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Abstract
Purpose  Nonlinear system identification heavily relies on the accuracy of nonlinear unit model selection. To improve iden-
tification accuracy, the Sparse Bayesian Learning method is incorporated into the nonlinear subspace. Enhanced nonlinear 
subspace identification is proposed.
Methods  The nonlinear term in the system is treated as an internal excitation. By applying low-level excitation, the response 
of the structure can be approximated as linear, allowing for the determination of the linear frequency response function of the 
structure. High-level excitation is then applied to separate the response caused by intrinsic nonlinear force excitation. The 
type of nonlinearity is evaluated using Spike-and-Slab Priors for Sparse Bayesian Learning. Finally, the screened nonlinear 
elements are substituted into subspace identification to determine nonlinear parameters.
Results  The effectiveness of this method in dealing with nonlinear stiffness and damping is verified through a simulation 
example and its robustness is further discussed. Experiments on negative stiffness systems also demonstrate the method's 
good applicability when dealing with complex damping.
Conclusion  Incorporating the Sparse Bayesian Learning method into the nonlinear subspace significantly improves the 
accuracy of nonlinear system identification. The proposed approach effectively deals with nonlinear stiffness and damping, 
as validated by simulation results. The method's robustness is further demonstrated through extensive discussions, while 
experiments on negative stiffness systems showcase its applicability in complex damping scenarios.

Keywords  Nonlinear system identification · Model selection · Negative stiffness oscillator · Friction

Introduction

Nonlinear system identification is the process of determin-
ing the mathematical model of a nonlinear system from 
input − output data [1, 2]. The goal is to find a mathemati-
cal representation of the system that accurately describes its 

behavior over a range of input conditions  [3]. The identified 
model can then be used for a variety of purposes, such as 
control, prediction, or simulation of the system’s behavior 
[4].

The process of nonlinear system identification involves 
three key steps: detection, characterization, and parameter 
estimation [5–7]. Detection is the first step in building a 
structural model with accurate predictions [8, 9]. When 
designing and analyzing a structure, it is essential to con-
sider its nonlinear dynamic characteristics for performance 
and reliability. Once nonlinear detection is performed, the 
next step is to determine the mathematical form of the 
nonlinearity, also known as model selection [10]. Finally, 
parameter estimation [11, 12] is the final step in creating a 
structural model with good predictive accuracy. The non-
linear subspace identification (NSI) approach proposed by 
Marchesiello et al. [13] has opened new possibilities for 
identifying nonlinear mechanical systems due to its robust-
ness. Further, a negative stiffness oscillator is modeled and 
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tested to exploit its nonlinear dynamical characteristics [14]. 
However, the model selection remains a crucial step in the 
identification process, as it is necessary to test the accuracy 
of candidate models to select the appropriate one. There is 
currently no universal method for selecting a suitable nonlin-
ear model, and it’s often selected based on the characteristics 
of the specific identification problem. Improper selection 
of identification parameters often leads to multiple differ-
ent models, resulting in an incomplete description of the 
structure. To find a reasonable model, methods for model 
selection must be developed to evaluate the model and its 
parameters. A hybrid nonlinear identification approach [15] 
is proposed by integrating the restoring force surface (RFS) 
[16] method and the NSI method. The distinct feature of the 
presented method is that it has the excellent characterization 
ability of the RFS and the recognition validity and robust-
ness of the subspace algorithm. Bayesian model selection 
methods [17] have been developed to evaluate the model and 
its parameters, taking into account uncertainty in the selec-
tion process. These methods can simultaneously consider 
the impact of multiple models on the prediction of struc-
tural response, automatically constrain complex models, and 
calculate the probability of selecting each model. Based on 
the evidence obtained, the most likely model can be cho-
sen. Nayek et al. [18] present the use of spike-and-slab (SS) 
priors [19] for discovering governing differential equations 
of motion of nonlinear structural dynamic systems, where 
displacement, velocity, and acceleration response data need 
to be measured. The use of displacement differentiation or 
acceleration integration to estimate response data may lead 
to distorted results due to noise propagation, making it chal-
lenging to accurately identify true nonlinear terms.

