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Abstract
This paper deals with the string instruments of the violin family and addresses, in particular, the vibration coupling between 
the four strings and the soundbox in the low-frequency range. The analysis is applicable to any type of multi-chord excitation 
by the bow though it is here developed for the bichord case. Proper dynamical models of the single parts constituting the 
complete system are presented and an accurate kinematical–dynamical study of the bridge interfacing between the strings 
and the top plate of the soundbox permits to relate the forces and the displacements on the exciting and the sound-emitting 
components of the instrument. The characteristic equation is formulated and the coupled frequency spectrum is obtained 
based on realistic hypotheses about the distinctive mechanical properties of the single instrument parts. Then, a proper model 
is proposed to describe the nonlinear stick–slip contact between the bow and the strings and the numerical integration of 
the motion equations is performed by a modal decomposition approach. In parallel, applying the approximate hypothesis 
of periodic Helmholtz motions of the strings, simple analytical solutions for the soundbox vibrations are carried out and 
compared with the numerical response. The latter shows small aperiodic fluctuations of the amplitude and slow phase shifts 
in comparison with the periodic analytical solutions, which may, however, be accepted as an approximate description of the 
instrument behaviour.

Keywords  Bowed string instrument · Chord-box coupling · Stick–slip · Modal approach · Numerical solution · Analytical 
approximation

Introduction

The first theoretical studies on the vibratory performances 
of the bowed string instruments date back to the early 
approaches of Helmholtz and Raman [1, 2], which give 
precise analytical descriptions of the characteristic wave 
propagation along the violin strings. Yet, scientific interest 
began to grow greatly only from the middle of the twenti-
eth century up until today, looking into the various specific 
aspects of the string–soundbox dynamics and the influence 
of the material characteristics. Among plenty of papers of 
the theoretical and experimental kinds, we here cite a few 
examples of a certain significance.

References [3, 4] outline the physics of the violin strings 
and the acoustic characteristics of the vibrating plates of the 
soundbox, while extensive and detailed descriptions of the 
mechanics of the bowed string instruments are reported in 
the books [5, 6], together with a large collection of exper-
imental data. As well known, the excitation of the violin 
vibration arises from the stick–slip motion of the string rela-
tive to the dragging bow, which may be significantly affected 
by local factors, such as the temperature, the rosin spreading 
on the bow to increase friction and the possible unsteadiness 
of the bow motion. Researches on the bow–string contact 
behaviour are reported in references [7–11], showing the 
various force-speed characteristic curves depending on the 
working conditions. The state of the art on research on the 
various aspects of violin sound production is fixed in [12, 
13]. Other studies concern the different responses of the 
string instruments depending on the materials used for their 
manufacture, the wood varnishing, the plate thickness, and 
so on [14, 15]. Besides, the motion of a cello bridge in the 
low-frequency range is inspected experimentally [16] and 
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the response in the high-frequency range is theoretically 
analysed in reference [17].

The theoretical description of the kinematic–dynamic 
interfacing between the excited strings, which stimulate the 
system vibrations without emitting sound, and the harmonic 
box, which has the task of generating the sound and giving 
the proper tone colour, is quite hard due to the involvement 
of many complex aspects associated with the progressing 
and reflecting waves along the strings, their dissipation, 
the definition of the nonlinear stick–slip dragging force of 
the bow, the vibration coupling between the bridge and the 
soundbox and several other secondary effects. The present 
analysis moves from the intent of outlining an overall modal 
description of the instrument behaviour, looking first for the 
natural frequencies of the whole interconnected system and 
then calculating the time response by eigenfunction expan-
sion. The novelty of the approach stays mainly in the whole-
ness of the outlook, which is not limited to single aspects 
of the instrument behaviour, as frequent in many other 
studies due to the great complexity of the bow instrument 
properties.

At the same time, the following dynamical model will 
necessarily introduce some simplifying hypotheses as, oth-
erwise, a very accurate and comprehensive analysis would 
be extremely hard, if not impossible.

Going after a previous paper [18], the author focuses in 
particular on the string–soundbox coupling in the low-fre-
quency range, that is the range of the signature modes, car-
rying out a numerical–analytical modal approach in parallel, 
to identify the coupling effects on the dynamical response of 
the instrument and work out possible approximate models of 
the sound production. In practice, the results give a sort of 
"skeleton" solution to which the high-frequency components 
should after be attached.

The analysis introduces suitable functional rela-
tions between the forces and the displacements at the 
string–bridge contact and those at the bridge feet, for sym-
metric, antisymmetric and general modes of the soundbox. 
The characteristic equation of the coupled system is for-
mulated and, assuming realistic values for the soundbox's 
frequencies, the coupled frequency spectrum is identified. A 
proper theoretical model of the bow–string stick–slip contact 
is formulated, where the adhesion force required during the 
stick phase and the bow–string sliding speed during the slip 
phase are continuously monitored to pass from one to the 
other phase automatically during the calculation. After solv-
ing the motion equations numerically in the time domain, 
the results are compared with the approximate analytical 
solutions obtainable assuming the ideal Helmholtz motion 
as the string exciting motion.

The present analysis considers a bichord excitation of the 
bow with two open or fingered strings but can be extended 
to other multichord cases.

Natural Modes

Mathematical Modelling of the String Sub‑systems

Consider a violin like that in Fig. 1 and assume the com-
bination nut–chinrest–violinist as a fixed rigid reference 
for simplicity. The four open strings, G3, D4, A4 and E5, 
have frequencies 196 Hz, 294 Hz, 440 Hz and 659 Hz, 
respectively, and each of them may be referred separately 
to its own fixed frame OSxSySzS, with the origin OS on 
the nut, the xS-axis along the straight string position in 
non-vibrating conditions and the xSyS plane tangent to 
the bridge top as in Fig. 1. Here and in the following, 
the subscript S indicates one generic string among G 
(G3), D (D4), A (A4) and E (E5). It is supposed that the 
extremes of the violin strings on the bridge are placed, on 
the upper bridge profile, symmetrically and equally dis-
tributed along a circumference whose centre C is located 
under the mid-point PM of the bridge basis PBPT on the top 
plate of the soundbox (see Fig. 2). Here PB and PT are the 
points where the resultant reaction forces of the soundbox 

Fig. 1   Front view of a violin and reference frames on the four open 
strings
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may be considered applied, on the bass and treble sides, 
respectively.

