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Abstract
Introduction The impact of vibrations excited by incident sound fields has become a major concern today, due to its influence 
on the performance of systems and installations. Vibrations have the potential to cause considerable dynamic disturbances 
and instabilities, which can lead to significant structural and functional damage. Consequently, it is crucial to control vibra-
tion phenomena right from the system design phase. To solve the problem of vibration, it is sometimes possible to increase 
the damping level of the structure by incorporating a damping treatment.
Objective The aim of this paper is to present a simplified numerical approach to study the vibro-acoustic responses of 
structures with PCLD “Passive Constrained Layer Damping” treatment in the thermal environment, taking into account the 
frequency and temperature dependence of the different viscoelastic behavior laws.
Material and Methods The modal stability procedure MSP is based on the finite element method in order to discretize 
and formulate the equation of motion. The asymptotic numerical method “ANM” is applied to approximate the solution of 
complex eigenvalue problems and construct the modal basis. The variability of the frequency responses is evaluated by a 
Monte Carlo simulation (MCS) combined with MSP and ANM to evaluate the stochastic behavior of a sandwich beam with 
random properties.
Results The comparison with the direct frequency responses (DFR) demonstrates that the results are highly satisfactory 
in terms of the validity of the present MSP approach. A comparative study of viscoelastic behavior models was carried 
out to evaluate their damping properties provided to the structure. The viscoelastic materials provide significant damping 
particularly for amplitudes corresponding to the high frequencies. This is in contrast to the responses obtained without the 
viscoelastic layer.
Conclusion The obtained results show the importance of viscoelastic damping, which has a significant effect on the vibro-
acoustic behavior, implying the improvement of the damping of the structure, especially for large frequencies and high 
temperatures.

Keywords Vibroacoustic responses · PCLD sandwich · Viscoelastic material · Passive damping · Finite element · 
Asymptotic numerical method

Introduction

Structural vibration and acoustic noise problems have 
become a major preoccupation due to their undesirable 
effects on the performance of systems and structures. Vibra-
tions can cause dynamic instabilities that can lead to major 
structural and functional damage. Therefore, the control of 

vibratory and acoustical phenomena is a very important 
phase in the design of mechanical systems. The vibration 
problem can be solved by increasing the damping level of 
the structure using a passive damping treatment, which 
involves the incorporation of viscoelastic materials with 
dissipative properties of vibration energies.

These materials are able to transform vibration energy 
into thermal energy, there by dissipating deformation 
energy into heat. Generally, a viscoelastic layer is incor-
porated between two skins forming a structure called pas-
sive constrained layer damping “PCLD” with high damping 
capacities. The PCLD is widely used in the fields of aviation, 
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aerospace, submarines, vehicles…, because of its low cost, 
easy implementation and high reliability, especially at low 
temperatures and high frequencies. The first studies con-
cern sandwich structures with viscoelastic core back to 1959 
where Kerwin [1] and Ross [2] used an analytical expression 
of the loss factor as a function of the characteristics of the 
structure based on the fourth-order linear ordinary differ-
ential equation of the transverse displacement of sandwich 
beam. A succession of studies has been performed by many 
researchers, where analytical models have been proposed 
to characterize the damping properties of sandwich beam 
with viscoelastic core [3–7]. DiTaranto [8] has defined an 
equation that describes the damping properties (attenuated 
pulsation, loss factor) with different boundary conditions.

The frequency independent viscoelastic model has been 
widely investigated, Rao [9] employed Hamilton’s energy 
principle to formulate the motion equation, where an analyti-
cal resolution has been proposed to characterize the damp-
ing properties of sandwich beams. Cai et al. [10] applied an 
analytical approach to examine the vibration response of the 
PCLD beam using the Lagrange Energy Method, where the 
Mead and Markus model [5] has been adopted to describe 
the kinematic relationships between the three layers. Cai 
et al. [11] employed for this new study an active treatment 
(ACLD) which consists in replacing the elastic constraint 
layer in the PCLD principle by a piezoelectric layer in order 
to improve the energy dissipation properties of the PCLD 
treatment, where the same principle was followed with the 
exception of the adoption of a new admissible function to 
represent the longitudinal displacements of the piezoelectric 
constraint layer in the sandwich beam.

However, several numerical approaches based on finite 
elements have been considered for composite structures to 
better take into account more complex geometries. Irazu and 
Elejabarrieta [12] analyzed the influence of design param-
eters on the dynamic properties of thin sandwich structures. 
Thus, Daya [13, 14] applied a non-linear theory to study the 
vibrations of sandwich beams with a viscoelastic core, which 
the non-linear frequency response of the beam is established 
using the Harmonic Balance Method coupled to single-mode 
of Galerkin’s modal basis. Bilasse [15] proposed a simplified 
and general approaches for analyzing linear and nonlinear 
vibrations of viscoelastic sandwich beams with various vis-
coelastic frequency dependent laws using the finite element 
method. Arvin et al. [16] presented a higher order sandwich 
theory with composite faces and a viscoelastic core, the 
transverse displacements are considered independent for the 
three layers of sandwich. In the same line, another numerical 
model has been developed by Moita et al. [17] for vibration 
analysis of multilayer sandwich plates using a hybrid damp-
ing treatment, in which the viscoelastic core is sandwiched 
between an elastic layer and another piezoelectric layer.

