 &
0.1

1.5 &
0.15

1.5 &
0.2

4.0 &
0.3

6.5 &
0.4

Bandwidth ΔΩ (Hz) 261.64 333 416.24 761.12 1130

Table 5   Comparison of the 3 dB bandwidth obtained in the current 
analysis and achieved by Liu et al. [3] and Hajjaj et al. [2]

3dB bandwidth Centre frequency fc

Current work 954.97 Hz 143.09 kHz
Liu et al. [3] 6.2 Hz 73.1 Hz
Hajjaj et al. [2] 11 kHz Hz
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bandpass through 2 ∶ 1 internal resonance in an electrostati-
cally actuated 0.8 × 0.03 × 0.002 mm3 size clamped-guided 
beam, as shown in Table 5. Based on these dimensional con-
versions and findings, future experiments may be designed 
to measure bandpass filter bandwidth.

Conclusion

In this paper, we investigated the bandpass filter based on 
intermodal coupling due to 2 ∶ 1 internal resonance of elec-
trostatically actuated clamped-guided microbeam. We mod-
elled the guided end using a set of flexural beams structured 
in a certain way to tune and obtain the necessary mid-plane 
stretching nonlinearity. We found that the axial stiffness of 
the guided end allowed us to choose any experimentally 
feasible electrode gap and thickness combinations. We also 
provided a thorough calculation of the axial stiffness of the 
guided end using COMSOL’s finite-element analysis and 
analytical methods.

We then comprehensively investigated the dynamics of 
the coupled second and third modes for �3 = 2�2 internal 
resonance by solving coupled governing equations (Eqs. 10 
and 11) using numerical integration and the method of 
multiple scales. We found that the amplitude–frequency 
response curve of the second mode exhibits bandpass char-
acteristics for a range of excitation amplitudes when the 
third mode is externally excited and subject to particular 
damping (Figs. 5 and 6). We also noted the ripple effect on 
the bandpass for higher excitation amplitude (Fig. 5). The 
second mode’s frequency spectrum showed similar bandpass 
behaviour as a function of excitation frequency; however, 
to internal 2 ∶ 1 resonance, the second mode’s bandpass 
frequency bandwidth is half that of excitation frequency 
(Fig. 7). Additionally, we found that the exact bandpass 
characteristics’ manifestation strongly depends on the mid-
plane stretching nonlinearity and the combination of excita-
tion amplitude and damping (Figs. 8 and 9). We presented 
dimensional conversions of the frequency bandwidth ΔΩ of 
the bandpass, the axial stiffness Ka of the guided end, and 
length of flexible beams corresponding Ka (Tables 3 and 4), 
and compared the 3 dB bandwidth of the current analysis 
with the literature (Table 5).

To the best of our knowledge, this is the first time a 
bandpass filter based on intermodal coupling via internal 
resonance of an electrostatically actuated clamped-guided 
microbeam is proposed and analysed in detail. The bandpass 
characteristics of the resonator are also presented in a most 
general manner for any combination of beam dimensions 
and material properties via non-dimensional parameters. 
The internal resonance-based bandpass filter demonstrated 
here illustrates a novel method for building filters using a 
single MEMS resonator. Here, we consider electrostatically 

actuated clamped–guided beams, but the concept can be 
applied to any MEMS resonator that exhibits modal cou-
pling based on internal resonance. In addition, it is more 
durable than contemporary electronic filters and is tempera-
ture robust. The work presented here might potentially serve 
as a guide for investigating more MEMS resonators to create 
bandpass filters based on internal resonances.

Appendix

Derivation of Governing Equation

We consider the dynamic response of a clamped-guided 
microbeam to electrostatic force. The guided end of the 
beam is modelled as a linear axial spring. We assume that 
the cross sections remain plane during transverse bending. 
By utilising moment balance and the relationship between 
shear force and moment, we find the coupled two partial 
differential equations corresponding transverse w(x, t) and 
axial u(x, t) deflections [43]

The axial natural frequency is much higher than the trans-
versal natural frequency. Hence, the inertia term ü in Eq. 14 
can be ignored and the axial deformation becomes

To obtain axial deflection, we integrate Eq. 16 twice with 
respect to x

where C1(t) and C2(t) are constants of integration. To obtain 
these constants, we use clamped and guided (restrained by 
a linear spring) boundary conditions for the axial motion. 
Hence, boundary conditions can be expressed as

where L is undeformed beam length and Ka stiffness of axial 
spring.

Substituting Eq. 18 into Eq. 17 gives

(14)𝜌Aü − EAu�� = EA
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w�
)2

2

)�
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Substituting Eq. 19 into Eq. 17 and then the outcome into 
Eq. 15 yield

Equation  20 is the nonlinear governing equation of 
motion that is typically used for beam vibration with mid-
plane stretching. Here, F is electrostatic force per unit length 
in a parallel-plate capacitor [43]

where g is the electrode gap between the beam and the sub-
strate, Vdc is the DC voltage, and Vac and Ω the AC harmonic 
voltage amplitude and frequency, respectively.

Data availability  The data that supports the findings of this study are 
available within the article.
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