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Abstract
Purpose  In this paper, probabilistic response and performance analysis of a nonlinear tri-stable energy harvesting with 
piezoelectric coupling driven by exponentially correlated Gaussian colored noise are investigated. The effects of the system 
parameters, depth of potential well function, noise intensity and its correlation time on the mean square voltage are studied.
Methods  The joint probability density function (PDF) as well as the voltage generated are obtained by numerically solving 
the four dimensional Fokker-Plank (FP) equation for the coupled electromechanical system. The results as obtained using 
the FP solution are verified using the Monte Carlo simulations (MCS).
Results  A relative comparison of single, double and triple well potential functions on energy harvesting is presented. It is 
observed that the electromechanical coupling coefficient, damping ratio, intensity of noise and time constant and the shape of 
the potential wells have significant effects on the harvested energy. Under random excitation, for lower intensity of noise the 
energy harvester with single potential well outperforms the harvester with multiple deep potential wells. Beyond a threshold 
value of noise intensity, energy harvester with multiple well potentials outperforms as the jump from one potential well to 
another becomes more frequent with inter-well dynamics functioning.  It is found that the probability of jumps between 
potential wells is enhanced with increase in the noise intensity and corresponding increase in the mean power generation. 
Nevertheless, this enhancement is weakened with increase in correlation time of noise.
Conclusion  The study has shown that, the energy harvested can be optimized by suitable choice of the potential function, 
coupling parameters, the noise intensity and its correlation time.

Keywords  Piezoelectric energy harvesting · Multi-well potentials · Fokker-Planck equation · Optimal energy harvesting 
parameters

Introduction

Vibrational energy harvesting (VEH) is a clean and sustain-
able energy source and has become popular recently due to its 
potential to generate continuous energy from harvesting widely 
available environmental vibrations in real-life application such 
as wind flow [1], human activities [2], ocean waves [3], machine 
operation [4]. It finds applications to power low-energy devices 

such as charging batteries of electronic devices, wireless sen-
sors, implantable electronics for safety monitoring devices, 
biomedical engineering and microelectro-mechanical system 
applications [5–9]. The linear vibratory energy harvester, rep-
resented as a linear spring–mass–damper system coupled with 
piezoelectric [5, 10, 11] or electromagnetic [12] or electrostatic 
[13] transduction mechanism, operates based on the principle 
of resonance limiting its effectiveness only to a very narrow 
effective frequency bandwidth close to the resonance frequency 
[5]. Moreover, natural frequencies for miniaturized VEH are in 
order of kilohertz [14], while environmental excitations have fre-
quency in the range of 0 − 30Hz. To make VEH more effective 
over a broader frequency range, random excitations and vari-
ous techniques of nonlinearities such as bistability [10, 15, 16], 
multistabilty [17–20], plucking frequency-up conversion [21], 
passive or active frequency tuning [22] have been introduced 
in the design of VEH [6–8, 11]. Due to the unique advantages 
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of stiffness nonlinearity, the nonlinear based VEH model has a 
wider frequency bandwidth resulting in enhanced broadband 
performance of VEH. The analysis of nonlinear vibration energy 
harvester subjected to random excitations thus has been investi-
gated widely in the literature [7, 8, 15, 19].

Nonlinear oscillators with different potential energy func-
tions, such as monostable [23], bistable [7, 8] and tristable 
[19] potential wells have been received considerable attention 
recently in the design of VEH systems. Several design models 
such as a cantilever beam with magnetic repulsion [17, 18], fer-
romagnetic beam with magnetic attraction [17, 18], magnetic 
levitation [24], buckling beam [25] and buckling plate [26] have 
been proposed in the context of bistable VEH. Compared to the 
linear model, they are found to enhance the effectiveness of 
the vibration energy harvesters (VEH) over a wider frequency 
range due to activation of large inter-well escape mechanism.