Most of the authors have used approximate viscoelastic 
behavior laws in their studies that are frequency and tem-
perature independent. However, the viscoelastic behavior 
is highly dependent on frequency as well as temperature, 
which can be characterized by experimental investigations. 
Therefore, experimental studies [18, 19] show that for dif-
ferent temperatures and a fixed frequency, the variation in 
mechanical properties (storage modulus, loss factor) as a 
function of temperature has the same shape as that obtained 
in a fixed temperature experiment by varying the frequency, 
which makes it possible to superpose different curves for 
various temperatures. The superposition is carried out by a 
horizontal translation according to a factor called shift fac-
tor αT corresponding to a change in frequency scale called 
reduced frequency �Tω αTω on the new superposed curve 
named the master curve. There are several empirical equa-
tions to describe the evolution of the shift factor �T in loga-
rithmic scale [20]. Moreover, the vibro-acoustic responses 
of sandwich structures are widely examined, but outside the 
viscoelastic layer, most authors have studied the responses 
of sandwich structures with isotropic core materials, while 
the efficiency of viscoelastic materials can be considerable 
in reducing acoustic noise. Li and Yu [21] examined the 
vibrational and acoustic responses of orthotropic sandwich 
panels in high-temperature environment and under a con-
centrated harmonic force. The natural frequencies as well as 
the corresponding modes are obtained under thermal stress 
by application of low order shear strain theory. The authors 
proposed an analytical solution validated by a numerical 
approach using the commercial software “Nastran”. The 
results shown that the natural frequencies of the sandwich 
panel decrease with increasing of temperature, however, 
the vibro-acoustic peaks are very high in the absence of the 
damping effect in the structure. Jeyaraj et al. [22] applied a 
numerical method combining finite element method with 
boundary element method (FEM–BEM) to study vibration 
and acoustic responses of isotropic plates in thermal envi-
ronment, it’s concluded that natural frequencies decrease 
while the displacement response of the structure increases 
with increasing plate temperature. Zhao et al. [23] also 
presented a numerical study of fiber-reinforced composite 
plates in a thermal environment using the classical laminated 
plate theory, this study showed that resonance amplitudes 
decrease with temperature increase. An analytical approach 
was presented by Geng and Li [24] to study the vibrations 
and acoustic characteristics of an isotropic rectangular thin 
plate under uniform thermal conditions, the same previous 
findings were also drawn from which the first natural fre-
quency is more sensitive to temperature variations. Li et al. 
[25] studied the sound transmission loss (STL) of ortho-
tropic sandwich panels in a thermal environment, where the 
results of the numerical simulation are validated by experi-
mental studies. The results show that the natural frequencies 
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of the panel decrease and the STL peaks tend to lower fre-
quencies when the temperature increases. Jeyaraj et al. [26] 
numerically studied the vibration characteristics and acous-
tic response of a fiber-reinforced composite plate in a ther-
mal environment with consideration of the intrinsic damping 
properties of the composite material. They found that the 
vibration response of the structure decreases with uniform 
temperature increase for both Glass–Epoxy and PEEK/IM7 
materials, but the acoustic radiation from the plate decreases 
only marginally due to the interaction between reduced stiff-
ness and improved damping. Geng and Li [27] studied the 
acoustic vibration characteristics of a thin rectangular iso-
tropic plate under thermal conditions. The study shows that 
plate vibration responses and acoustic radiation efficiency 
tend to low frequencies as the temperature of the structure 
increases, which is verified by simulations using a combina-
tion of the Finite Element Method (FEM) and the Boundary 
Element Method (BEM).

The development of a reliable and robust vibration con-
trol system has become a necessity in the face of the struc-
tural functional requirements. Therefore, passive control is 
very effectively to attenuate structure vibration and acoustic 
noise. Numerical simulation of structures damped by vis-
coelastic materials is an important design step to predict 
the effectiveness of this damping treatment. However, this 
step requires a good knowledge of the viscoelastic behavior 
materials and the consideration of all significant factors that 
affect their behavior. In this work, a numerical approach is 
presented to study the vibro-acoustic responses of sandwich 
beams with a viscoelastic core in order to investigate the 
structural damping provided by the viscoelastic layer tak-
ing into account different viscoelastic models described by 
different laws.

This research investigated the vibroacoustic responses 
of structures with viscoelastic materials known for their 
remarkable damping properties. To enhance the study, a 
Monte Carlo simulation is employed to analyze the vari-
ability and stochastic behavior of sandwich beams with 
randomly varying properties. The frequency responses are 
evaluated by modal stability procedure (MSP) and asymp-
totic numerical method (ANM) to estimate the sandwich 
beam behavior with nonlinear properties. The resolution of 
the eigenvalues requires the use of a very complex algo-
rithm of the numerical asymptotic method combined with 
the finite element method given the frequency and tempera-
ture dependence of the viscoelastic properties. The MSP 
formulation is based on the finite element discretization of 
the equation of motion established by Hamilton’s principle 
as well as on the ANM to solve the eigenvalue problem, 
The MSP hypotheses are identified in many research such as 
[28]. The MSP-MCP formulation applied to the frequency 
response is used to evaluate the stochastic behavior of a vis-
coelastic sandwich beam with random properties after vali-
dation study by direct comparison with MCS-DFR approach. 
The vibro-acoustic responses are obtained firstly for different 
viscoelastic laws describing their mechanical properties and 
secondly for different structure configurations, precisely the 
variation of the viscoelastic layer thickness.
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Fig. 1  a Sandwich beam configuration. b Displacement field given by Rao’s linear zigzag model [9]
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Fig. 2  Beam element with two nodes
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Variational Formulation

The sandwich beam considered in this work is composed 
of a viscoelastic layer interposed between two face layers 
constituting the skins of the sandwich. The assumptions con-
sidered by Bilasse [15] are modified to take into account 
the effect of longitudinal and rotational inertia as well as 
the asymmetry of the sandwich. The geometrical deforma-
tion of the asymmetrical beam considered for this work is 
shown in Fig. 1a, where h2, h1 and h1 care the thickness of 
the central layer, upper layer and lower layer, respectively. 
The displacement field of the viscoelastic sandwich beam 
is given by Rao’s zigzag model [9] (Fig. 2) based on the 
first-order deformation theory (Fig. 1b), where Euler–Ber-
noulli’s theory is applied to the composite sandwich faces 
and Timoshenko’s theory to the viscoelastic core.