In this paper, a Spike-and-Slab Priors for Sparse Bayesian 
Learning is introduced to solve the model selection problem 
in the nonlinear subspace identification method. Enhanced 
nonlinear subspace identification (ENSI) is proposed. The 
method treats nonlinearity as an internal excitation and sepa-
rates the response caused by it. The type of nonlinearity 
is then evaluated using Spike-and-Slab Priors for Sparse 
Bayesian Learning. The selected nonlinear models are 
then used in subspace identification to determine nonlinear 
parameters. The paper is structured as follows: “Framework 
of Enhanced Nonlinear Subspace Identification” intro-
duces the proposed method. “Separate Response Caused by 
Internal Nonlinear Force Excitation” covers the process of 
extracting underlying linear characteristics. “Using Spike-
and-Slab Priors for Bayesian Basis function Selection” and 
“Nonlinear Subspace Identification” briefly explain the 
theory of Spike-and-Slab Priors and nonlinear subspace 
identification. The numerical simulation and robustness 
are discussed in “Numerical Simulation”. “Experimental 
Study” presents an experimental study. The paper concludes 
in “Conclusion”.

Theory

Framework of Enhanced Nonlinear Subspace 
Identification

The purpose of this method is to separate the response 
caused by the internal nonlinear force excitation from 
the nonlinear structural response, determine the nonlin-
ear basis function model through the Bayesian regression 
method, and finally bring it into the nonlinear subspace 
method for parameter identification as shown in Fig. 1. 
The main steps are: (1) By applying low-level excita-
tion, the response of the structure can be obtained, and 
the frequency response function can be obtained, from 
which the unit impulse response function can be obtained 
through the inverse Fourier transform to obtain the struc-
tural characteristics of the underlying system; Apply high-
level excitation, to separate the response caused by the 
internal nonlinear force excitation from the response; (2) 
Construct a nonlinear unit function library and use Bayes-
ian regression to complete the nonlinear characterization; 
(3) Substitute the nonlinearity into the nonlinear subspace 
algorithm for parameter identification.

Separate Response Caused by Internal Nonlinear 
Force Excitation

To describe the process, a single Dof system with nonlinear-
ity is written by

where m is the mass matrix, c is the damping, k is the linear 
stiffness, f is the excitation, and fn is the internal nonlin-
ear force. The nonlinear force fn can be shifted to the right, 
which can be regarded as an internal excitation to the under-
lying linear system.

When the type of nonlinear function is unknown, the 
nonlinear restoring forces can be represented by selecting a 
complete set of candidate nonlinear functions.

where mf is the number of candidate nonlinear functions, 
G is the library of nonlinear functions, and μ is the corre-
sponding coefficient vector. Since the number of functions in 

(1)mẍ + cẋ + kx + fn(t) = f (t)
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the nonlinear library exceeds the number of real nonlineari-
ties in the system, only a small number of nonlinearities are 
active, resulting in a sparse coefficient vector, μ.

When a nonlinear structure is subjected to a low-level 
excitation flow, the effects of nonlinearities can be generally 
assumed to be minimal, leading to a response that approxi-
mates the linear characteristics of the structure [20]. There-
fore, Eq. (2) can be rewritten by

Based on the application of low-level excitation, the 
response of the structure approximates the linear charac-
teristics of the structure, which allows the linear frequency 
response function H of the structure to be determined. The 
unit impulse response function h can then be obtained by 
performing an inverse Fourier transform [21].

When a high-level excitation fhigh is applied to the struc-
ture, the effects of intrinsic nonlinear forces cannot be 
ignored. The nonlinearity is treated as an additional force 
applied to the underlying linear structure. The total response 
of the structure is the result of the combined action of both 
linear and nonlinear forces. By using the Duhamel integral  
[22], the response can be expressed as:

(4)mẍ + cẋ + kx ≈ flow(t)

(5)h =
1

2� ∫
+∞

−∞

H(�)ei�td�

 ⊗ represents the convolution operation. The response of 
the structure due to the internal nonlinear force fn can be 
expressed as xn, which is the result of a convolution opera-
tion between the unit impulse response function and the 
nonlinear force

Substituting Eq. (3) into Eq. (7) formula, we can get

This equation shows that nonlinear representation is a 
variable selection problem, which can be approached as a 
regression problem. To estimate the best nonlinear terms in 
the system, the Bayesian variable selection method based 

(6)
x(t) = h(t)⊗ fhigh(t)

�������������
linear response xl

−h(t)⊗ fn(t)

(7)xn = h(t)⊗ fn(t) = h(t)⊗ fhigh(t) − x(t)

(8)
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Fig. 1   Schematic diagram of the ENSI
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on the spike and slab prior can be used, by calculating the 
marginal posterior probability through Gibbs sampling  [23].