Sebald[27] investigated the Duffing oscillator with piezoelec-
tric electromechanical coupling and excited with sine bursts or 
colored noise as VEH and showed that big gain in bandwidth 
performance is possible when the VEH is nonlinear. They also 
observed that monostable VEH behaves very similar to a linear 
model. Daqaq [23] theoretically investigated a nonlinear mon-
ostable VEH and observed that it does not outperform the linear 
counterpart under broadband random excitation. To overcome 
these difficulties, the concept of multi-modal VEH is proposed. 
A significant number of theoretical and experimental investiga-
tions on bistable energy harvester under Gaussian white noise 
excitation [7, 8, 10, 16, 28] showed direct correlation between 
the power output and the noise intensity. He and Daqaq [28] 
used statistical linearization techniques to investigate the effect 
of potential function asymmetries on the performance of nonlin-
ear VEHs under Gaussian white noise excitations and found that 
VEH with a symmetric bistable potential produced higher output 
power. Narayanan et al.[16] derived closed-form approximate 
solution for the mean harvested power and derived the optimal 
design parameters under broadband random ambient excitations 
such that the harvested power is maximized. Adhikari et al. [10] 
using the theory of random vibrations investigated a piezoelec-
tric based VEH subjected to random base excitation and derived 
exact closed-form expressions for mean output power. Jiang and 
Chen [29] using the stochastic averaging method derived the 
exact stationary solution of the averaged Fokker Planck (FP) 
equation and observed that quadratic nonlinearity alone or com-
bined with appropriate cubic nonlinearities can improve the 
performance of a nonlinear VEH under Gaussian white noise 
excitation. Kumar et al.[8] numerically solved the three dimen-
sional FP equation associated with bistable VEH and obtained 
the optimal system parameter under ambient Gaussian white 
noise excitation for maximum power output. They observed a 
threshold value of the noise intensity for activation of desirable 
inter-well motion in a bistable VEH.

Recently, new class of energy harvesters with triple potential 
wells has been proposed to improve the broadband performance 

of randomly excited VEH [19]. Several design philosophies such 
as cantilever beam with a tip magnet [17], ferromagnetic beam 
[17], spring based configuration [30], magnetic levitation [31] 
are used in this context. Due to the shallower potential barrier, 
longer distance between outermost stable equilibrium points, 
lower potential barrier and having better stable state than the 
bistable VEH, tristable VEH has advantages over the bistable 
VEH [17]. The influence of potential well depth for a tristable 
energy harvesting under deterministic excitation was experimen-
tally investigated in [19]. They found that the tristable VEH with 
shallower potential enhanced the broadband performance and 
also has smaller threshold of input energy for inter potential 
well motion. For stochastic excitation also relatively lower noise 
intensity is required to trigger the inter-well motion.

Most of the investigation of VEH systems has considered 
either deterministic or Gaussian white noise excitations [7, 8, 
10, 16, 19, 28]. White noise with delta function correlation time 
is a idealized model to represent broad band excitation. How-
ever, in practice, random excitations have a finite correlation 
time, though small [10, 32] and hence the effect of temporal 
correlation has to be taken into consideration. For this reason 
the Gaussian colored noise (Ornstein-Uhlenbeck process) hav-
ing non-zero correlation time has been attracting attention as 
a realistic model to approximate the ambient vibration [33, 
34]. In the context of the energy harvesting problem, a piezo-
magnetoelastic VEH under exponentially correlated Gaussian 
colored noise, increases the state-space dimension of the prob-
lem involving the solution of a corresponding four-dimensional 
Fokker–Planck–Kolmogorov(FPK) equation, adding numerical 
difficulties in the solution procedure. Hence, approximate meth-
ods have been used to numerically investigate the performance 
of VEH under colored noise excitation. Using the stochastic 
averaging method, Liu et al.  [35] investigated the probabilistic 
response of nonlinear VEH driven by exponentially correlated 
Gaussian colored noise. Zhang et al. [20] investigated the sto-
chastic bifurcations and the performance of an inductive type 
power generator with a tristable potential function driven by 
colored Gaussian noise. They employed stochastic averaging 
method to derive the averaged FPK equation and obtained the 
PDF of the amplitude. Using the stochastic averaging method, 
Xiao et al.  [11] investigated monostable duffing-type VEH with 
piezoelectric coupling under correlated multiplicative and addi-
tive white noise and observed that the mean output power first 
increases with increasing ratio of the time constant reaches a 
maximum and then decreases.