The distances dS of the string ends from the point PM 
are related to the bridge top radius rC, to the distance dC of 
PM from C and to the angles θS by the Carnot formula (see 
Fig. 2)

while the angles γS formed with the symmetry axis of the 
bridge are obtainable by the relation (see Fig. 2)

The displacement of the points of each string along the 
yS and zS transverse directions may be expanded in two 
corresponding series of sinusoidal eigenfunctions, 

(1)dS =

√

d2
C
+ r2

C
− 2dCrC cos �S,

(2)tan
(

�S − �S
)

=
dC sin �S

rC − dC cos �S
.

eSyi(xS) = aSyisin(ωixS/vwS) and eSzi(xS) = aSzisin(ωixS/vwS), 
multiplied by generalized coordinates qSyi(t) and qSzi(t), 
t h a t  i s  y S ( x , t )   =  

∑

i qSyi(t)eSyi
�

xS
�

 a n d 
zS(x,t) = 

∑

i qSzi(t)eSzi
�

xS
�

 . Here, the subscript i refers to the 
natural modes of the total system string + soundbox, the 
ωi are the cor responding natural  frequencies, 
vwS = 

√

TS
/(

�SSS
)

 is the wave propagation speed, where 
TS is the string tensioning, μS and SS are the mass density 
and the cross-section area of the string, which are all dif-
ferent  for  each st r ing.  Thus,  s ince  one has 

fS = �S

/

(2�) = vwS
/(

2lS
)

=

√

TS
/(

�SSS
)

/

(

2lS
)

 for the 

fundamental frequency of an isolated string between fixed 
extremes, where lS is the string length, the tuning is obtain-
able by adjusting the only tension TS, as well known. The 
eigenfunctions eSyi(xS) and eSzi(xS) have the same form as 
in the canonical case of a string with fixed ends because 

Fig. 2   Bridge geometry. Forces 
and displacements of strings 
and soundbox. Case of free 
vibrations. dG = dE , dD = dA 
, γG = γE , γD = γA , θG = θE 
, θD = θA
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the linear non-dissipative operators of the two problems 
are the same, 

(

�2yS
/

�t2
)/(

�2yS
/

�x2S
)

 = 
(

�2zS
/

�t2
)

/(

�2zS
/

�x2S
)

 = v2
wS

 (d’Alembert equation). Nevertheless, 
they are not to be considered orthogonal to each other now, 
nor are the frequencies in rigorous arithmetical progres-
sion, because the boundary conditions differ from the 
canonical case since the string extremes on the bridge side 
vibrate together with the bridge and the soundbox.

Observe that qsi = qsi,max. sinωit for the natural modes.

Mathematical Modelling of the Soundbox 
Sub‑system

The violin strings could not emit a vigorous and harmo-
nious sound by themselves but need the dynamic contri-
bution of the soundbox. Considering the soundbox as an 

isolated system and, using capital letters for clearness to 
denote the quantities involved in its vibratory motion, 
introduce the natural frequencies ΩI, the two-dimensional 
eigenfunctions EI and the modal coordinates QI, where the 
subscripts I refer to the single characterizing modes of the 
soundbox alone. The domain of the eigenfunctions EI is 
the whole vibrating surface of the soundbox, including 
the top plate, the back plate and the ribs, so an approach 
by partial differential equations would result prohibitive. 
Nevertheless, by partitioning this surface into a great 
number of very small elements, the problem becomes of 
the finite-difference or finite element types, with a very 
large but finite number of degrees of freedom. Hence, the 
conventional approach to linear discrete systems should 
ensure the orthogonality of the vibrating modes and allow 
the mode separation and the normalization of the discre-
tized eigenfunctions. In practice, it is here presumed that 
the quantities ΩI and EI are obtainable by experimental 
tests, e.g. by holographic interferometry or impulse ham-
mer and accelerometers or laser Doppler vibrometry. On 
the other hand, other experiments should also permit 

evaluating the bandwidths of the singular modes and then 
the damping factors ZI. The present analysis is just lim-
ited to the lower modes (< ~ 1500 Hz), which are clearly 
identifiable in the frequency response. As well known, the 
high-frequency range covers the so-called "bridge hill" 
region, where a diffused overlap of bandwidths occurs, the 
modal approach would require great skill to get realistic 
results, or other methods should be applied (e.g. see [17]). 
The whole frequency spectrum of the instruments should 
be obtained by joining the two frequency ranges.

Figure 2 shows the forces applied to the bridge by the 
strings and the soundbox top plate. As the bridge's frequen-
cies are considerably higher than the examined range, the 
bridge may be presumed rigid and its mass may be neglected 
(see also [16]). Hence, disregarding the possible moment of 
TT + TB with respect to PM, which is certainly negligible, 
and using Eqs. (1–2), the calculation of the normal reaction 
forces at the bridge feet by the equilibrium conditions is 
quite straightforward:

Four constant forces FSz0 < 0, induced by the constant 
tensioning of the strings and converging in C along SC, are 
included in the four forces FSz, but they yield only invari-
ant deflections of the string and the soundbox and are then 
irrelevant for the present analysis of the vibratory motion. 
Thus, they may be ignored in the calculation of the FSz in 
all vibration studies.

