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Abstract
Purpose The constitutive parameters of viscoelastic materials, such as storage modulus and loss factor, usually have fre-
quency-dependent characteristics. The combination of polymers with different reinforcement and fillers usually exhibits 
various mechanical characteristics, which makes the identification of the material properties of viscoelastic materials a chal-
lenging task. The present study proposes an inverse identification technique based on a neural network optimization (NNO) 
algorithm to characterize the frequency-dependent material properties of a viscoelastic material.
Methods To this end, a symmetric three-layered sandwich plate is considered having face layers of isotropic elastic mate-
rial and a core layer of viscoelastic material. The experimental free vibration tests are performed using the impact hammer 
method to determine resonant frequencies and modal loss factors for various eigenmodes. In addition, a numerical model of 
the sandwich plate is developed to determine vibrational responses utilizing the finite element method. The vibration-based 
material parameter identification technique is implemented based on the NNO algorithm. The identified material parameters 
are then compared with the experimental dynamic mechanical analysis (DMA) test results. Furthermore, a numerical para-
metric study is performed considering the optimized viscoelastic material properties to investigate the influence of various 
geometrical and structural factors on the free vibration response of the sandwich plate.
Results The identified results are in excellent agreement with the experimental DMA test results affirming the robustness 
of the proposed inverse technique. The parametric study not only investigates the effect of various structural and geometric 
parameters on the dynamic response of the sandwich plate but also verifies that the calibrated properties are both realistic 
and physically meaningful.
Conclusions The proposed algorithm is a useful and efficient tool for inverse identification of the constitutive properties, 
and this approach can be extended for the calibration of other parameters (constitutive or not) for a variety of viscoelastic 
materials in any field of application. This study is a critical step forward in understanding viscoelastic materials and their 
frequency-dependent behaviorur.

Keywords Viscoelastic material · Impact hammer method · Finite element method · Dynamic mechanical analysis · Neural 
network optimization · Inverse identification technique

Abbreviations
NNO  Neural network optimization
DMA  Dynamic mechanical analysis
CLD  Constrained layer damping
FLD  Free layer damping
FRF  Frequency response function
FFT  Fast Fourier transform
ANN  Artificial neural network
HPB  Half power bandwidth
FCFF  Clamped-free
FCFC  Two opposite short sides clamped
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SSSS  All sides simply-supported
CCCC   All sides clamped

List of Symbols
a  Length of plate
b  Width of plate
hk  Thickness of each layer
u, v,w  Linear displacements along x,y, and z 

directions
�  Rotational displacement
�kp  In-plane strain of face layers
�kb  Bending strain of face layers
�ks  Shear strain of face layers
�2l  Longitudinal strain of core layer
�2t  Transverse strain of core layer
�2s  Shear strain of core layer
U  Total strain energy
T   Total kinetic energy
E  Elastic modulus
G  Shear modulus
KS  Shear correction factor
Akij  Coefficient matrices due to in-plane membrane 

deformation of face layers
Dkij  Coefficient matrices due to bending of face 

layers
Skij  Coefficient matrices due to shear deformation 

of face layers
Qkij  Reduced stiffness matrices of face layers
A2ij1,A2ij2  Coefficient matrices due to in-plane membrane 

deformation of core layer
S2ij1, S2ij2  Coefficient matrices due to shear deformation 

of core layer
Q2ij  Reduced stiffness matrices of core layer
[K]  Global stiffness matrix
[M]  Global mass matrix
Gv  Shear storage modulus of core material
�v  Loss factor of core material
[B]  Strain–displacement matrix
[N]  Shape function matrix
�  Generalized displacement vector
�  Natural frequency
�s  Modal loss factor