Using Spike‑and‑Slab Priors for Bayesian Basis 
Function Selection

In linear regression problems with high-dimensional covari-
ates, the goal is to find a sparse solution to the model by 
identifying the best subset of relevant covariates. This is 
done by removing irrelevant covariates and finding a solu-
tion that has only a few nonzero coefficients in the regression 
function.

In the Bayesian framework, variable selection can be 
achieved by using shrinkage priors. The Spike and slab 
prior is a common approach that assigns a latent variable to 
each nonlinear function in the library, indicating whether the 
function is active in the model. By estimating the posterior 
probabilities for all possible models and the marginal poste-
rior probabilities for individual functions, the true nonlinear 
terms in the system can be identified. This approach is useful 
for high-dimensional covariates, as it tends to find sparse 
solutions to the model by removing irrelevant functions.

Consider a standard multiple linear regression equation:

where Y = (Y1,Y2,…, Yn)T is the n-dimensional target vector, 
X = (X1,X2,…,Xn)T is the n × p matrix of predictors, β = (β1, 
β2,…, βp) is the vector of coefficients, and ε = (ε1, ε2,…, εn)T 
is the error term. Assuming that the elements in the error 
vector ε are independently and identically distributed follow-
ing a Gaussian distribution with a mean of 0 and a variance 
of σ2, the likelihood function of Y can be expressed as

where represents the Gaussian distribution and I is the 
n × n-dimensional identity matrix.

According to the spike and slab prior method, each covar-
iate in the multiple linear regression equation is assigned 
a latent binary variable, s = (s1,s2,…,sp). This variable, si 
(where si ∈ {0, 1}), indicates whether the ith covariate is 
included in the model. When si = 0, the prior distribution 
of the corresponding regression coefficient (βi) is a spike 
with a point peak at zero. On the other hand, when si = 1, 
the prior distribution of βi is a slab with a flat density. In 
this method, the spike distribution is set to δ(βi), where δ 
represents the Dirac function. The slab distribution is set to 
(0, τσ2). Therefore, the prior density of each component (βi) 
in the coefficient vector β can be expressed as:

(9)Y = X� + �

(10)Y|�,�, �2 ∼ N
(

��, �2�
)

(11)�i|si ∼
(

1 − si
)

�
(

�i
)

+ siN
(

0, ��2
)

Define the following prior distributions for the other 
parameters:

The prior distributions for the other parameters in the 
model are defined as follows: ap and bp for the latent binary 
variables, aτ and bτ for the slab density, and aσ and bσ for the 
variance of the error term. These hyperparameters control 
the shape of their respective priors.

Based on Bayes' theorem, the joint posterior distribution 
of the parameters can be expressed as:

To solve this Bayesian inference problem involving mul-
tiple hyperparameters, Markov−Monte Carlo techniques are 
usually used to sample from the posterior. In this case, the 
Gibbs sampler is used to sample from the posterior distribu-
tion described by Eq. (16). The Gibbs sampler requires fully 
conditional distributions for all random variables, which can 
be analytically derived using conjugate priors. By using the 
Gibbs sampler, a Markov chain for the parameters β, σ2, and 
s can be obtained, and a large number l of samples for vari-
able selection can be obtained by discarding a small number 
of samples before the burn-in period. The sample of each 
component si in s indicates the selection of the variable; 
si = 1 indicates that the variable is selected and si = 0 indi-
cates that the variable is discarded. Therefore, for a large 
number l of samples of si, the following marginal posterior 
probability can be defined:

where If is the indicator function. When the marginal pos-
terior probability of a variable, p(si = 1|Y, X) > 0.5 is greater 
than 0.5, it should be considered for inclusion in the final 
model.
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Nonlinear Subspace Identification

Based on the theory presented in “Using Spike-and-Slab Pri-
ors for Bayesian Basis Function Selection”, it is determined 
that the nonlinear basis functions of the end structure have 
a total of v items (v < mf). The state-space equation at this 
time can be expressed as:

Based on the authors’ previous work about the nonlin-
ear subspace identification [24], the “extended” frequency 
response function (FRF) matrix is expressed as

where H is the underlying linear system FRF and nonlinear 
parameters μi can be identified

Numerical Simulation

The system with nonlinear stiffness and damping is investi-
gated. The system parameters are: m = 10 kg, k1 = 800 N/m, 
c = 2 Ns/m, k3 = 2 × 105 N/m3, cn = 20 Ns2/m2. The dynamic 
equation is as follows

(18)

�
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(19)HE(�) =
[

H H�1G1 ⋯ H�qGv

]

The system is excited by a low-level force 2Nrms and a 
high-level force 100Nrms. As shown in Fig. 2, the response 
is calculated by the Runge– Kutta fourth-order method. The 
sampling frequency is 1000 Hz, and the acquisition length 
is t = 50 s.

It is widely recognized that when structures are subjected 
to low-level excitations, they display linear characteristics, 
and the underlying linear system frequency function of the 
structure can be determined equivalently. As shown in Fig. 3, 
the frequency response function under low-level excitation 
is largely consistent with the theoretical linear frequency 
response function, indicating that nonlinearity is not excited. 
The estimated impulse response function is calculated.

The estimated unit impulse response function is primar-
ily utilized to distinguish the response caused by nonlinear 
internal forces and construct a nonlinear function library. 
Under high-level excitation, the excitation force and the unit 
impulse response function are convolutionally integrated. 
Then, the nonlinear response by the internal nonlinear force 
fn is estimated using Eq. (7), as is depicted in Fig. 4. The 
results demonstrated that the estimated nonlinear response 
curve is in close agreement with the true value curve.

(20)mz̈ + cż + k
1
z + k

3
z3 + cnż

2= f (t)

Fig. 2   The displacement under low-level and high-level force

Fig. 3   Underlying linear FRF

Fig. 4   Displacement generated by an internal nonlinear force
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In addition, a nonlinear type construction function library 
G can be utilized in the construction of a set of systems. 
In this example, the polynomial type (•)n, the symbol type 
sgn(•), and the absolute value type |(•)| are considered, as 
illustrated in  Table 1. The function library contains 10 basis 
functions, and 210 nonlinear functions can be constructed 
by cross-permutation and combination. The unit impulse 
response function is convolved with each nonlinear vector in 
G to construct an extended library of response functions G′.

Gibbs based on the Bayesian regression is used for sam-
pling, and hyperparameters and initial values of each ran-
dom variable are set. The hyperparameters are set as follows: 
ap = 0.1, bp = 1, aτ = 0.5, bτ = 0.5, aσ = 5 × 10–4, bσ = 5 × 10–4. 
The initial values of β, s, p0, τ, σ2 are set as: p0 (1) = 0.1, 
τ(1) = 10, σ2 (1) = 0. Utilize the Gibbs sampler method to run 
two Markov chains simultaneously, each containing 5000 
samples, and discard a certain number of samples before the 
convergence period.

Figure 5 shows the procedure of basis function selection 
based on the marginal posterior inclusion probability (PIP). 
When p (si = 1|Y, X) = 1, it implies that the ith basis func-
tion had been selected in all Gibbs posterior samples, while 
p (si = 1|Y, X) = 0 implies the ith basis function had never 
been selected. As mentioned in “Using Spike-And-Slab 
Priors For Bayesian Basis Function Selection”, only those 
basis functions are included in the final estimated model 
whose corresponding marginal PIPs are greater than the set 
threshold of 0.5. The results show that x3 is selected with a 
marginal posterior probability close to 1, another true rel-
evant variable ẋ2 draws marginal PIPs of around 0.9, and 

the remaining nonlinearities are discarded with a marginal 
posterior probability less than 0.2, which is consistent with 
the real situation and verifies the effectiveness of the basis 
function selection in this paper.