The concentrated forces on the soundbox surface, NT 
and NB downward directed, may be dealt with using two-
dimensional Dirac distributions, δ(X − X*, Y − Y*), where X 
and Y are the coordinates on this surface and X* and Y* refer 
to the force application point. Applying the usual modal 
separation technique to the soundbox motions, even though 
within a discretized model, i.e. multiplying the discretized 
partial differential equation of the soundbox vibration by 
each single eigenfunction EI(X, Y) and integrating, i.e. sum-
ming to all elements, these forces turn out to be multiplied 
by EI(XPT, YPT) = EIT and EI(XPB, YPB) = EIB for each mode 
I, and moreover, EIB = EIT and EIB =  − EIT for the symmetric 
and antisymmetric mode shapes of the top plate, respec-
tively. Therefore, using PT as a unique reference point, the 
overall effect for each mode I is

(3)
NT =

1

2

[

∑

S=G,D,A,E

(

FSy sin �S − FSz cos �S
)

+
2
(

rC − dC cos �S
)

b
FSy −

2dC

b
FSz sin �S

]

,

NB =
1

2

[

∑

S=G,D,A,E

(

FSy sin �S − FSz cos �S
)

−
2
(

rC − dC cos �S
)

b
FSy +

2dC

b
FSz sin �S

]

.
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where the following force coefficients, csy and csz, have been 
introduced

On the other hand, the soundbox vibratory displacements, 
even though quite small if compared with the strings, imply 
vibration components of the strings on both, the xSyS and 
the xSzS planes. The normal displacements of points PT 
and PB towards the box inside may be expressed by the 
modal sums 

∑

I QIEIT and 
∑

I QIEIB , where EIB =  ± EIT for 
the symmetric and antisymmetric modes of the top plate. 
Decomposing also the y and z displacements of the string 
ends, yS(lS,t) and zS(lS,t), into sums of modal components, 
yS(lS,t) = 

∑

I ySI
�

lS, t
�

 and zS(lS,t) = 
∑

I zSI
�

lS, t
�

 , these com-
ponents may be related to the corresponding modal com-
ponents of the soundbox by the following kinematical 
equations

according to the vectorial diagrams in Fig. 2.
Hence, one may write ySI = cSyQIEIT and zSI =  − cSzQIEIT, 

where the displacement coefficients cSy and cSz are given by 
Eq. (5) and are equal to the previous force coefficients, in 
perfect accordance with the virtual work principle. Actually, 
multiplying the last equality of Eq. (4) by QI and account-
ing for Eq. (6) one observes that the total work of the forces 
applied to the bridge is zero for each mode I and then for the 
sum of all modes.

It must be clarified that the introduction of the sound 
post and the bass bar in the inside of the harmonic box 

(4)

EITNT + EIBNB

= EIT
(

NT + NB
)

= EIT

∑

S=G,D,A,E

(

FSy sin �S − FSz cos �S
)

(for symmetric modes)

EITNT + EIBNB = EIT
(

NT − NB
)

= EIT

∑

S=G,D,A,E

[

2
(

rC − dC cos �S
)

b
FSy −

2dC
b

FSz sin �S

]

(for antisymmetric modes)whence EITNT + EIBNB

= EIT

∑

S=G,D,A,E

(

cSyFSy − cSzFSz
)

(5)

cSy = sin �S cSz = cos �S (for the symmetric modes)

cSy =
2
(

rC − dC cos �S
)

b
cSz =

2dC
b

sin �S

(for the antisymmetric modes).

(6)

ySI = QIEIT sin �S zSI = −QIEIT cos �S (symmetric modes)

ySI = QIEIT
2
(

rC − dC cos �S
)

b
zSI = −QIEIT

2dC
b

sin �S

(antisymmetric modes)

modifies its symmetry characteristic in comparison with the 
preliminary artefact with no additional elements, whence 
each mode shape turns out to be some complicated combi-
nation of symmetric and antisymmetric shapes. Therefore, 
to address this problem, the above coefficients, cSy and cSz, 
may be combined approximately by proper weighting coef-
ficients, somehow guided by the results from the experi-
mentation. In practice, indicating with ps and pa the values 
of any of these parameters, cSy and cSz, for the symmetric 
and antisymmetric deformation, respectively, we may set 
pI = psIwsI + paI(1 − wsI) (with 0 < wsI < 1), where wsI is the 
"weight" of the symmetric shape in the specific mode I. 
Therefore, a set of pairs cSyI and cSzI applies to the various 
soundbox modes I.

Assume normalized eigenfunctions of the soundbox, so 
that ∫ SP

0
�phpERESdXdY = �RS , where the integrals must be 

understood as summations in the hypothesis of discretization 
of the domain, μp, hp and Sp are the mass density, the thick-
ness and the whole surface area of the vibrating soundbox 
and δRS is the Kronecker delta. Incidentally, observe that the 
order of magnitude of the products ERES is the reciprocal of 
that of the soundbox mass μphpSp, according to the above 
normalization condition.

The usual modal separation technique yields the motion 
equations of the soundbox sub-system when excited by the 
downward forces NT and NB,

where Eq. (4) is used and the dissipation is ignored as we 
are searching for the natural modes.

Frequency Spectrum

The search for the natural modes implies replacing 
F S y   =     −   T S   ×  

∑

i qSyi
�

deSyi
�

dx
�

x=ls
 a n d 

FSz =  − TS × 
∑

i qSzi
�

deSzi
�

dx
�

x=ls
 into Eq. (7), for S = G, D, 

A and B, and solving for the QI.