Introduction

The metal structures exhibit very low damping, responsi-
ble for high vibration amplitude. The vibration in the metal 
structures can be suppressed by providing surface-damp-
ing treatments [1]. Constrained layer damping (CLD) is a 
type of surface damping treatment in which the damping 
performance is achieved using various viscoelastic materi-
als. Viscoelastic materials are used as dampers to reduce 

excessive sound and vibration in various engineering appli-
cations. The viscoelastic materials are generally used as a 
core, sandwiched between the base and constraining lay-
ers in the case of CLD treatment [2]. In general, the elastic 
modulus of the viscoelastic material is lower than the elastic 
moduli of isotropic and orthotropic material of the base and 
constraining layers of sandwich plates. So the energy dis-
sipation mechanism in these structures is largely based on 
the shear deformation of the viscoelastic layers. Nowadays, 
the CLD treatment with viscoelastic material as a core is the 
most effective passive vibration control technique and finds a 
large number of applications in aerospace, aeronautics, and 
transportation engineering [3].

A viscoelastic material possesses both elastic and viscous 
behaviour. The storage modulus and the loss modulus are 
the primary properties of the viscoelastic material, which 
determine its response. The storage modulus represents the 
amount of energy stored, and the loss modulus represents 
the energy dissipated in the structure [4]. The mechanical 
characteristics of viscoelastic materials are varied by com-
bining polymers with various reinforcements and fillers 
depending on the application, and for this reason, they are 
often unknown and need to be identified. Some methods for 
determining the mechanical characteristics of viscoelastic 
materials have been developed in the past. Dynamic mechan-
ical analysis (DMA), a static testing method, is mainly used 
to determine the material properties of polymeric materials. 
Melo and Radford [5] investigated the influence of time and 
temperature on the viscoelastic properties of a transversely 
isotropic fibre-reinforced composite using DMA. Jrad et al. 
[6] performed the DMA test to characterize the non-linear 
dynamic behaviour of a viscoelastic structure. Performing 
DMA experiments, Rouleau et al. [7] studied the viscoelastic 
characteristics of a self-adhesive synthetic rubber using the 
generalized maxwell and fractional derivative models. San-
tawisuk et al. [8] obtained the dynamic viscoelastic charac-
teristics of silicone soft liner materials using the DMA test.

The vibration-based material parameter identification 
is an effective non-destructive approach that has prompted 
many investigators to research. In many applications, using 
some empirical relationships, the material parameters of 
the viscoelastic material can be identified [9]. De Espindola 
et al. [10] developed an identification technique based on the 
vibration test to find the parameters of a fractional deriva-
tive model of the viscoelastic material. Using the vibra-
tion test data, the most common method for identifying the 
material properties of soft damping materials is the Oberst 
beam method [11], and the flow process of this identification 
method is designated at the ASTM E-756 standard. Moreo-
ver, based on the ASTM standard, Cortes and Elejabarrieta 
[12] identified the viscoelastic material properties utilizing 
the response of a cantilever beam in a free layer damping 
(FLD) configuration subjected to seismic excitation.
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The inverse method of identifying the material param-
eters is based on the combination of experimental test results 
and theoretical analysis results. Generally, the structural 
responses can be determined by proper knowledge of the 
structure's geometrical and material properties. Thus using 
an inverse procedure, the measured structural responses may 
be utilized to identify the material properties of that struc-
ture. The inverse method for viscoelastic material param-
eter identification which is carried out in this study involves 
the determination of the unknown material parameters by 
comparing the model predictions with the experimental 
data. This is achieved by iteratively adjusting the mate-
rial parameters until the difference between the model and 
experimental results is minimized. The inverse method relies 
on numerical optimization algorithms and knowledge of the 
structural response under various loading conditions. It is an 
effective way to obtain the material parameters, especially 
for materials that are difficult to characterize experimentally. 
However, it is important to note that the accuracy of the 
inverse method depends on the quality of the experimental 
data and the accuracy of the FE model used. This approach 
has the advantage of being able to handle complex loading 
conditions and can provide accurate results for materials 
with nonlinear behaviour.