In this paper, the effectiveness of single, double- and triple-
well potential wells on energy harvesting under exponentially 
correlated Gaussian colored noise is investigated. In the case of 
random excitation, the finite difference(FD) method is used to 
solve the corresponding Fokker-Planck (FP) equation giving the 
joint probability density functions (JPDF) of the response and 
the voltage generated. The electromechanical coupling coef-
ficient, damping ratio, intensity of noise and time constant and 
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the shape of the potential wells have significant effects on the 
harvested energy. For very low noise levels, the energy har-
vester with single potential well outperforms the harvester with 
multiple deep potential wells. Energy harvesters with multiple 
well potentials perform better with higher noise levels as the 
response increases and jumps from one potential well to another 
with inter-well dynamics operating. Hence the depth and dis-
tributed positions of potential wells are factors which directly 
influence the performance of multistable VEH. It is found that 
the probability of jumps between potential wells are enhanced 
with increase in the noise intensity and corresponding increase 
in the mean power generation. However, this enhancement is 
weakened with increase in correlation time of excitation. The 
mean output power first increases with increase in the quintic 
stiffness, reaches a maximum and then decreases. The conflict-
ing interplay of the oscillator parameters including the shape of 
the potential wells leads to an optimization problem for maxi-
mum energy harvesting, which is also considered in this paper. 
The estimated PDFs as obtained using the FP solution are veri-
fied using Monte Carlo simulation (MCS) studies.

Mathematical Model of Multistable Energy 
Harvester

VEH with multi-potential wells can be constructed by cou-
pling the nonlinear oscillator to an electrical circuit as shown 
in Fig. 1(a). The ferromagnetic cantilever beam [6] is sup-
ported between two symmetric permanent magnets with the 
variable inclination angles, near the free end and subjected 
to support random excitation. The tip of the cantilever too 
has a magnet which acts as proof mass and its interaction 
with the other two magnets produce a magnetic force. In 
addition to the monostable state, the multi stable configura-
tion such as bistable and tristable states can be obtained by 

adjusting the design parameters of magneto-elastic interac-
tion. Piezoelectric layers are bonded to the cantilever beam 
near the root and connected to an electrical load.The voltage 
generated from the piezoelectric layers across the load due to 
the random excitation contributes to the energy harvesting.

The coupled nonlinear electromechanical equations of the 
motion of tristable VEH, governing the system first natural 
mode and electric voltage generated can be written in the 
following form [7]

where X represents the relative transverse displacement of the 
beam tip with respect to support motion Xb , V is the voltage out-
put across the load resistance Rl , c is a linear viscous damping 
coefficient, � is a linear piezoelectric coupling coefficient in the 
two equations, Cp is the capacitance of the piezoelectric mate-
rial, Ẍb is the stochastic support acceleration, Ū�

(X) is the poten-
tial energy function of the mechanical system which depends 
on the nonlinearity present in the harvester, (�) denotes differ-
entiation with respect to X and the dot represents the derivative 
with respect to time t. In this work, potential energy function is 
chosen in the following general form

where k̄1, k̄3 and k̄5 are respectively the linear, cubic and 
quintuple nonlinear stiffness coefficients.

With the appropriate change of variables, Eqs. (1) and (2) 
can be rewritten in the following form as

(1)mẌ + cẊ + Ū
�

(X) − 𝜃V = −mẌb,

(2)CpV̇ +
V

Rl

+ 𝜃Ẋ = 0,

(3)Ū(X) =
1

2
k̄1X

2 +
1

4
k̄3X

4 +
1

6
k̄5X

6,

(4)Ẍ + 2𝜁𝜔nẊ +
dU(X)

dX
− 𝜒V = 𝜉(t),

Fig. 1   a Schematic of a tristable piezomagnetoelastic cantilever beam subjected to random base excitation, b tristable potential function
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w h e r e  𝜁 = c∕2m𝜔
n
, U(X) =

1

2
k1X

2 +
1

4
k3X

4 +
1

6
k5X

6, k1 = k̄1∕m,

k3 = k̄3∕m, k5 = k̄5∕m, Ẍb = 𝜉(t), 𝜆 = 1∕RlCp, 𝛽 = 𝜃∕Cp, 𝜒 = 𝜃2∕k1Cp.