Hence, using Eq. (6) for the displacements of the generic 
str ing S' ,  one has yS� (t) =

∑

I

yS�I(t) =
∑

I

cS�yIQI(t)EIT

, zS� (t) =
∑

I

zS�I(t) = −
∑

I

cS�zIQI(t)EIT and then, considering 

the equality TS = μSSSvwS
2, using Eq. (8) and setting σSi = ωilS/

vwS and Σ SI = ΩIlS/vwS for brevity, gets

(7)

d2QI

dt2
+ Ω2

I
QI = EIT

∑

S=G,D,A,E

(

cSyIFSy − cSzIFSz

)

I = 1, 2,… ,

(8)

QI = − EIT

∑

S=G,D,A,E
TS

∑

i

(

cSyIaSyiqSyi,max . − cSzIaSziqSzi,max .
)

(

�i

vwS

)

cos
(

�ilS
vwS

) sin
(

�it
)

Ω2
I − �2

i

I = 1, 2, …
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where mS is the mass of the string S.
Since Eq. (9) must hold instant by instant, the summation 

concerning i and the time functions sin(ωit) may be dropped, 
obtaining the characteristic equations in the form:

(9)

∑

i

aS�yi sin

(

�ilS�

vwS�

)

qS�yi,max . sin
(

�it
)

=
∑

i

aS�yi sin �S� i qS�yi,max . sin�it

=
∑

I

cS�yIE
2
IT

∑

S=G,D,A,E

mS

∑

i

(

cSyIaSyiqSyi,max . − cSzIaSziqSzi,max .

)

sin �Si sin�it
∑

I

�Si cot �Si

�2
Si
− Σ2

SI

(for S� = G,D,A,E),

−
∑

i

aS�zi sin

(

�ilS�

vwS�

)

qS�zi,max. sin
(

�it
)

= −
∑

i

aS�zi sin �S� i qS�zi,max. sin�it

=
∑

I

cS�zIE
2
IT

∑

S=G,D,A,E

mS

∑

i

(

cSyIaSyiqSyi,max. − cSzIaSziqSzi,max.

)

sin �Si sin�it
∑

I

�Si cot �Si

�2
Si
− Σ2

SI

(for S� = G,D,A,E),

(10)

∑

S=G,D,A,E
mS

∑

I
cS′yIE2

IT
[

cSyI
(

aSyi sin �Si qSyi,max.
)

− cSzI
(

aSzi sin �SiqSzi,max.
)]�Si cot �Si

�2
Si − Σ2

SI

=
(

aS′yi sin �S′i qS′yi,max.
)

(for S′ = G,D,A,E)
∑

S=G,D,A,E
mS

∑

I
cS′zIE2

IT
[

cSyI
(

aSyi sin �Si qSyi,max.
)

− cSzI
(

aSzi sin �Si qSzi,max.
)]�Si cot �Si

�2
Si − Σ2

SI

=

= −
(

aS′zi sin �S′i qS′zi,max.
)

(for S′ = G,D,A,E).

Equation (10) forms a linear algebraic system of 8 equa-
tions in 8 unknowns (inside round brackets), i.e. the 4 
unknowns (aSyi sinσSi qSyi,max.), plus the 4 unknowns – (aSzi 
sinσSi qSzi,max.). This system is homogeneous and may be 
written in the matrix form [A − I8] × {ξ}T = 0, where the 

Fig. 3   Diagram of the charac-
teristic determinant Dc vs the 
frequency ratio f/fA for the case 
of open strings with lengths 
325 mm (tones G3, D4, A4, E5). 
The circled intersection points 
with the abscissa axis give 
the natural frequencies of the 
coupled system, strings + sound-
box. The dotted points give the 
ideal natural frequencies of the 
separated components of the 
instrument

 i fG /fA  i fD /fA  i (fA /fA)  i fE /fA  fsoundbox /fA

Open Strings

(i = 1, 2, 3, …)

2
Dc(f )

1

0

-1

-2

0.0                    0.5                    1.0                    1.5                     2.0                   2.5                3.0
  f /fA

coefficients of A are the factors of the 8 unknowns on the 
left sides of Eq. (10), I8 is the 8 × 8 identity matrix and ξ 
is the vector of the 8 unknowns. Hence, the characteristic 
equation is det [A − I8] = 0.

Since the order of magnitude of EI
2 is that of the recipro-

cal of the vibrating mass of the soundbox, which is much 
greater than the string mass mS, one has mSEI

2 <  < 1 and it is 
easy to deduce from Eq. (10) that the coupled frequencies ωi 
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turn out to be very close to the uncoupled ones, that is, either 
to ωi ≅ iπvwS/lS when sin(ωilS/vwS) ≅ 0, for S = G, D, A and 
E, or to ΩI, when ωi ≅ ΩI. The sequence ΩI, the eigenfunc-
tions EI and the coefficients cSyI and cSzI are chosen in the 
following calculation using verisimilar soundbox properties 
and realistic values of the weighting coefficients wsI. Once 
fixing the frequencies ΩI and all the other parameters, the 
exact values of the natural frequencies ωi of the full system 
may be calculated numerically as roots of the equation det 
[A − I8] = 0. It is remarkable that some ΩI are well separated 
from the angular frequencies of the strings with fixed–fixed 
ends, so that the soundbox is feebly excited, whereas some 
are close to the string frequencies so that the soundbox is 
resonant and a vigorous sound level is emitted to the sur-
rounding environment.

Figure 3 refers to the open string case and shows the dia-
gram of the characteristic determinant Dc(f) = det [A − I8] 
vs. the dimensionless frequency f/fA, where the frequency 
fA of string A4 was chosen as a reference frequency. The 
asymptotes for σSi ≅ iπ are clearly observable and indicate 
the divergence of the function cotσSi, i. e. the very close-
ness of this series of natural frequencies to that of the single 
strings S when they are fixed at their extremes. Notice that, 
since the fundamental frequencies of the four chords have 
ratios very close to 1.5, each to the next from the treble to 
the bass sides, some coincidence of the higher harmonics 
appears for them. Besides, other asymptotes very close to 
the abscissae fsoundbox /fA, indicate resonant frequencies very 
close to those of the soundbox.

Figure 4 shows the case of four fingered strings with a 
shorter length, equal for all of them, so to obtain the four 
tones A#3, F4, C5, and G5. The frequency scale is the same 
as in Fig. 3 and a rightward shift of the chord's natural fre-
quencies may be observed.