Many researchers have identified the material parameters 
of different CLD and FLD configured structures using the 
inverse method. Shi et al. [13] proposed an inverse method 
for determining the material parameters of a sandwich 
beam using the measured resonance frequencies based on 
the Nelder–Mead (NM) simplex optimization approach. 
The frequency-dependent non-linear mechanical proper-
ties of a sandwich beam were obtained using the inverse 
method by Barkanov et al. [14]; the viscoelastic properties 
of a 3-M damping layer were determined using the response 
surface method and a constrained optimization approach. 
Araujo et al. [15] presented an inverse technique based on a 
gradient-based optimization method for estimating material 
parameters in piezoelectric, elastic, and viscoelastic lami-
nated plate structures. The frequency-dependent viscoelastic 
parameters of laminated sandwich composite plates were 
also assessed [16]. Kim and Lee [17] identified the frac-
tional-derivative-model parameters of viscoelastic materials 
using measured frequency response functions (FRFs). The 
impact test of the FLD beam was conducted in an environ-
mental chamber with cantilever boundary conditions, and 
the FRFs were constructed at different temperatures. A 
gradient-based optimization algorithm yielded the optimal 
parameters of the viscoelastic material. Martinez-Agirre and 
Elejabarrieta [18] proposed an inverse approach for evaluat-
ing the material properties of a high-damping viscoelastic 
material. The resonance frequencies and FRFs of the canti-
lever CLD beam were measured from a forced vibration test. 
The Nelder–Mead simplex algorithm was used to obtain the 

optimal solution for minimizing the error between the exper-
imental and numerical transfer functions. Schwaar et al. [19] 
provided a technique for identifying elastic and damping 
characteristics in a sandwich structure with a moderately 
stiff core. Elkhaldi et al. [20] presented a gradient approach 
for determining the viscoelastic behaviour of damped sand-
wich structures. The technique utilized experimental data, 
numerical simulations performed using a complex non-
linear eigenvalue solver utilizing the asymptotic numerical 
method, and optimal control for identification of viscoelas-
tic parameters. Allahverdizadeh et al. [21] characterized the 
material parameters of electrorheological fluid core adaptive 
sandwich beams. The experimental ASTM E756 method 
was coupled with the computational particle swarm optimi-
zation technique to determine the complex shear modulus of 
the viscoelastic layer. El-Hafidi et al. [22] presented an iden-
tification method based on vibration measurements utilizing 
sine-sweep excitation to determine the linear viscoelastic 
characteristics of a flax fibre-reinforced polymer compos-
ites. Ledi et al. [23] proposed an inverse technique based on 
the measured natural frequencies and modal loss factors to 
identify the material parameters of a three-layered viscoelas-
tic sandwiched beam. The frequency-dependent viscoelastic 
material properties were identified for each mode of vibra-
tion by Hamdaoui et al. [24]. The quadratic error between 
the finite element model and the experimental modal data 
was minimized using an adjoint-based gradient technique. 
Sun et al. [25] characterized the mechanical parameters of 
a cantilever FLD plate by an inverse technique based on the 
measured resonance frequencies and FRFs. Two kinds of 
damping (viscous and material damping) were considered, 
and the material parameters were obtained using response 
surface methodology and a constrained optimization 
approach. For inverse viscoelastic material identification, a 
parametric model order reduction technique was developed 
by Xie et al. [26]. Inverse optimization methods for mate-
rial parameter identification are not limited to viscoelastic 
sandwich plates. Recently, a new optimization algorithm, 
Neural network optimization (NNO), was applied for the 
inverse identification of the constitutive properties of bricks 
and mortar in unreinforced masonry walls, simulated with 
the concrete damaged plasticity model, to describe the 
behaviour of such masonry structures by Albu-Jasim and 
Papazafeiropoulos [27]. Grosso et al. [28] introduced a new 
methodology for identifying non-traditional viscoelastic 
models from vibration data using the circle-fit technique. 
The proposed method was used to analyse aluminium plates 
covered with dampening pads and plates composed of quiet 
aluminium. A theoretical and experimental investigation by 
Pierro and Carbone [29] was reported to describe the hyster-
etic characteristics of viscoelastic materials. The mechanical 
properties of a viscoelastic beam were defined theoretically 
using an accurate analytical model, and experimental data 
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were fitted to derive the complex modulus. To estimate the 
frequency-dependent complex modulus of the viscoelastic 
layer, Kang et al. [30] employed a genetic algorithm to fit 
the analytical solution of the frequency response function of 
a free–free viscoelastic sandwich beam. Based on the modal 
analysis responses, Chandra et al. [31] identified the elas-
tic and damping properties of the carbon-epoxy symmetric 
cross-ply and angle-ply laminates as a function of tempera-
ture. Orta et al. [32] presented an inverse technique based on 
the three-dimensional surface velocity response to analyse 
the complex-valued stiffness characteristics of an arbitrary 
orthotropic viscoelastic plate. Several synthetic data sets 
were created to represent composite and wood panels, and 
the developed inversion technique was verified on these data 
sets, demonstrating their good performance with negligible 
error.