Considering these assumptions, the displacement and 
deformation fields of each face layer are given by:

where ∙,x the derivative with respect to x, u, w and εn are 
respectively, longitudinal displacement, transverse displace-
ment and normal deformation adopted for small deforma-
tions and defined by the Green–Lagrange formula for each 

(1)
ui(x, z, t) = u0i(x, t) −

(
z − zi

)
w,x

wi(x, z, t) = w(x, t) with i = 1, 3

�ni(x, z, t) = u0i,x −
(
z − zi

)
w,xx

with u0 = u02 corresponds to the displacement in the mid-
dle plane of the viscoelastic layer. The formulation of equa-
tion of motion is established by applying the Hamilton’s 
principle.

where Wp, Wc are the potential energy and kinetic energy, 
σ, fv, fs and ρ represent the stress tensor, the volume force, 
the surface force and the density respectively, Eq. (4) can be 
rewritten by using the variational formulation, as:

Replacing Eq. (3) in Eq. (5) yields:
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+�2S2ü2�u2 +
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face layer, u0i represent the longitudinal displacement at the 
middle plane and z is the order of each layer, respectively. 
For the viscoelastic layer on which Timoshenko’s theorem 
is applied, the displacement and strain fields are:

with εs2 is the shear strain of the viscoelastic layer and β is 
the rotation of the central layer.

The expressions that describe the relationship between 
the core layer and face layers are given by:
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Using Hooke’s law to express the normal stress Ni and the 
bending moment Mi associated to each layer of the sandwich 
face:

where Ei and Ii are Young’s modulus and quadratic moment 
of the cross section of the ith layer, respectively. The normal 
force N, the bending moment M and the shear force T in the 
viscoelastic layer are given in the time domain by the fol-
lowing terms:
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ẅ,x

��
𝛿u0 +

h2

2
𝛿𝛽 −

h1

2
𝛿w,x

�
+

𝜌3S3

�
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The shear force due to the shear stress of the central layer 
is expressed by:

τ2 refers the shear stress into viscoelastic layer.
The Riemann’s convolution product is used to express 

normal stress, bending moment and shear stress in the form:

The Riemann’s convolution product can be replaced by a 
simple product in the frequency domain using the Laplace 
transform properties.

with E2(ω) is the frequency-dependent complex Young’s 
modulus of the viscoelastic layer. Therefore, considering 
the effect of temperature on the structure, the thermal stress 
can be expressed for each layer of the sandwich beam as 
follows [29]:

Finite element discretization

The discretization of the equation of motion Eq. (6) by the 
finite element method and the expression of the displace-
ment field as a function of the nodal displacements Ue make 
it possible to form the elementary behavior matrices.

Nw, Nu and Nβ are the interpolation functions given by:
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with ξ = x/le. An element with two nodes is shows in Fig. 2, 
where the proposed number of degrees of freedom is four 
(4) for each node, which are the longitudinal displacement 
u, the transverse displacement w, the shear rotation of the 
central layer β and the rotation θ = dw/dx.

The elementary matrix system that describes the vibra-
tory behavior of the sandwich beam can be obtained by 
replacing Eqs. (7–14) in Eq. (6) with:

where [M]e, [K]e and {F}e are the mass matrix, the stiffness 
matrix and the nodal force vector, respectively (see Appen-
dix A). The global matrix system describing the vibration 
behavior of the sandwich beam is obtained after the assem-
bly of the elementary matrix.

Structural Vibration Responses

The expression of the displacement vector as a function of 
nodal displacements U = U0eiωt and replacing it in Eq. (15) 
makes it possible to obtain the characteristic equation 
describing the frequency response of the sandwich beam 
with viscoelastic core:

with {U0}is the nodal displacement vector.

Acoustic Responses

The sound pressure is the physical quantity characterizing 
the variation of atmospheric pressure that causes a sound 
impression due to an acoustic source distribution, while the 
sound power is the transmitted sound energy. In this study, 
the beam sandwich beam is part of a rigid baffle of infinite 
length that the bottom of sandwich beam is subject to plane 
incident pressure wave while the region part above the top 
layer is an unbounded half-plane fluid domain (Fig. 3). In 
this region, the pressure distribution can be obtained from 
the solution of Helmholtz equation [30, 31]:
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The Sommerfeld radiation condition must be satisfy to 
ensure that the wave amplitude vanishes at infinity:

with the following boundary conditions for rigid walls:

where w(rs) refers the normal velocity on the surface of the 
beam k = ω/c0 is acoustic wave number, ρ and c are the air 
density and sound velocity, respectively, with |r − rs| is the 
distance between the surface and the field point. The sound 
pressure expression in the plane (x, z) of the structure is 
given in the form:

with v(r) is the complex conjugate of the particle velocity 
and l represent the width of the sandwich beam. The sound 
power of the sandwich beam can be obtained by:

.* is the complex conjugate. The transmission loss (TL) 
generally describes the cumulative decrease in the intensity 
of the sound energy propagated through the sandwich beam 
(Absorbed sound power). The acoustic transmission loss is 
given by:

where Wi refers the transmitted sound power calculated by 
Eq. (21) and WT is the sound power given by:

Pi and A are the sound incidence pressure and the contact 
surface, and θ is incidence angle.