Summing up, the natural frequencies of the coupled sys-
tem, strings + soundbox, are very close to those of the single 
separate components. Nonetheless, the numerical integration 
of the motion equations for the bowed string case shows 
some small deviations from the analytical results obtainable 
by ascribing the "conventional" Helmholtz motion to the 
string, as will be illustrated in the following.

Vibrations Induced by the Bow

The time solutions for the vibrations excited by the bow may 
be obtained by the use of solvers of the Euler–Cauchy type, 
considering a finite but sufficiently large number n of modes. 
This procedure considers the complete equations of motion, 
takes care of handling the transfer of forces and displace-
ments correctly at the bridge interface between strings and 
soundbox, introduces the dissipation terms and formulates 
the non-linear stick–slip forces of contact between the bow 
and the single strings using realistic models.

It will be assumed that the bow exerts its drag force only 
on the third and fourth strings (bichord A4 and E5) and that 
this force is variably shared between the two strings although 
the normal bow force applied by the violinist is kept con-
stant, as well as the bow velocity: sure enough, the stick 
and slip phases alternate differently for the two strings in 
general. Moreover, according to Fig. 5, it is supposed that 
the direction of the bow motion is parallel to the straight line 
joining the endpoints on the bridge of the two strings, A4 
and E5, and this straight line will be assumed as the common 
direction of the y-axes of the two strings. As the prevail-
ing forces at the bridge interface are those produced by the 
bow drag, the components along z will be neglected, as well 
as the forces exerted by the other two strings, G3 and D4, 
though admitting that some small level of vibrations may be 
transmitted by the soundbox to them.

Fig. 4   Diagram of the char-
acteristic determinant Dc vs 
the frequency ratio f/fA for the 
case of fingered strings with 
lengths 273 mm (tones A#3, F4, 
C5, G5). The circled intersec-
tion points with the abscissa 
axis give the natural frequen-
cies of the coupled system, 
strings + soundbox. The dotted 
points give the ideal natural 
frequencies of the separated 
components of the instrument

Fingered Strings

 i fG /fA  i fD /fA  i (fA /fA)  i fE /fA  fsoundbox /fA
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  f /fA

2
Dc(f )

1

0
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-2
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Due to the different geometry of the bowed string case 
described in Fig. 5 in comparison with Fig. 2, the correlation 
between forces and displacements at the bridge top and the 
bridge feet is now different. The distances dS of the string 
endpoints from PM and the angles γS are given by Eqs. (1–2), 
whereas the distance dP of PM from the straight-line through 
the two string endpoints A4 and E5 (common y-axes direc-
tion), is given by

where θ is the angle formed by the z direction with the sym-
metry axis of the bridge (see Fig. 5). Hence, using Eq. (11), 
it is possible to calculate the angle θ first

(11)dP = dA cos
(

� − �A
)

= dE cos
(

� − �E
)

,

(12)tan � =
dA cos �A − dE cos �E

dE sin �E − dA sin �A

and then dP.
The bridge equilibrium equations become now, for the 

bowed case,

w h e r e  F Ay  =   −  T A  ×  
∑

i qAi
�

deAi
�

dxA
�

xA=lA
 a n d 

FEy =  − TE × 
∑

i qEi
�

deEi
�

dxE
�

xE=lE
 are the forces exerted by 

the strings A and E on the bridge in the y direction and we 
have dropped the subscript y from eSyj and qSyj.

Ignoring the constant forces FSn, lying along SC and 
due to the string tensioning, and using PT as a reference 
point, the effect on the soundbox is now given, in place 
of Eq. (4), by

(13)

NT =
1

2

[

(

FAy + FEy

)

(

sin � +
2dP

b

)

+
∑

S=A,E

(

FSn cos �S +
2dC

b
FSn sin �S

)

]

,

NB =
1

2

[

(

FAy + FEy

)

(

sin � −
2dP

b

)

+
∑

S=A,E

(

FSn cos �S −
2dC

b
FSn sin �S

)

]

,

Fig. 5   Bridge geometry. Forces 
and displacements of string and 
soundbox. Case of bow-induced 
vibrations on strings A4 and E5 
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where the cI are force coefficients.
Moreover, the common displacements yI of the two 

string extremes on the bridge may be correlated with the 
modal displacements of the two points PT and PB towards 
the box inside, QIEIT and QIEIB (= ± QIEIT for the sym-
metric and antisymmetric modes). According to the vector 
diagrams of Fig. 5, one gets, considering that yAI = yEI = yI,

whence a single displacement–force factor cI may be used, 
with two different values for symmetric and antisymmet-
ric modes, and it is also observable that the last equality 
of Eq. (14), multiplied by QI, and Eq. (15) combine in per-
fect accordance with the virtual work principle. Notice that 
the factor cI may be corrected by a weighted mean of sym-
metric and antisymmetric values for each mode I as in the 
previous section.

Equation (7) has now to be written in the following form 
for the present case:

where ZI is the soundbox damping factor for mode I.
As the string is a continuous system, we may intro-

duce the one-dimensional Dirac distribution δ(xS − xS*) 
to manage any concentrated force FS* applied for 
xS = xS*. In fact, when applying the modal separation 
procedure, its effect may be described by the integral 
∫ lS
0
�
(

xS − xS∗
)

FS∗eSj
(

xS
)

dxS = FS∗eSj
(

xS∗
)

 . Hence, two 

vectors, 
{

FSBeSj
(

xB
)}

 and − 
{

FSyeSj
(

lS
)}

 , may be defined, 
where xB = xAB = xEB is the common value of the abscissae 
of the two string–bow contact points BA and BE, while FSB 
is the bow force fraction acting on the one and the other 
string S, A and E.