Regardless of the coupling mechanism, chosen potential 
energy function permits Eqs. (4) and (5) to characterize the 
different kind of dynamics for the nonlinear energy harvest-
ing system. When k2

3
− 4k1k5 < 0 nonlinear energy harvest-

ing system will have only one fixed point at the origin and 
hence U(X) will have monostable potential. For 
k1 > 0, k3 < 0, k5 > 0 and k2

3
− 4k1k5 > 0 , system has five 

f i x e d  p o i n t s  a t  (0, 0), (
∑4

j=1
Xj, 0)  ,  w h e r e 

X1,2 = ±
√
�1,X3,4 = ±

√
�2, �1,2 =

−k3±
√

k2
3
−4k1k5

2k5
 .  Out of 

these five fixed points (0, 0), (X1, 0) and (X2, 0) are stable 
equilibrium nodes, while (X3, 0) and (X4, 0) are saddle nodes 
and U(X) will have tristable potential function as shown in 
Fig. 1(b). Moreover, as shown in Figs. 2(a) and (b) both 
depth and span of two symmetric wells depend on the stiff-
ness parameter k3 and k5 . With the decrease of either k3 or k5 , 
the potential well barrier increases and, hence, inter-well 
motion between two consecutive wells will be restricted.

We assume ambient random excitation �(t) in Eq. (4) as 
Gaussian colored noise (Ornstein-Uhlenbeck process) with 
zero mean and an exponentially decaying correlation func-
tion as follows (Fig. 3(a))

(5)V̇ + 𝜆V + 𝛽Ẋ = 0,

(6)
E[�(t)�(s)] =

D

�
exp

[
−

∣ t − s ∣

�

]

=
�2

2�
exp

[
−

∣ t − s ∣

�

]
,

where � =
√
2D measures the intensity of Gaussian colored 

noise, the characteristic time � denotes the correlation time 
of the noise. The power spectral density of �(t) can be 
expressed as (Fig. 3(b))

An idealized condition when � → 0, the colored noise �(t) 
tends to the white noise process W(t) which has the follow-
ing statistical properties

where D is the spectral density of the white noise and �(⋅) is 
the Dirac-delta function.

The time evolution of such exponentially correlated 
Gaussian colored noise �(t) can be conveniently expressed 
in terms of the white noise W(t) in the following form

where W(t) = �dB(t)∕dt , is the mean zero stationary Gauss-
ian white noise process and B(t) is the unit Wiener process.

Fokker–Planck Equation of VEH

Introducing the variables X1 = X  , X2 = Ẋ  , X3 = V  and 
X4 = � , Eqs. (4), (5) and (9) can be expressed in terms of 
a set of first order Itô type stochastic differential equation 
(SDE) of the form

(7)S�(�) =
2D

1 + �2�2
.

(8)E[W(t)] = 0, E[W(t)W(s)] = �2�(t − s), �2 = 2D,

(9)𝜉̇(t) = −
1

𝜏
𝜉 +

1

𝜏
W(t),

(a) -2 -1 0 1 2

-2
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k
2
=-4

k
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2
=-2

k
2
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(b) -1 0 1 2
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Fig. 2   Potential energy for (a) k1 = 1, k5 = 1 and different values of k3 ; (b) k1 = 1, k3 = −2.3 and different values of k5
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where dB(t) = B(tn+1) − B(tn) ∼
√
tn+1 − tnN(0, 1) is the unit 

Wiener process increment and N(0, 1) is the unit normal 
random variate. For Gaussian white noise excitation, the 
response state vector � = [X1,X2,X3,X4]

T corresponding 
to Eq. (10) of the energy harvesting system is Markovian 
and consequently the time evolution of the joint PDF p will 
be governed by the following four-dimensional FP equation 
[36]

where p is the joint PDF of the state variables � . The sta-
tionary joint probability density function (PDF) of the 
response variables of the corresponding four-dimensional 
FP equation ( �p

�t
= 0) of VEH is numerically obtained using 

the FD method [37, 38]. The response statistics, the mean 
square voltage and the mean square displacement of the 

(10)

⎧⎪⎪⎨⎪⎪⎩

dX1(t)

dX2(t)

dX3(t)

dX4(t)