When measuring the real structural response, there will 
inevitably be measurement noise, which may lead to the 
inaccuracy of the separated nonlinear response and affect 
the subsequent nonlinear characterization. To further 
discuss the robustness of the method, 2% and 5% noise 
were added to the above-mentioned responses under low-
level and high-level excitations, respectively. As shown 
in Fig. 6, in the case of noise, the reconstructed nonlinear 
response trend is still consistent with the theoretical value. 
When the noise is large, the curve will show more glitches. 
Furthermore, the corresponding nonlinear basis function 
selection results are given in Fig. 7. The results show that 
in the case of noise, the marginal posterior probability of 
nonlinear stiffness is still close to 1, while the marginal 
posterior probability of damping will decrease with the 

Table 1   Nonlinear function 
library

No 1 2 3 4 5 6 7 8 9 10

Basic Function x2 x3 x4 ẋ2 ẋ3 ẋ4 |x| |ẋ| sign(x) sign(ẋ)

Fig. 5   Marginal posterior probability of each nonlinear function with-
out noise
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Fig. 6   Displacement generated by an internal nonlinear force a with 
2% noise; b with 5%noise
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increase of noise, but it is still greater than 0.85, which 
can accurately determine the nonlinear type of structure, 
to verify that the model selection has better robustness.

Substituting the above model selection results into 
the nonlinear subspace, the nonlinear coefficients of the 
structure can be identified in  Table 2. In the case of 5% 
noise, the absolute value of the identification error is also 
less than 2%, which verifies that the method has good 
robustness.

Experimental Study

To assess the effectiveness of the proposed method in real-
world structures, this section presents an experimental test 
on a negative system. The device being tested consists of 
a U-shaped frame connected to a central moving mass via 
rods. The structure is subjected to base motion by a shak-
ing table. The assumption made is that the inertia of the 

moving parts can be concentrated into a single central point, 
encompassing the mass of the central bush and the equiva-
lent inertia of the rods. Relevant theoretical findings on this 
structure have been reported in Ref. [25]. The equation of 
motion along the vertical direction in the x variable can be 
expressed as

where −k̃1 < 0 is the so-called negative stiffness and fd is the 
nonlinear damping force.

Figure 8 illustrates the experimental setup with two 
photos, showing the device stable equilibrium positions. 
The system is excited with a shaking table to provide ran-
dom excitation. The sampling frequency is 512 Hz, and 
the acquisition length is 135 s. The equilibrium positions 
are measured using a laser vibrometer and are found to be 
x∗
−
 =  − 0.0301 m and x∗

+
 = 0.0242 m.

A cross-validation method is adopted: the data set is 
divided into a training set (first 100 s) and a validation set 
(the last 35 s) to verify the generalization ability of the 
model in  Fig. 9.

As previously reported in detail in [25], a new displace-
ment variable z(t) = x(t)-x∗

+
 can be defined when a posi-

tive reference position x∗
+
 is taken into consideration. In 

this scenario, the system is defined as a stable underlying 

(21)mẍ + fd − k̃1x + k̃2x
2 + k̃3x

3+mg = f (t)

Fig. 7   Marginal posterior probability of each nonlinear function a 
with 2% noise; b with 5% noise

Table 2   Identified nonlinear 
parameters and errors under 
different noise levels

Nonlinear 
parameters

Exact value 0% noise 2% noise 5% noise

Identified value Error/% Identified Value Error/% Identified value Error/%

k3 1.0 × 105 1.0 × 105 0.00 9.95 × 104 − 0.53 9.87 × 104 − 1.33
cn 20 20 0.00 19.88 − 0.58 19.69 − 1.53

Fig. 8   Experimental setup. a Negative equilibrium position; b posi-
tive equilibrium position [14]
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linear system. Consequently, the equation of motion can 
be expressed as:

For this experimental system, the nonlinear damping 
form is challenging to determine a priori. Based on the 
experimental results in [25], the friction force in this nega-
tive stiffness oscillator is dependent on position and veloc-
ity. Friction is related to normal force pr, which can be 
represented by:

where the three coefficients (α, β, γ, δ) related to two stable 
equilibrium positions x∗

±
 are uniquely determined.

(22)mz̈ + cż + k1z + k2z
2 + k3z

3 + fd = f (t)

(23)
fd(ż, z) =

∑nd

j=0
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j

|

|

|

|

|

|

|

|

𝛼z3 + 𝛽z2 + 𝛾z + 𝛿
�����������������������

pr(z)

|

|

|

|

|

|

|

|

=
∑nd

j=0
cjsign(ż)ż

j
|

|

pr(z)
|

|

(24)� =
x3
−
− x3

+

x2
−
− x2+

− x3
+
− 1

Based on Ref. [14] or the underlying linear parameter 
identification method [26], the underlying linear FRFs can 
be obtained. Then, the nonlinear response by the internal 
nonlinear force fn is estimated using Eq. (7), as is depicted 
in Fig. 10.