Introducing the symmetric matrices [eSji], where eSji = μsSs 
∫ ls
0
eSj

(

xS
)

eSi
(

xS
)

dxS , the motion equations of the two string 
sub-systems may be written in the matrix form

(14)

EITNT + EIBNB = EIT

(

NT + NB

)

= EIT

(

FAy + FEy

)

sin � (symmetric modes)

EITNT + EIBNB = EIT

(

NT − NB

)

= EIT

2dP
(

FAy + FEy

)

b

(antisymmetric modes)

or else EITNT + EIBNB = cIEIT

(

FAy + FEy

)

,

(15)
yI = QIEIT sin � = QIEITcI (symmetric modes),

yI = QIEIT

2dP

b
= QIEITcI (antisymmetric modes),

(16)

d2QI

dt2
+ 2ZIΩI

dQI

dt
+ Ω2

I
QI = EITcI

(

FAy + FEy

)

I = 1, 2,…

The damping effects (ZI and ζSi) are supposed quite 
small in Eqs. (16, 17) and approximately uncoupled 
among the various modes. Notice that the summations on 
the right side of Eq. (17) encompass all the modes and 
then all the unknowns qSi, but this is not a problem in 
the Euler–Cauchy integration, which solves for the time 
derivatives, vi = dqi/dt and dvi/dt at each step. Observe also 
that qSi must be considered in general as the sum of a vari-
able part, qSi~(t), and a constant part qSi-, which is the static 
part due to the mean bow force.

As specified before, the present analysis is just limited 
to the low modes (< ~ 1500 Hz), which may be clearly 
identified and characterized in the frequency response, 
whereas the high-frequency range presents the so-called 
"bridge hill", where a large overlap of bandwidths occurs 
and the present modal approach is hardly applicable. As 
the bridge's own frequencies are much above the examined 
frequency range, the bridge may be approximately consid-
ered rigid, whence the displacements yA(lS,t) and yE(lS,t) 
must be equal, as the common line of the y-axes of Fig. 5 
contains both points, A and E:

Here, the most significant terms of the summations are 
those for which ωi ≅ ΩI, whereas the other eigenfunctions 
cancel out approximately for xS = lS.

If eSi(lS) ≅ 0, that is ωilS/vwS ≅ iπ where i is an integer, the 
eigenfunctions may be in practice normalized in the usual way, 
assuming aSi

2 = [ms

(

∫ 1
0 sin2

(

i�xS
/

lS
)

d
(

xS
/

lS
)

)]−1 = 2/mS, where the 
string mass mS is different for each string. Otherwise, for 
eSi(lS) ≠ 0, the string eigenfunctions eSi cannot be normalized 
as usual but can be conveniently scaled all the same, to the 
benefit of the following calculations, so that 
ms

(

∫ 1

0
a2
Si
sin2

(

�ixS
/

vwS
)

d
(

xS
/

ls
)

)

= 1 , whence

(17)

[

eSji
]

{

d2qSi

dt2
+ 2�Si�i

dqSi

dt
+ �2

i
qSi

}T

=
{

FSBeSj
(

xB
)}T

−
{

FSyeSj
(

lS
)}T

for S

= A or E and i, j = 1, 2, 3,…

(18)
yA
(

lS, t
)

=
∑

i
qAi(t)aAi sin

(

�ilS

vwA

)

= yE
(

lS, t
)

=
∑

i
qEi(t)aEi sin

(

�ilS

vwE

)

.

(19)aSi =

√

√

√

√

2

mS

[

1 −
(

vwS

2�ilS

)

sin
(

2�ilS

vwS

)] .
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Notice that the physical dimensions of the aSi are kg−1/2, 
whereas those of the qSi are m × kg1/2.

Observe that, overall, Eqs. (17) and (16) refer in prac-
tice to the same modes, i. e. the common modes of the 
whole coupled system string + soundbox, but only the 
modes for which ωi is very close to ΩI show non-neg-
ligible values of eSj(lS) at the string ends and give their 
significant contribution to the vectors {FSyeSj(lS)}T on the 
right sides of Eq. (17). These modes are characterized by

due to Eq. (15), where one may replace yI = qAIeAI(lS) = qEI
eEI(lS) = qSIeSI (lS) according to Eq. (18). Therefore, ascrib-
ing the subscript I to the string variables for these modes, 
it is possible to eliminate the Q's from Eqs. (16) and (20), 
obtaining

The numerical solution can be carried out in practice 
simultaneously for all the q's.

To isolate the non-linear force FSB on the right side of 
Eq. (17) and manage this force according to the stick or slip 
conditions between the bow and the string, it is convenient 
to change Eq. (21) into the following form:

(20)QI =
qSIeSI

(

lS
)

cIEIT

(21)

d2qSI

dt2
+ 2ZI�I

dqSI

dt
+ �2

I
qSI =

c2
I
E2
IT

eSI
(

lS
)

(

FAy + FEy

)

for S = A or E.

replace the terms with subscripts I in the last vector on the 
right sides of Eq. (17) with the expression (22) and transfer 
these expressions to the left sides of Eq. (17). Considering 
that the only significant terms of the last vector on the right 
side of Eq. (17) are those with the subscript I, that is those 
for which ωi ≅ ΩI, the mentioned transfer implies the addi-
tion of the terms on the right side of Eq. (22) to the coef-
ficients eSII of the matrix eSji, to get a new form of Eq. (17), 
with the only forces FBS on the right sides.