⎫⎪⎪⎬⎪⎪⎭

=

⎡⎢⎢⎢⎢⎢⎣

X2

−k1X1 − k3X
3

1
− k5X

5

1
− 2��

n
X2 + �X3 + X4

−�X2 − �X3

−
1

�
X4

⎤⎥⎥⎥⎥⎥⎦

dt +

⎧⎪⎪⎨⎪⎪⎩

0

0

0√
2D

�

⎫⎪⎪⎬⎪⎪⎭

dB(t),

(11)

�p

�t
= −X2

�p

�X1

+ (2��nX2 + k1X1

+ k3X
3
1
+ k5X

5
1
− �X3 − X4)

�p

�X2

+

(�X2 + �X3)
�p

�X3

+
1

�

�p

�X4

+
�2

2�2

�2p

�X2
4

+ (2��n + �)p,

VEH are obtained from the respective joint PDFs. The time 
histories for the state variables associated with VEH are 
obtained by direct numerical integration of Eq. (10) using 
the Euler–Maruyama method [39].

To compare the accuracy of the FP solution, the esti-
mated PDF for the state variables as obtained using the FD 
method is compared with those obtained from Monte Carlo 
simulation (MCS) scheme. The MCS is a direct numerical 
integration technique [40, 41], which involved the numeri-
cal simulation for the increments of a Wiener process dB(t) 
and numerical integration of the SDEs as in Eq. (10) to each 
discrete excitation using the forward Euler–Maruyama (EM) 
integration scheme [39, 40]. In this work, to estimate the 
stationary PDF for the state variables using MCS, on the 
average, 2 × 105 realizations with a time step dt = 0.0005 
have been used to integrate the governing set of four coupled 
first order SDE as in Eq. (10) using the forward EM numeri-
cal integration until the steady state is achieved.

Numerical Results

The dynamics of the piezomagnetoelastic nonlinear 
energy harvester represented by Eqs. (4), (5) and (9) is 
numerically investigated. The following system param-
eters �2

n
= 1, k1 = 1, � = 0.05, � = 0.5 and � = 0.05 for 

the oscillator are kept fixed in most of the investigations. 
The coefficients of the nonlinear terms k3 and k5 , electro-
mechanical coupling parameter � , piezoelectric coupling 
coefficient � , the damping ratio � , noise intensity � and its 
correlation time � are varied.

To better understand the effect of noise intensity and its 
correlation time of the colored noise on the performance 

(a) 0 10 20 30 40 50
0

0.002

0.004

0.006

0.008

0.01

=0.05,D=0.001
=0.5,D=0.01

(b) 505-
0

0.005

0.01

0.015

0.02
D=0.001; =0.05
D=0.01; =0.5

Fig. 3   a Auto-correlation and b spectral densities for the Gaussian colored noise
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of the tristable VEH, the variations of mean square elec-
tric voltage with respect to noise intensity � and correlation 
time � are shown in Fig. 4(a). The other parameters adopted 
for the oscillator are � = 0.05, k3 = −2.3 and k5 = 1 . It can 
be seen from Fig. 4(b) that for a given correlation time � 
of Gaussian colored noise, the mean square voltage almost 
increases proportionally with the excitation intensity. How-
ever, for a given noise intensity, increase of the correlation 
time reduces the mean output power. Hence the increase 
of correlation time of the colored noise will weaken the 
performance of the VEH. Figure 4(b) presents the mean 
square voltage for the case of Gaussian white noise excita-
tion (� → 0) . It can be seen that for the given noise intensity, 
E[V2] increases with decrease in correlation time � ; however, 
this increase is not perceptible for lower values of correla-
tion time. For the given system parameters, the mean square 
electric voltage for the colored noise having correlation time 
� = 0.025 is almost the same for white noise.

Figure 5 shows the JPDF of X1 and X2 for four values of 
� and for � = 0.025, � = 1 . For low intensity of excitation 
� = 0.05 the joint PDF is unimodal at origin. For the noise 
intensity to � = 0.08 , the peak value at origin decreases and 
almost vanishes and two symmetric peaks appear in the 
joint PDF. For further increase in the noise intensity, the 
peak at the origin starts to gain strength and subsequently at 
� = 0.25 , the VEH has a tri-modal joint PDF. This signifies 

that with increase in the noise intensity there is larger prob-
ability of the system response to move between the potential 
wells and hence the increase in the mean power output. The 
marginal PDF of the voltage as obtained using the FP and 
MCS solutions corresponding to Fig. 5 is shown in Fig. 6, 
having the excellent agreement of the FP solution with the 
MCS results and hence validating the numerical solution of 
the FP equation.