Then, it is important to determine the nonlinear function. 
The following set of nonlinear basis functions is considered: 
z3; z2; 

∑nd
j=0

cjsign(ż)ż
j
�

�

pr(z)
�

�

 , nd = 4; As per the proposed 
method, the results of basis function selection are illustrated 
in Fig. 11. The results indicate that the marginal posterior 
probability of selecting z3 and z2 is close to 1. In terms of the 
damping term, the marginal PIP of Coulomb and quadratic 
friction is about 0.7, these two terms dominate the damping, 
which is in agreement with the results of the previous litera-
ture and verifies the effectiveness of the nonlinear basis 
functions selection of the proposed method.

By incorporating the results of the model selection into 
the nonlinear subspace identification method, the estimated 
coefficients are illustrated in  Fig. 12. The results show that 
the real part of the parameters maintains a horizontal line 
and is independent of the frequency, thereby verifying the 
effectiveness and stability of the nonlinear identification. 
The imaginary parts of the coefficients are consistently 
lower than the real parts, however, the difference is gener-
ally decreased for the damping-related coefficients, indicat-
ing that the identified model structure is still impacted by a 
combination of nonlinear modeling errors and noise. The 
average ratio between real and imaginary parts E[R/I] is in 
any case at least one order of magnitude. The complete list 
of the estimated coefficients is presented in  Table 3.

The identified restoring force estimated by the proposed 
method is compared with the experimental value obtained by 
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Fig. 9   Displacement under high-level extraction

Fig. 10   Displacement generated by an internal nonlinear force with 
zero-reference shift and reference positive position

Fig. 11   Marginal posterior probability of each nonlinear function 
based on the training data
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the restoring force surface method in Fig. 13, and the agree-
ment is good. The friction is related to position and velocity, 
and a 2D graph like velocity force is unable to evaluate the 

damping identification. In Fig. 14, the complete restoring 
surface is obtained to include the damping force in a 3D 
graph. The experimental restoring surface is calculated by 
the restoring force surface method, and the experimental 
restoring surface overlaps with the identified one. The results 
demonstrate that the proposed method can effectively iden-
tify nonlinear stiffness and damping.

Further, the effectiveness of the proposed method is 
verified by the verification set data. Based on the previous 
identification results, the response signal of the system is 
constructed, as shown in Fig. 15. The results show that the 
estimated response is in good agreement with the experi-
mental signal curve as a whole, but there are some local 
deviations.

Fig. 12   Real and imaginary parts of the identified coefficients based 
on the training data

Table 3   Identified coefficients for the positive reference equilibrium 
positions

Parameter k3(N/m3) k2(N/m2) c0(N) c2(Ns2/m2)

Estimated value 7.77 × 105 5.77 × 104 − 0.93 − 6.78
E[R/I] 58.2 68.9 161.9 255.6

Fig. 13   Estimation of the restoring force

Fig. 14   Estimation of the restoring surface
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Fig. 15   Comparison of experimental and estimated displacement 
based on the validation set
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Conclusion

This paper presents an enhanced nonlinear subspace identi-
fication method. The proposed method in this paper utilizes 
Spike-and-Slab Priors for Sparse Bayesian Learning in non-
linear subspace identification to solve the model selection 
problem. The nonlinear term in the system is treated as an 
internal excitation. The first step is to extract the impulse 
response function of the underlying linear system of the 
structure. This is followed by applying a high-level exci-
tation to the structure, which allows for the separation of 
the response caused by the nonlinear term from the overall 
response. The type of nonlinearity is evaluated using Spike-
and-Slab Priors for Sparse Bayesian Learning. Then, the 
nonlinear models are substituted into subspace identifica-
tion to determine nonlinear parameters. The effectiveness of 
this method in dealing with nonlinear stiffness and damping 
is verified by simulation analysis and robustness is further 
discussed. The method is also shown to have good adaptabil-
ity in dealing with complex nonlinear damping conditions 
through experimental study.
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