Observe also that the second-order differential operators 
on the right side of Eq. (22) contain the damping factors 
ZI of the soundbox, whereas those on the left side of Eq. 
(17) refer to the string damping factors ζSi. Nevertheless, the 
damping factors of the modes I of the strings must be consid-
ered equal to the soundbox damping factors, whence it must 
be here agreed that the symbols ζAi and ζEi assume the value 
ZI for the modes I. The modified form of Eq. (17) is then

(22)

FSyeSI
(

ls
)

=
FSye

2
SI

(

lS
)

(

FAy + FEy

)

c2
I
E2
IT

(

d2qSI

dt2
+ 2ZI�I

dqSI

dt
+ �2

I
qSI

)

for S = A or E,

(23)

[

eAji +
�jIe

2

AI

(

lS
)

FAy

c2
I
E2

IT

(

FAy + FEy

)

]

{

d2qAi

dt2
+ 2�Ai�i

dqAi

dt
+ �2

i
qAi

}T

= FBA

{

eAj
(

xB
)}T

[

eEji +
�jIe

2

EI

(

lS
)

FEy

c2
I
E2

IT

(

FAy + FEy

)

]

{

d2qEi

dt2
+ 2�Ei�i

dqEi

dt
+ �2

i
qEi

}T

= FBE

{

eEj
(

xB
)}T

Fig. 6   Block diagram of solu-
tion procedure for the case of 
two bowed strings, A4 and E5 
(S = A or E)

forces and displacements at 
the string ends (FAy, FEy, yI) bridge interface:

Eqs. (13-15)

forces and displacements at the 
bridge feet (NT , NB, QIEIT, QIEIB)

soundbox motion 
equations for the QI: 

Eqs. (16)

bridge interface:
Eq. (20)

Eqs. (21-22)
for the qSI

string motion 
equations: Eqs. (17)

string variables
(qSi, eSi, FSB, FSy)

complete equation system:
Eqs. (23-24)

solutions
qAi , qEi , qAI and qEI

soundbox motion 
equations for the  

QI: Eqs. (16)

solutions QI
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where δjI is the Kronecker delta. Hence, indicating the matri-
ces on the left sides of Eq. (23) with [mSji], for brevity, and 
inverting them, one obtains

Equations (24) may be solved for the qAi and qEi and each 
step of the whole procedure of integration consists in solving 
Eq. (24) first for the qSi and then Eq. (16) for the QI. This can 
be somehow considered as an "experimental" result, which 
tends to become all the more exact the more correct the 
input data are. Furthermore, it must be specified here that 
the direct calculation of the qI's by Eq. (20) gives the same 
results and, moreover, that the contribution of the qI's to the 
string motion results just small.

As the solution approach described so far appears some-
what complex, Fig. 6 is also introduced to gather the whole 
operative procedure into an explicative block diagram 
for a better understanding of the various steps and their 
concatenation.

For the string damping factors ζi, introducing the fre-
quency parameters ri = ωilS/(πvwA), the following laws were 
used, interpolating some data from [5]:

(24)

{

d2qAi

dt2
+ 2�Ai�i

dqAi

dt
+ �2

i
qAi

}T

=
[

mAji

]−1
FBA

{

eAj
(

xB
)}T

{

d2qEi

dt2
+ 2�Ei�i

dqEi

dt
+ �2

i
qEi

}T

=
[

mEji

]−1
FBE

{

eEj
(

xB
)}T

.

(25)
2�i�i ≅ 5�

(

2.9 + 0.3r2
i

)

s−1 for ri ≤ 3,

2�i�i ≅ 5�

[

5.6
(

10 − ri
)

+ 23
(

ri − 3
)]

7
s−1 for ri ≥ 3.

Then, as regards the bow force FSB on the string, it 
depends on the state of slip or stick between the string and 
the bow. For the former state, it is possible to assume the 
following function of the sliding velocity vrel. = vB − dySB/dt 
(being vB the bow velocity)

where Fs is the maximum static friction force, which is a 
function of the normal force exerted by the violinist, who 
must control it in a very shrewd way. We here assume the 
formula Fs = 0.05

[

lS
/(

lS − xB
)]1.5 N, which complies quite 

well with Schelleng's diagram [3].
Dur ing the stick phase,  on the other hand, 

o n e  h a s  d y S B / d t  =  v B  =  c o n s t a n t ,  w h e n c e 
d2ySB/dt2 = 

∑

i eSi
�

xB
�

d2qi
�

dt2 = 0 and, multiplying Eq. 
(24) by eAi(xB) and eEi(xB), respectively, and summing for 
all i's, one gets

where the coefficients invmSji are those of the inverse matrix 
[mSji]−1. The passage from the stick to the slip phase occurs 
automatically, during the integration, when FSB,stick = Fs, 
whereas the passage from the slip to the stick phase occurs 

(26)
FSB = FSB,slip = Fs ×

[

0.3 + 0.7 × exp
(

−1.25 × vrel.
)]

,

(27)

FAB = FAB,stick =

∑

i

eAi
�

xB
�

�

2�Ai�i
dqAi

dt
+ �2

i
qAi

�

∑

i

eAi
�

xB
�
∑

j

invmAji × eAj
�

xB
� ,

FEB = FEB,stick =

∑

i

eEi
�

xB
�

�

2�Ei�i
dqEi

dt
+ �2

i
qEi

�

∑

i

eEi
�

xB
�
∑

j

invmEji × eEj
�

xB
� ,

Fig. 7   String and soundbox response after a time ti ≅ 0.25  s, for the 
open string case (tones A4, E5). Time scale: τ = (t − ti)vwA /lS, n = 10. 
a Harmonic table vibration at reference point PT, H = 

∑

I
QI(t)EIT . b 

Stick–slip motion of bowed point BE. c Stick–slip motion of bowed 

point BA. Data: lS = 325  mm, xB = 285  mm, vB = 1  m/s, TE = 55 N, 
TA = 45 N, μESE = 0.3  g/m, μASA = 0.55  g/m. Soundbox low frequen-
cies = 275, 400, 450, 530, 620, 850, 980 [Hz]; quality factors = 50 (all 
modes)
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when vrel. = 0. Moreover, as the mean temporal bow force 
FSm is found to be roughly equal to the constant slip force 
FSB,slip, one has qSi- ≅ FSB,slip

∑

j

�

invmSji × eSj
�

xB
��

�

�2
i
 by 

Eq. (24).
In parallel to the numerical solutions, analytical approxi-

mations for the soundbox motion can be also tried out 
expressing the qSi~(t) by proper plausible functions, for 
example, assuming the Helmholtz motion for the strings, 
using the terms of its saw-tooth Fourier expansion,

adding the static terms qSi-, replacing these quantities into 
the right sides of the motion equations of the soundbox, Eq. 
(16), and solving for the QI∼  (t) and QI–.