Eigenvalues Problem

In this work, Eq. (16) is solved by the MSP [32] formula-
tion which eigenmodes are obtained by solving the following 
eigenvalue problem:
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The resolution of the complex problem Eq. (23) can be 
determined by applying the set of techniques of the asymp-
totic numerical method starting with the decomposition of the 
module E2(ω) in the form:

with E0 and Ec(ω) are respectively the modulus of delayed 
elasticity and the dissipation modulus. Consequently, the 
stiffness matrix can be decomposed into two parts:

The injection of new stiffness matrices into the eigenvalue 
problem Eq. (23) makes it possible to express the problem 
in the form:

After the decomposition of the problem, the perturbation 
technique [33, 34] is applied by writing the resident argu-
ments in the form of a power series:

where U0, ω0 and Ec0 are the initial parameters of eigenvec-
tor, pulsation and dissipative modulus computed for each 
iteration. Given the complexity of the eigenvalues prob-
lem due to the frequency dependence of its parameters, the 
homotopy procedure is applied by injecting the path param-
eter (αj + Δα) into the problem Eq. (26), the following new 
eigenvalue problem is obtained:

By replacing the expressions of Eq. (27) into Eq. (28), 
and arrange them according to the powers of Δα, the fol-
lowing system of linear equations is obtained:
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Fig. 3  Acoustic radiation field of the sandwich beam
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The problem Eq. (29) is ill posed because there are (m) 
equations and (m + 1) unknowns. An additional condition 
is necessary for each order to solve it. The orthogonality 
property of the eigenmodes gives another additional solution 
that can solve the problem Eq. (18):

The matrix A0 is non-invertible, which implies that the 
Eq. (29) at each order n ≥ 1 has no solution only if the fol-
lowing solvency condition is satisfied:

It is noticed that an implicit equation is appears due to the 
appearance of the terms λn and En, simultaneously. To solve 
this type of problem, Faa di Bruno’s recursion formula is used 
for the high degree differentiation of the composite function 
Eq. (31). The term En can be decomposed to an equation 
explicitly dependent on the initial parameters:
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{U0} + �n[M]
{

U0
}

(30)
{
Un

}T{
U0

}
= 0

(31)

{

Fn
}T{U0

}

= − �j
n−1
∑

k=1
Ek
{

U0
}T[Kc

]

{Un−k}

−
n−1
∑

k=0
Ek
{

U0
}T[Kc

]

{Un−k−1}

+
n−1
∑

k=1
�k
{

U0
}T [M]{Uj−k}

− �jEn
{

U0
}T[Kc

]

{U0}

+ �n
{

U0
}T [M]{U0} = 0

(32)En =
{
E 1|�1=1

}
�n +

{
E 1|�n=0

}

The insertion of Eq. (32) in Eq. (31) makes it possible to 
express after Taylor development of the coefficient λn as a 
function of lower order terms:

After determination of λn, the n-order Taylor coefficient 
of vector U can be deduced using Eq. (29). Integrating the 
Lagrange multiplier χ makes this equation more generic:

The problem is solved starting from an initial linear prob-
lem R(U, λ) = [[K0] − ω0

2[M]]U0 for αj = 0 to the nonlinear 
problem R(U, λ) = [[K0] + En(ω)[Kc] − ω0

2[M]]U0 for αj = 1. 
Therefore, a continuation procedure is applied that consists 
of defining a new step of solution from the starting point (Uj, 
λj) defined by:

where αmax is the convergence radius given by [29]:

with ε is the precision parameter, the continuation process 
continues for a new iteration with:

The process ends when the value of αj+1 > 1, at this step the 
eigenvalues and the eigenvectors are calculated by:

(33)
�n =

�j
∑n−1

k=1 Ek
{

U0
}T [Kc

]

{Un−k} +
∑n−1

k=0 Ek
{

U0
}T [Kc

]

{Un−k−1}
{

U0
}T [M]{U0} + �j

{

E 1|�1=1
}{

U0
}T [Kc

]

{U0}

+
−
∑n−1

k=1 �k
{

U0
}T [M]{Uj−k} + �j

{

E 1|�n=0
}{

U0
}T [Kc

]

{U0}
{

U0
}T [M]{U0} + �j

{

E 1|�1=1
}{

U0
}T [Kc

]

{U0}

(34)
[
A0 U0

UT
0

0

]{
Un

�

}
=

{
Fn

0

}

(35)
Uj =

N∑
n=0

�
�max

�n
Un

�j =
N∑
n=0

�
�max

�n
�n

(36)�max =

(
�
U1

Un

) 1

N−1

(37)aj+1 = aj + amax

Table 1  Mechanical and 
geometrical properties of the 
viscoelastic core sandwich

Upper face Viscoelastic core Lower face

Young’s modulus (GPa) E1 = 69 Eq. (40) E3 = 69
Poisson’s ratio υ υ1 = 0.3 υ2 = 0.3 υ3 = 0.3
Density (kg/m3) ρ1 = 2766 ρ2 = 968.1 ρ3 = 2766
Thickness (mm) h1 = 1.524 h2 = 0.127 h3 = 1.524
Length (mm); width (mm) L = 177.8; l = 12.7
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Results and Discussions

The frequency responses of the sandwich beams with a vis-
coelastic core are obtained for different frequency-dependent 
viscoelastic laws and for different thermal conditions. Before 
that, a comparative study is carried out to validate the pre-
sent numerical approach. The dynamic responses of sandwich 
beams are studied under the harmonic point load:

(38)
Us =

N∑
n=0

�
1 − �j

�n
Un

�s =
N∑
n=0

�
1 − �j

�n
�n

(39)P(x, t) = P0�
(
x − x0

)
ei�t

where δ is the Dirac distribution, P0 = 1N is the magnitude 
force and x0 is the position of the force x0 = {L, L/2} for can-
tilever and simply supported conditions, respectively.

Free Vibration Validation

The obtained results of the natural frequency and loss factor of 
the sandwich beam with the two viscoelastic cores PVB and 
ISD112 27° interposed between two layers of aluminum for 
the boundary conditions clamped–clamped and clamped–Free 
are compared with those obtained by Diamond approach of 
Billasse et al. [15]. The mechanical and geometrical properties 
of the sandwich beam with viscoelastic core are presented in 
Table 1. The shear modulus of the viscoelastic material PVB 
is given by Eq. (40) and the mechanical proprieties of the vis-
coelastic material ISD112 considered at 27° are reported in 
Table 1.