Next for a given noise intensity � = 0.1 , Fig. 7 shows 
the JPDF of X1 and X2 for four values of noise correlation 
time � , which clearly indicates that increasing the correlation 
time has the opposite effect to that of noise intensity. For 
increased � , the center peak intensity reduces, transforming 
to tri-modal and then to bimodal and finally to unimodal 
behavior. The marginal PDF of the voltage as obtained using 
the FP and MCS solutions corresponding to Fig. 7 is shown 
in Fig. 8, once again showing the good agreement between 
the two.

Figures 9 and 10 present the impact of viscous damping 
ratio � on the mean square voltage for different correlation 
time of Gaussian colored noise and its intensity. The other 
parameters adopted for the oscillator are k3 = −2.3 and 
k5 = 1 . For a given value of the noise intensity as the damp-
ing ratio � increases the mean square voltage significantly 
reduces. Figure 9(b) presents the mean square voltage for 
the case of Gaussian white noise excitation. As mentioned 
earlier the mean square electric voltage for the Gaussian 
white noise excitation is almost the same as for the case 
of colored noise having correlation time � = 0.025 . Fig-
ure 11 shows the JPDF of X1 and X2 for three values of � 
and for � = 0.1, � = 0.025 . The three separate peaks in the 
JPDF tend to come closer as � decreases and merges for 
� = 0.0125 . This signifies that there is larger probability of 
the system response to move between the potential wells 
for lower values of � . For higher damping, there is higher 
probability of the response staying in the neighborhood of 
the stable equilibrium points of the deterministic system and 
the probability of the response to move between potential 
wells is negligible.

Figures 12 and 13 present the effects of the quintic stiff-
ness coefficient k5 on the mean square voltage for differ-
ent correlation time of Gaussian colored noise and damp-
ing coefficient respectively. The other parameters adopted 
for the oscillator are k3 = −2.3 and � = 0.1 . As shown in 
Fig. 12(b), for the given oscillator parameters as the corre-
lation time reduces, mean square electric voltage increases 
and is maximum for the Gaussian white noise. Figure 13 
shows the variation of mean square voltage as a function of 
the nonlinear stiffness parameter k5 for three damping coef-
ficients � = 0.0125, 0.025 and 0.05. For a given value of the 
correlation time or the damping coefficient as k5 increases 
the mean square voltage initially increases, reaches a maxi-
mum for a particular k5 and decreases with further increase 

(a)

0
0.5

0.1

1 0.22

0.2

0.15
0.13

0.05

(b)
0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2
=0.025 (FP)
=0.1 (FP)
=0.5 (FP)
=2 (FP)

MCS
MCS
MCS
MCS
=0 (FP)

MCS

Fig. 4   a Mesh surface of the mean square electric voltage E[V2] in 
� − � plane (b) variation of E[V2] with respect to noise intensity � for 
different values of �
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in k5 . Thus, it may be concluded that for a given value of 
the damping ratio � and excitation parameters, there is an 
optimum value of k5 for which the mean square voltage is a 
maximum. As seen from Fig. 14 for the given damping coef-
ficient, at lower value of k5 the separation distance between 
the potential wells and depth of the potential wells increase 
and larger intensity of noise is required to enable the inter-
well motion. As k5 increases the three peaks in the JPDF 
merge. This signifies that there is larger probability of the 
system response moving from one potential well to the other. 
This also signifies that there is increase in the power output. 
With further increase in k5 the JPDF tends to become uni-
modal with the JPDF peaking around the zero equilibrium 
point with consequent decrease in the mean square voltage. 
This is the reason for the mean square voltage to attain a 
maximum value for a particular value of k5.
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Figure 15 demonstrates the effect of the system param-
eters � , the electromechanical coupling coefficient in the 
mechanical system � and the coupling coefficient in the 
electrical equation � , on the mean square voltage for three 
different values of the damping ratio � for the tristable oscil-
lator. The other parameters adopted for the oscillator are 
k3 = −2.3, k5 = 1 , � = 0.1 and � = 0.0.025 . The mean square 
voltage decreases with increase in � , decreases slightly with 
increase in � , but increases considerably with increase in 
� . Hence the energy harvesting capability of the nonlinear 
oscillator can be enhanced by proper tuning of the param-
eters of the system in addition with an optimum choice of 
the noise intensity.