Viscoelastic materials are mainly employed to reduce 
structural vibrations effectively. The theoretical study and 
design of these structures need an understanding of mechan-
ical properties that are primarily dependent on frequency. 
Accurate determination of the frequency-dependent consti-
tutive parameters of viscoelastic materials is essential for a 
wide range of engineering applications. The literature dis-
cussed above enumerates the parameter identification using 
structural vibration responses for various polymeric viscoe-
lastic materials. The parameter identification approaches 
were presented for a similar range of materials. Many 
inverse identification methods were based on specific model 
assumptions that may not hold for all materials or systems, 
leading to limitations in their accuracy and applicability. 
Other identification techniques are often sensitive to ini-
tial conditions, making it difficult to find an optimal global 
solution for the frequency-dependent material parameters, 
or are computationally intensive, and, therefore, difficult to 
implement in real-time or for large data sets. Furthermore, 
concerted efforts through both experimental and theoretical 
investigation toward constitutive parameter identification are 
scarce in literature and far from complete, which needs fur-
ther attention to get the inversely optimal result regarding the 
identification of various structural properties. The present 
study makes an attempt to cover the aforementioned short-
comings. However, to the best of the author’s knowledge, 
no study in the literature has attempted a material properties 
identification procedure for natural rubber. There is a sig-
nificant need for efficient methods to identify the frequency-
dependent characteristics of natural rubber to understand its 
behaviour better and optimize its performance. This study 
aims to address this research gap by using a novel inverse 
identification method, the NNO, to accurately determine the 
viscoelastic material properties of natural rubber, providing 
new insights into the behaviour of this important material. 
More specifically, the present study identifies the frequency-
dependent shear storage modulus and loss factors of natural 

rubber using a new metaheuristic approach, known as neural 
network optimization (NNO), through the concerted efforts 
of experimental and theoretical investigation. The use of 
NNO algorithm overcomes the limitations mentioned above 
by providing a more flexible and efficient way of learning 
from large amounts of data including both experimental and 
simulation results, by being insensitive to any initial condi-
tions and finally by being able to be trained to make targeted, 
accurate predictions of any material’s properties.

To this end, a symmetric three-layered sandwich plate 
is considered with aluminium as face layers and natural 
rubber as a core layer. Free vibration tests are performed 
on the structure using the impact hammer method under a 
clamped-free boundary condition. The theoretical model 
confirming the empirical scenario is developed utilizing 
a finite element technique in MATLAB programming 
language. The frequency-dependent viscoelastic material 
properties of natural rubber are identified by minimizing 
the error between corresponding experimental and numeri-
cal structural responses. To minimize the error function, 
the novel NNO algorithm is used. The proposed inverse 
technique relies on vibration tests, detailed theoretical 
modelling, and a convergence criterion for the optimal 
solution of identified parameters. Besides, the elicited 
results are successfully validated with experimental 
results through the DMA test. Apart from the above, the 
efficiency of the NNO method as an inverse optimizer is 
shown, and its capability of automatically developing an 
equivalent neural network of the finite element model 
under consideration is described in detail. Thereafter, 
a numerical parametric analysis is performed consider-
ing the core's optimized viscoelastic material properties 
to study the influence of various geometrical factors on 
the sandwich plate's free vibration response. The use of 
neural network optimization algorithms can improve the 
performance of the inverse identification method by reduc-
ing the computational time and complexity compared to 
traditional optimization methods. The algorithm can also 
provide interpretable results, allowing for a deeper under-
standing of the behaviour of viscoelastic materials and the 
optimization process.