Table 2  Natural frequencies 
and loss factor of the sandwich 
beam with PVB viscoelastic 
core

No. mode Présente formulation Billasse [15]

ω (Hz) Η R (U, λ) ω (Hz) η

C-C 1 507.81 7.52e−3 4.29e−5 506.77 8.03e−3
2 1363.3 1.16e−2 2.83e−4 1358.71 1.25e−2
3 2593.8 1.52e−2 7.21e−4 2581.50 1.65e−2

C-F 1 81.80 1.34e−3 2.05e−4 81.79 1.37e−3
2 504.50 5.15e−3 1.97e−4 504.16 5.43e−3
3 1382.09 8.76e−3 2.15e−6 1380.34 9.38e−3

Table 3  Natural frequencies 
and loss factor of the sandwich 
beam with frequency-dependent 
viscoelastic core in ISD112 at 
27°

No. mode Présente formulation Billasse [15]

ω (Hz) η R (U, λ) ω (Hz) η

C–C 1 290.00 2.85e−1 1.25e−4 292.70 2.49e−1
2 782.45 2.80e−1 1.57e−4 784.94 2.45e−1
3 1495.71 2.64e−1 8.76e−4 1502.34 2.34e−1

C–F 1 65.25 1.71e−1 2.30e−4 95.34 1.56e−1
2 323.35 3.04e−1 1.78e−004 326.08 2.55e−1
3 847.21 3.31e−1 1.75e−004 849.49 2.78e−1

Table 4  Mechanical and 
geometrical properties of the 
viscoelastic core sandwich with 
PCLD Treatment

Upper face Viscoelastic core Lower face

Young’s modulus (Pa) E1 = 49 ×  109 E2 = 2G(1 + υ2) E3 = 70 ×  109

Shear modulus (Pa)
 Soft – G = 0.895 + 1.3067i –
 Hard G = 9.89 + 14.4394i

Poisson ratio υ1 = 0.3 υ2 = 0.3 υ3 = 0.3
Density (kg/m3) ρ1 = 750 ρ2 = 968.1 ρ1 = 2110
Thickness (mm) h1 = 2 h2 = 1 h2 = 4
Longue (m); width (m) L = 0.4; l = 0.03
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It can be seen that the natural frequencies and loss factors 
presented in Tables 2 and 3 are very close to those obtained 
by Billasse [15], where residual error is very acceptable.

(40)G∗
c
(�) =

[
G∞ +

(
G0 − G∞

)[
1 + (i��)1−�]−�

G0 = 479 × 103 Pa; Ginf = 2.35 × 108 Pa;� = 0.3979;

� = 0.46; � = 0.1946.

Frequency Responses Validation

In this section, the dynamic responses of the sandwich beam 
under harmonic point load studied by Cai et al. [10] are 
obtained by the present approach and compared with their 
responses [35]. The properties of the sandwich are given in 
Table 4.

The obtained responses at the tip of the beam are com-
pared for a cantilever beam with two viscoelastic core mod-
els “soft” and “hard”, which are shown in Fig. 4a, b.

It’s noticed that the obtained eigenfrequencies of Cai et al. 
[10] are underestimated compared for two models of the 
hard and soft viscoelastic core. In addition, the amplitudes 
of the frequency responses at the resonance frequencies of 

(a) (b) 

Fig. 4  Comparison of the frequency responses at the tip of the viscoelastic cantilever sandwich beam between present approach and analytical 
approach [16] (a hard cœur; b soft cœur)

Table 5  Mechanical and 
geometrical properties of 
the PCLD sandwich with 
a frequency dependent 
viscoelastic core

Composite upper face Viscoelastic core Composite lower face

Young’s modulus (Pa) E11 = 98; E22 = 7.9; G12 = 5.6 PVB ISD112 E11 = 98; E22 = 7.9; G12 = 5.6
Eq. (40) Eq. (41)

Poisson’s ratio υ υ1 = 0.28 υ2 = 0.29 υ2 = 0.4 υ3 = 0.28
Density (kg/m3) ρ1 = 1520 ρ2 = 999 ρ2 = 1600 Ρ3 = 1520
Thickness (m) h1 = 0.002 h2 = 0.001 h3 = 0.004
Length; width (mm) L = 0.6; l = 0.02

Table 6  Parameters of 
viscoelastic Young’s modulus 
ISD112

E
2
∗ (�) = 2G

0

�
1 + �

2

��
1 +

3∑
j=1

Δj

�−iΩj

�
(41)

20 °C 27 °C

j G0 Δj Ωj G0 Δj Ωj

1 5.11 ×  104 2.8164 31.1176 5 ×  105 0.746 468.7
2 13.1162 446.4542 3.265 4742.4
3 45.4655 5502.5318 43.248 71,532.5
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the reference [10] for the hard heart are lower than the cor-
responding results of the present study even at low frequen-
cies. On the other hand, the present obtained amplitudes for 
second soft-heart model are lower than those obtained by 
reference [10].

Variability of Beam Frequency Responses

The first two viscoelastic models in the present study are 
considered frequency-dependent. Two sandwich beams are 
considered with two different viscoelastic cores, the first 
operational modulus of the polyvinyl butyral (PVB) viscoe-
lastic material [15, 28] assumed at 20° is described by a 
fractional derivative model (Eq. 40) and the second of the 
ISD112 considered at 20° and 27° [36] is described by the 
generalized Maxwell model (Eq. 41). The mechanical and 
geometrical properties of the viscoelastic sandwich struc-
ture are given in Table 5. The highly frequency-dependent 

complex Young’s modulus parameters of the viscoelastic 
material ISD112 considered at 20° and 27° are presented 
in Table 6.