Figure 16 presents a comparison of the mean square 
voltage for different types of potential wells as a function 
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of noise intensity. Four different categories of potential 
functions (i) linear ( k1 > 0, k3 = k5 = 0),(ii) nonlinear 
monostable ( k1 ≥ 0, k3 ≠ 0, k5 = 0),(iii) nonlinear bista-
ble ( k1 < 0, k3 > 0, k5 = 0 ) and (iv) nonlinear tristable 

( k1 > 0, k3 < −2
√
k5, k5 > 0 ) are chosen for comparison. 

Upto some threshold value of � , the mean square voltage is 
very low, but it increases steeply with � beyond this value. 
This behavior is irrespective of the shape of the potential 
wells. It is observed that the mean square voltage and hence 
the harvested energy is significantly larger with bistable 
shallow potential well and tristable potential well than with 
linear, monostable potential well and bistable deep poten-
tial well. Moreover, for low excitation intensity as shown in 
Fig. 16(b), the linear VEH performs better than the nonlinear 
oscillators with monostable potential well and bistable deep 
potential well. Time waveforms of displacement and volt-
age for nonlinear monostable, bistable with shallow poten-
tial and tristable VEH at � = 0.1 corresponding to Fig. 16 
are shown in Figs. 17 and  18, respectively. It can be seen 
that for the given noise intensity both bistable and tristable 

Fig. 9   a Mesh surface of the 
mean square electric voltage 
E[V2] in � − � plane (b) vari-
ation of E[V2] with respect to 
damping coefficient � for differ-
ent values of �
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VEH undergo frequent jumps between potential wells and 
produce large amplitude of response, thus generating a high 
output voltage, whereas for nonlinear monostable VEH, 
the response is restricted to a single well and the output 
voltage is relatively low. The mean square voltage obtained 

by Monte Carlo simulation (MCS) is also shown alongside 
which shows very good agreement with the result of the 
numerical solution of the FP equation solutions.

Fig. 11   Joint PDF for 
k3 = −2.3, k5 = 1, � = 0.1, � = 0.025 
and (a) � = 0.0125 , (b) 
� = 0.05 , (c) � = 0.075
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Fig. 12   a Mesh surface of the 
mean square electric voltage 
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ation of E[V2] with respect to 
nonlinear term k5 for different 
values of �
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Conclusions

The relative performance of piezomagnetoelastic nonlin-
ear energy harvester with different types of potential wells 
under exponentially correlated Gaussian colored noise is 
investigated by numerical solution of the corresponding FP 
equation. The influence of various types of potential well 
functions, coupling parameters, damping coefficient and 
the intensity of Gaussian colored noise on the mean square 
voltage is investigated. The mean output power increases 
with an increase in the noise intensity while it decreases 

with increase in the correlation time of the Gaussian colored 
noise which is directly linked with the stochastic transitions 
between the potential wells. The linear VEH outperforms a 
nonlinear VEH with monostable potential well and bista-
ble deep potential well especially for low noise intensities. 
This may be attributed to the low probability of inter-well 
movement with low intensity of noise. The nonlinear VEH 
with bistable shallow potential well and tristable potential 
well outperforms the linear VEH and the nonlinear VEH 
with monostable potential well and bistable deep potential 
well significantly. In all the cases, the mean square voltage 
increases slowly with increase in noise intensity initially but 
rapidly after a threshold value of noise intensity. The higher 
mean square voltage of nonlinear VEH with bistable shallow 
potential well and tristable potential well is due to the higher 
probabilities of inter-well motions. The mean square voltage 
also varies with respect to other system parameters such as 
the damping coefficient c, electromagnetic coupling coeffi-
cient � and � and the load resistance capacitance parameter 
� in a complex and conflicting way which leads to an optimi-
zation problem for maximum energy harvested in terms of 
mean square voltage with respect to the parameters as well 
as the noise intensity and shape of potential wells which can 
be investigated further.
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