The organization of this study is as follows: in "Experi-
mental Investigation", the experimental investigation car-
ried out for the present research work is detailed. In "Finite 
Element Modelling of the Sandwich Plate", the numerical 
modelling procedure of the sandwich plate using finite ele-
ment analysis is presented. In "Identification of Material 
Parameters", the material parameter identification proce-
dure based on the NNO method is described. In "Results 
and Discussion", the natural rubber's frequency-dependent 
shear storage modulus and loss factors are identified using 
the proposed inverse method and verified with the DMA test 
results. The numerical parametric analysis is then discussed.
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Experimental Investigation

The experimental research work in the present study 
includes: (1) a free vibration test of the sandwich specimen 
to obtain its structural responses. (2) a DMA test for deter-
mining the viscoelastic material properties of natural rubber. 
The following sections provide the details of the experimen-
tal procedures.

Free Vibration Test

Viscoelastic Sandwich Specimens

Rectangular sandwich plates with viscoelastic cores are fab-
ricated and used as specimens for experimentation. The hand 
lay-up method is used for fabrication purposes [33]. The 
proposed sandwich plate is comprised of three layers, i.e., 
two face layers (top and bottom) and one core layer (middle 
layer). The faceplates are made of aluminium, and the core 
is made of natural rubber. The sandwich plates are manually 
cured by placing heavy iron sheets on them for 72 h at room 
temperature. The loads are removed after curing, and the 
plate surfaces are cleaned with acetone to make them free 
from any impurities. The sandwich plates are then subjected 
to modal testing employing the impact hammer method.

Impact Hammer Modal Testing

The impact hammer method is a non-destructive vibration 
testing method for structural analysis. This modal testing 
technique makes it possible to measure a vibrating structure's 

frequency response functions. Each FRF is a representation 
of the spectrum of the vibration that occurs at a single point 
on the structure, in a specific direction, in response to a unit 
force that is imparted at some other position on the structure. 
The block diagram, along with the original photograph of 
the experimental set-up for the present modal testing, is pre-
sented in Figs. 1 and 2. The experimental set-up of the free 
vibration test relies on the following equipment:

• FFT analyzer
• Modal hammer
• Accelerometer
• PC with modal analysis software
• Clamps for holding the specimen

The sandwich plate is fitted to the pre-assembled iron frame 
with the help of C-clamps to ensure a clamped-free boundary 
condition. The modal hammer and accelerometer are con-
nected to the FFT analyzer's respective channel, and the FFT 
analyzer is connected to a PC. The roving hammer technique 
is adopted for the vibration measurement in which the acceler-
ometer is fixed at one position on the sandwich plate, and the 
test specimen is excited by moving the modal hammer at dif-
ferent marked points on the sandwich plate. The accelerometer 
attached to the sandwich plate receives the response generated 
by the impact of the modal hammer. The FFT analyzer receives 
a time-varying signal from the accelerometer, converts it into 
a frequency-based signal known as the frequency response 
function, and transfers those resulting FRFs to the computer. 
The modal analysis software Pulse Labshop and ME'scope 
are used to accomplish experimental modal analysis. The PC 

COMPUTER

MODAL 
HAMMER

ACCELEROMETER

FFT ANALYZER

SPECIMEN

EXCITATION 
POINT

FIXED SUPPORT

Fig. 1  Block diagram of the experimental set-up for modal testing of the sandwich plate under a clamped-free boundary condition
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with preinstalled Pulse Labshop software captured those FRF 
spectrums with fine coherence. The impact-testing module of 
Pulse Labshop software records a series of five impacts at a 
given point for each testing configuration in accordance with 
the FRF measurement protocol. The recorded data are further 
post-processed with ME'scope software to obtain the vibra-
tional characteristics of the sandwich plate. To avoid experi-
mental errors, a substantial number of sandwich plate samples 
are prepared and tested, and the average of the vibration results 
is taken into account.