The modal stability procedure MSP for frequency 
responses combined to asymptotic numerical method 
ANM and Monte Carlo Simulation MCS is used here to 
evaluate the stochastic behavior of a sandwich beam with 
random properties. A comparative study of the frequency 
responses between MCS-MSP, MCS-DFR and determin-
istic modal stability procedure DMSP are discussed in 
this section. All uncertain mechanical and geometrical 
parameters of upper face ( E11,E22,G12�1, �1, andhf ) , lower 
faces ((E11,E22,G12�3, �3, andh3) , ISD112 viscoelastic 
core ( G0,Δj,Ωj, �2, �2, andh2) and PVB viscoelastic core 
( G0,Ginf , τ, �, β, �2, �2, andh2) , are represented by Gaussian 
distribution fields with a moderate input coefficient variation 
Cov = 5% in order to test the robustness of the deterministic 
based in the MSP approach. The MCS are performed with 
1000 trials.
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Fig. 5  Comparison of natural frequencies (a) and loss factors (b) of the sandwich beam with PVB core for the first six modes between MCS-
MSP and DMC
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The variations of natural frequency and loss factor for 
sandwich beams with PVB and ISD112 are presented in 
Figs. 4 and 5 as the first results of this comparative study. 
It is shown that the variation of the mean natural frequency 
and loss factors for PVB core obtained by MCS-DFR are 
very close to MCS-MSP where the relativity errors are less 
than 1.5% and 1% for the natural frequency and loss factor, 
respectively. However, for the beam with ISD112 core, the 
relative error is lower than 1.4% for the natural frequencies 
and lower than 1% for the loss factors (Fig. 6).

However, the obtained results of the mean and standard 
deviation MSP approach for the PVB and ISD112 at 27° 
sandwich beam cores, presented in Figs. 7 and 8 ((a) mean; 
(b) standard deviation) respectively, has been validate in this 
case, the displacements and velocity responses are coincide 
to those obtained by MCS-DFR. The results of MCS-DFR 
are always reliable and robust but with a really expensive 
calculation time. The MCS-MSP is a remarkable and very 
accurate solution with a very reduced computation time. 
However, the frequency responses of MCS-MSP are very 
close to DMSP, where the variability level is lower than 

2.64e−4 m and 1.6 e−4 m for the two sandwich beams with 
PVB and ISD112 viscoelastic cores, respectively.

Vibro‑Acoustic Responses of PCLD Sandwich Beams

Comparative Study

The obtained results of natural frequency and loss factor 
of viscoelastic core sandwich beams with the three vis-
coelastic cores PVB, ISD112 at 20° and ISD112 at 27° 
are shown in Table 7. The results of the residual error 
R(U, �) =

(
[K] − �2[M]

)
U illustrate the efficiency of the 

numerical approach used of which R (U, λ) was generally 
less than 0.5 ×  10–3.

The first two viscoelastic models in the present study are 
considered frequency-dependent. Two sandwich beams are 
considered with two different viscoelastic cores, the first 
operational modulus of the polyvinyl butyral (PVB) viscoe-
lastic material [15, 28] assumed at 20° is described by a 
fractional derivative model (Eq. 40) and the second of the 
ISD112 considered at 20° and 27° [36] is described by the 
generalized Maxwell model (Eq. 41). The mechanical and 
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geometrical properties of the viscoelastic sandwich struc-
ture are given in Table 5 with viscoelastic core thickness 
h2 = 0.002 m. The highly frequency-dependent complex 

Young’s modulus parameters of the viscoelastic material 
ISD112 considered at 20° and 27° are presented in Table 6.

(a) (a)

(b) (b)

Fig. 8  Comparison of frequency responses of displacement (a) and velocity (b) of the sandwich beam with ISD112 core at 27° between MCS-
MPS and DMC

Table 7  Natural frequencies 
and loss factor of the sandwich 
beam with frequency-dependent 
viscoelastic core (PVB, ISD112 
at 20° and ISD112 at 27°)

No PVB core ISD112 core at 20° ISD112 core at 27°

ω (Hz) η R (U, λ) ω (Hz) η R (U, λ) ω (Hz) η R (U, λ)

D-S 1 68.08 5.35e−3 0.1501e−4 37.19 0.2687 0.1777e−4 39.66 0.1600 0.1528e−4
2 264.32 1.29e−2 0.4555e−5 141.13 0.1231 0.2162e−4 141.78 0.1354 0.18403e−4
3 570.63 2.05e−2 0.8957e−5 308.12 0.0824 0.2272e−4 308.16 0.1166 0.18170e−4
4 967.16 2.69e−3 0.8385e−4 542.66 0.0616 0.2096e−4 542.10 0.1013 0.16187e−4
5 1437.53 3.16e−3 0.8445e−3 844.92 0.0108 0.6880e−3 843.51 0.0861 0.18697e−4
6 1970.43 3.48e−3 0.3707e−3 2948.70 0.0428 0.3564e−4 1212.16 0.0745 0.17592e−4

C-F 1 24.41 3.41e−3 0.3038e−4 14.92 0.3040 0.2380e−4 16.91 0.0947 0.2036e−4
2 148.69 1.62e−3 0.3205e−4 83.42 0.1707 0.2319e−4 84.54 0.1457 0.1630e−4
3 401.57 1.83e−3 0.1207e−3 219.35 0.1068 0.7619e−4 219.84 0.1370 0.1576e−4
4 752.88 2.46e−2 0.2985e−3 419.79 0.0770 0.3952e−4 419.80 0.1173 0.1923e−4
5 1187.20 2.94e−2 0.9071e−3 689.26 0.0558 0.1843e−4 688.55 0.1005 0.1920e−4
6 1691.40 3.27e−2 0.9694e−4 1025.60 0.0369 0.1862e−4 1024.10 0.0850 0.1908e−4
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To examine the importance of the viscoelastic layer in the 
sandwich structure, the different vibro-acoustic responses 
of sandwich beams with and without the viscoelastic core 
are established. The different responses are obtained for the 
three viscoelastic cores PVB, ISD112 at 27° and ISD112 
at 20° and compared with those obtained with a sandwich 
beam without viscoelastic material, where a simple isotropic 
material is considered in the core of sandwich with follow-
ing mechanical properties: E2 =  106 Pa, υ = 0.3, ρ = 40 kg/
m3 [21].