Figure 7a–c shows the time responses of the displace-
ments: (a) of the reference point PT of the soundbox; (b) of 
the bowed point BE; (c) of the bowed point BA. They appear 
in top-down order after the steady solutions have roughly 
been attained (0.25 s roughly). The diagrams refer to the 
numerical and analytical solutions for the open chord case 
(A4, E5). The latter solutions are strictly periodic, while the 
former are nearly periodic and denote that the coupling does 
not distort the saw-tooth shape of the Helmholtz motion so 
much, which must be ascribed to the much smaller ampli-
tude of the soundbox oscillations in comparison with the 
strings. Moreover, the soundbox vibrations, which are rep-
resented with a considerably smaller scale, show alternat-
ing peaks, lower and higher, to be ascribed to the different 
fundamental frequencies of the two vibrating chords, whose 

(28)qSi∼(t) =
vB
√

2mS

��i2
×

lS
�

lS − xB
� × sin i�t [m ×

√

kg]

ratio is nearly 3:2. Actually, it is easy to verify that the plots 
of Fig. 7a indicate with a very good approximation a period 
that is twice that of the fundamental harmonic of the string 
A4 (440 Hz) and three times that of the string E5 (659 Hz), 
i. e. a frequency of 220 Hz. For example, plotting aside a 
function of the type y(t) = a sin(ωt) + b sin(1.5ωt + φ), one 
obtains diagrams quite similar to those of Fig. 7a by choos-
ing b/a ≅ 1/2 and φ ≅ 0. This periodicity is practically exact 
for the analytical plots but only approximate for the numeri-
cal ones.

It must be stressed that the numerical solutions are not 
rigorously periodic, due to the mutual interaction between 
strings and soundbox, whose separated natural frequen-
cies are not at all commensurable. Actually, the numerical 
responses show a small aperiodic oscillation of the ampli-
tude and a slight shift of the phases.

It is interesting that, on varying the geometrical and 
mechanical characteristics of the instrument, some typical 
aspects of its behaviour can be detected and compared with 
other results present in the literature and obtained by differ-
ent approaches, e.g. of the digital wave-guide kind [12]. For 
example, by reducing the bow force and moving the playing 
point under the Schelleng suggested region [3], the number 
of the string slip phases per period increases, revealing the 
occurrence of "surface sound". In practice, the results of 
the present approach and those of the other ones are quite 
similar.

Figure 8a–c refers to the case where the two strings of 
Fig. 7 are both fingered at the same shorter length, A4 → C5 
(524 Hz), E5 → G5 (784 Hz). The results are similar to 
Fig.  7, but with a smaller amplitude of the soundbox 

Fig. 8   String and soundbox response after a time ti ≅ 0.25  s, for 
the fingered string case (tones C5, G5). Time scale: τ = (t − ti)vwA 
/lS, n = 10. a Harmonic table vibration of reference point PT, 
H = 

∑

I
QI(t)EIT . b Stick–slip motion of bowed point BG. c Stick–

slip motion of bowed point BC. Data: lS = 273  mm, xB = 239  mm, 
vB = 1  m/s, TG = 55 N, TC = 45 N, μGSG = 0.3  g/m, μCSC = 0.55  g/m. 
Soundbox low frequencies = 275, 400, 450, 530, 620, 850, 980 [Hz]; 
quality factors = 50 (all modes)
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oscillations, due to increased distances of the string fun-
damental frequencies from the soundbox's frequencies. 
Also, the difference between numerical and analytical solu-
tions appears a little more accentuated. The new playing 
conditions now lead to an apparent periodicity near 262 Hz 
(= 524/2 Hz) because the ratio of the fundamental frequen-
cies of the two fingered strings is still 3:2.

Conclusion

The present report describes the vibratory behaviour of the 
bowed string instruments in the low-frequency range, solv-
ing the complex problem of the coupled string–soundbox 
vibrations numerically and trying out simple analytical 
approximations. The characteristic equation of the cou-
pled system is formulated and the frequency spectrum is 
derived, finding the important result that the whole spec-
trum is nearly the union of the separated spectra of the 
strings and the soundbox, which is mainly due to the very 
smallness of the string-to-soundbox mass ratio. The time 
response to the bow excitation is obtained numerically by 
considering rigid the bridge motion and assuming a proper 
model of the stick–slip contact between the bow and the 
string. Analytical approximations to the forced motion 
are also calculated assuming the conventional saw-tooth 
shape for the string deflection, according to the Helmholtz 
model. The approximate solutions turn out to be periodic 
and sufficiently coherent with the more accurate numerical 
results, which are, however, non-periodic and show some 
very slow phase shifts and small fluctuations of amplitude 
compared with the analytical ones. The whole frequency 
spectra of the various individual instruments are certainly 
different from each other, as all luthiers are well aware, 
and, in particular, careful experimental tests should be 
carried out to characterize their tone colour. Yet, the pre-
sent methodology may provide a useful tool to analyse the 
influence of possible structural or material changes of the 
soundbox parts on the global performances of the instru-
ments in the low-frequency range.

The analysis may be enriched, though at the cost of 
increasing the complexity of the numerical calculations, 
by adding secondary effects, associated for example with 
the torsional and flexural stiffness of the strings, with the 
finite width of the bow–string contact, with possible changes 
of the speed, direction and force of the bow while playing 
the instrument and many other effects. An important future 
research line scheduled by the author regards the expan-
sion of the analysis to the whole audible frequency range. 
This will demand considering also the deformability and 

the vibration of the bridge and redefining its behaviour in 
terms of force and displacement transfer between strings 
and harmonic box.

Data availability  The dataset supporting analysis and results is avail-
able from the author under reasonable request.
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