The transverse displacement and velocity responses 
obtained at the observation point (0.3 (m), 0 (m), 0 (m)) 
are shown in Figs. 9 and 10, respectively. The difference 
between the responses with and without the viscoelastic core 
is quite evident especially at the natural frequency where the 

effect of viscoelastic damping is significant after observ-
ing the decrease in amplitude peaks especially for the large 
natural frequencies, in contrast to responses obtained with-
out viscoelastic damping, which amplitude peaks are very 
high. This shows the effectiveness of PCLD treatment with 
the viscoelastic layer. However, comparison of the results of 
three cores, PVB, ISD112 at 27° and ISD112 at 20° shows 
that the ISD112 cores are more efficiency in damping, that 
is because of the very high damping of the ISD112 cores, 
reflected by the damping factor shown in Table 7.

The pressure and sound power responses collected at the 
observation point (0.3 (m), 0 (m), 2 (m)) for the four vis-
coelastic cores are shown in Figs. 11 and 12, respectively. 
The results show the damping provided by the viscoelastic 
layer, especially for the simply supported beam, where the 

Fig. 9  Frequency displacement responses of the simply supported 
PCLD beam with and without the viscoelastic core

Fig. 10  Velocity frequency responses of the simply supported PCLD 
beam with and without the viscoelastic core

Fig. 11  Frequency response of the sound pressure level of the simply 
supported PCLD beam with and without viscoelastic core

Fig. 12  Frequency response of the sound pressure level of the simply 
supported PCLD beam with and without viscoelastic core
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sound pressure magnitudes obtained with the three types of 
viscoelastic layers (PVB, ISD112 at 27° and ISD112 at 20°) 
are much lower compared to the results obtained without the 
viscoelastic core. In addition, the sound pressure response of 
PCLD sandwich beams with a viscoelastic ISD112 core are 
lower and more stable compared to those with the PVB core.

The sound transmission loss responses of different cores 
are shown in Fig. 13. The results show that the transmission 
loss for viscoelastic cores are very high compared to the 
simple isotropic material to core, where the STL values is 
greater than 17 db.

PCLD Sandwich Beam with DYAD606 Viscoelastic 
Core

In this section, we study the vibration behavior of PCLD 
sandwich beams under the effect of temperature, whose 
viscoelastic model is considered frequency and tempera-
ture dependent. The operational modulus of the viscoelastic 
material DYAD606 [15] described by the generalized Max-
well model Eq. (41) is considered for different temperatures 
T = 10°, 25°, 30° and 38°. The parameters of the viscoelastic 
Young’s modulus strongly dependent on frequency are given 
in Table 8. The mechanical and geometrical properties of the 
sandwich beam are presented in Table 9.

In order to study the effect of temperature on the PCLD 
sandwich behavior with a viscoelastic core in DYAD606, 
the different sandwich responses for the simply supported 
and clamped–free conditions, are obtained for the con-
sidered temperatures T = 0°, 25°, 30° and 25°, where 
the natural frequencies and loss factor are presented in 
Table 11. The results are illustrated graphically in Figs. 14 
and 15. It is observed that the natural frequencies decrease 
with increasing temperature. This is due to the internal 
compressive stresses induced by the high temperature 
increase, which reduces the structural rigidity. On the 
other hand, the structural damping reflected by the loss 
factor increases with increasing temperature, thus increas-
ing the structure dissipative capacity.

The displacement and velocity responses of the sim-
ply supported and cantilever sandwich beam for different 
temperatures are shown in Figs. 16 and 17. A decrease 
in amplitudes is observed when the temperature rises, 

Fig. 13  Frequency responses of the sound transmission loss of the 
PCLD sandwich beam with and without the viscoelastic core

Table 8  Young modulus of the 
viscoelastic core ISD112

Equation (41)

10 °C 25 °C 30 °C 38 °C

G0 (Pa) 5.94 ×  106 2.02 ×  106 2.09 ×  106 1.74 ×  106

J Δj Ωj Δj Ωj Δj Ωj Δj Ωj

1 5.88 5.85 9.89 58.18 5.40 73.06 1.15 27.02
2 13.66 2345.09 13.14 6.75 14.15 453.34 3.55 213.35
3 8.94 331.70 18.94 403.00 1.43 8.83 11.79 1257.50
4 6.47 50.65 35.06 3097.38 28.33 3406.80 24.41 7585.29
5 34.52 25,033.79 165.97 57,244.00 128.85 52,781.28 113.12 92,517.87

Table 9  Mechanical and 
geometrical properties of the 
sandwich beam

Composite upper face Viscoelastic Core Composite lower face

Young’s modulus (GPa) E11 = 98; E22 = 7.9; G12 = 5.6 Equation (41) E11 = 98; E22 = 7.9; G12 = 5.6
Poisson’s ratio υ υ1 = 0.28 �

2
= 0.29 υ3 = 0.28

Density (kg/m3) ρ1 = 1520 �
2
= 1600 ρ3 = 1520

Thickness (m) h1 = 0.0015 h
2
= 0.001 h3 = 0.003

Length; width (mm) L = 0.4; l = 0.02
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Table 11  Natural frequencies 
and loss factor of sandwich 
beams with frequency–
temperature-dependent 
viscoelastic core DYAD606

T (°) 0 25 30 38

No. ω (Hz) η ω (Hz) η ω (Hz) η ω (Hz) η

D-S 1 128.41 0.0070 121.86 0.0213 118.02 0.0554 109.35 0.1588
2 483.55 0.0285 469.44 0.0536 454.86 0.1045 417.11 0.2125
3 1042.35 0.0502 1007.71 0.0824 967.41 0.1398 873.17 0.2592
4 1778.94 0.0758 1701.50 0.1215 1618.00 0.1846 1449.71 0.2700
5 2677.35 0.0946 2537.36 0.1654 2398.74 0.2311 2123.18 0.2734
6 3716.01 0.1009 3516.52 0.2008 3318.11 0.2631 2893.12 0.2777

C-F 1 44.55 0.0167 43.83 0.0134 44.57 0.0452 45.06 0.1287
2 271.26 0.0258 263.36 0.0479 254.87 0.0992 235.33 0.2027
3 731.38 0.0429 709.25 0.0723 682.81 0.1268 618.68 0.2332
4 1376.72 0.0658 1323.44 0.1022 1263.19 0.1597 1139.97 0.2537
5 2193.50 0.0878 2086.71 0.1422 1978.85 0.2027 1773.33 0.2576
6 3167.39 0.0997 2995.93 0.1818 2832.29 0.2417 2504.27 0.2632

(a) (b) 

Fig. 14  Natural frequency variation of the PCLD sandwich beam with frequency-temperature-dependent viscoelastic core DYAD606 (a Simply 
supported; b clamped-free)

(a) (b) 

Fig. 15  Loss factor variation of the PCLD sandwich beam with frequency-temperature-dependent viscoelastic core DYAD 606 (a simply sup-
ported; b clamped-free)
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especially at higher frequencies. This explains how the 
structure becomes highly damping with the high values 
of the temperatures, whereas the increase in temperature 
generally causes internal stresses.

The sound pressure level and sound power responses of 
the sandwich beam with viscoelastic core DYAD606 are 
shown in Figs. 18 and 19, respectively. It is clear to observe 
the decrease in the amplitudes of different responses for high 
temperatures. The effect of the damping provided by the 
viscoelastic layer is very considerable, especially for the vis-
coelastic core considered at 38°, where amplitudes are very 
small. In addition, the thermal stress generated by the tem-
perature increase is very low and does not have a significant 
effect on the vibratory behavior as the temperature range 
studied is very close to the ambient temperature Tref = 25°.

Furthermore, the effect of temperature on sound transmis-
sion loss responses is shown in Fig. 20 for the same sand-
wich beam. It can easily be seen that the sound transmission 
loss increases progressively with increasing temperature, 
this implies that the structure has more capacity to dampen 
acoustic noise with the high temperatures of the DAYD606 
viscoelastic cores.

Conclusion

In this work, a numerical approach based on a high order 
theory considering the longitudinal and rotational inertias 
as well as the asymmetry of viscoelastic core sandwich 
beams was presented to characterize the vibro-acoustic 

(a) (b) 

Fig. 16  Displacement frequency responses of the PCLD Sandwich with frequency–temperature dependent core DYAD606 (a simply supported; 
b clamped-free)

(a) (b)

Fig. 17  Velocity frequency responses of the PCLD Sandwich with frequency–temperature dependent core DYAD606 (a simply supported; b 
clamped-free)
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responses of viscoelastic core sandwich beams. The main 
objective was to investigate the damping efficiency of vis-
coelastic materials described by laws of behavior depend-
ent not only on frequency but also on temperature. There-
fore, different viscoelastic models have been examined 
taking into account their specific mechanical properties as 
well as different configurations of the sandwich structure 
especially those with PCLD treatment.

Therefore, the finite element method combined with 
the asymptotic numerical method have been used in this 
work in order to determine in the first place the damping 
properties of viscoelastic sandwich beams by solving the 
complex eigenvalue problem and to obtain in the second 

place the corresponding structural and frequency acous-
tic responses to forced vibrations under a point load with 
unit amplitude. The results obtained have been validated 
for several cases by comparing these results with other 
references.

On the basis of these results, the following conclusions 
can be drawn:

– The effectiveness of this numerical approach MSP to 
approximate damping properties and analyze vibro-
acoustic responses of sandwich beams with dependent 
viscoelastic core. The effects of random input parameters 
of the viscoelastic sandwich on the frequency responses 
were evaluated by the MSP method combined to MCS. 
The results calculated by the MCS-MSP are compared 
with those obtained by the MCS-DFR, and the results are 
satisfactory given the low computation time compared to 
the MCS-DFR method.

– The comparative study of responses without and with 
the three viscoelastic cores PVB, ISD112 at 27° and 
ISD112 at 20° showed that the damping provided by 
the viscoelastic materials is significant particularly 
for amplitudes corresponding to the high frequencies 
in contrast to the responses obtained without the vis-
coelastic layer. In this way, the study illustrated that 
ISD112 cores are more efficient in terms of damping 
compared to PVB cores after observing a decrease in 
the amplitudes of structural and acoustic responses.

– The behavior of the sandwich beam with DYAD606 
viscoelastic core is highly frequency-temperature 
dependent, therefore the structure becomes softer and 
more damping of structural vibration and acoustic 

Fig. 18  Sound pressure level responses of the simply supported 
PCLD Sandwich with frequency–temperature dependent core 
DYAD606

Fig. 19  Sound power responses of the simply supported PCLD Sand-
wich with frequency–temperature dependent core DYAD606

Fig. 20  Sound transmission loss responses of the simply sup-
ported PCLD Sandwich with frequency–temperature dependent core 
DYAD606
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noise especially for high frequencies with high tem-
peratures.

Appendix A. Element Matrices
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The simply supported sandwich beam is subjected to a 
moving load with a constant speed as shown in Fig. 1, the 
dynamic force is defined by:

Replacing Eq. (45) in Eq. (46), the nodal force vector 
becomes:
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∫
0

P(x, t)
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]T

(45)P(x, t) = P0�(x, vt)
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]T



3593Journal of Vibration Engineering & Technologies (2024) 12:3575–3594 

1 3

Appendix B. Stiffness Matrix Decomposition
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