Estimation of Modal Loss Factor

The modal damping associated with a particular eigenmode 
is usually computed using the half-power bandwidth (HPB) 
method. The HPB method is quite useful in determining the 
magnitude of the resonance peak within the recorded FRF cor-
responding to the selected mode and then assessing the upper 
( �upper ) and lower bound ( �lower ) frequencies corresponding 
to a 3 Db reduction from the peak amplitude of the damped 
resonant frequency ( �damped ). The calculation for the modal 
damping ratio ( � ) is as follows:

The relationship between the modal loss factor ( �s ) and 
modal damping ratio ( � ) of a structure can be expressed by 
[34],

DMA Test

Measurements of frequency-dependent viscoelastic mate-
rial properties of the natural rubber are carried out on a 

(1)� =
�upper − �lower

�damped

.

(2)�s = 2� .

dynamical mechanical analyzer, DMA-8000. The experi-
mental set-up for the DMA-8000 is presented in Fig. 3. For 
the measurement, the DMA-8000 is configured in the shear 
mode for testing. This is achieved by two samples of equal 
dimensions being sheared between a movable plate and a 
fixed plate. The natural rubber samples are prepared in line 
with ASTM D4065 standard, and the sample geometry in 
the lateral direction is confirmed as 10 mm × 10 mm and 
a thickness of 2.5 mm. The adhesion between clamps and 
samples is ensured by applying a compressive pre-strain in 
a range of 0–10% during the clamping of the specimen in 
DMA 8000. The viscoelasticity behaviour was observed by 
taking the samples into account, inducing the dynamic dis-
placement ranging from 1 to 10 μm to a reference frequency 
of 0–100 Hz and temperature of 23.5 °C. With a temperature 

Fig. 2  Photograph of the 
experimental set-up for modal 
testing of the sandwich plate 
under a clamped-free boundary 
condition

Fig. 3  Photograph of the experimental set-up of DMA-8000
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ramp phenomenon, the dynamic behaviour of natural rubber 
is investigated through a multi-frequency test.

Finite Element Modelling of the Sandwich 
Plate

To apply the finite element method (FEM) to a three-lay-
ered sandwich plate with a viscoelastic core the following 
steps are egenrally followed: (1) the geometry of the plate is 
modelled and the kinematic relationships between all layers 
are defined, (2) the plate is discretized into finite elements 
which form a system of interconnected nodes, and carry the 
material and section definitions of the plate, (3) the global 
stiffness and mass matrices are assembled, which, along with 
the boundary conditions of the plate, form a system of equa-
tions, (4) the system of equations is then solved for the com-
plex eigenvalue problem considered in this study, (5) finally, 
the natural frequencies and modal loss factors are extracted 
from the FEM solutions and can be used to characterize the 
mechanical response of the three-layered sandwich plate. 
The following subsections provide detailed explanations of 
the aforementioned steps.

A three-layered sandwich plate with face layers of iso-
tropic elastic material and a core layer of viscoelastic 
material is shown in Fig. 4. The geometrical outline of the 
sandwich structure's deformation scheme is represented 
in Fig. 4b, which depicts the dimensions of the sandwich 
plate as 'a' and 'b' along its sides in the Cartesian coor-
dinates. h1, h2 and h3 are the thickness of the elastic base 
layer, viscoelastic core layer and elastic constraining layer 
accordingly.

Some basic assumptions are considered for the numerical 
modelling of the sandwich plate under consideration. First-
order shear deformation theory (FSDT) is employed to model 

the base and constraining layer displacement kinematics. 
Aspects such as longitudinal and shear deformation of the core 
are taken into account, making the model more efficient for 
sandwich structures with thin and thick core layers [35]. The 
base and constraining layers exhibit transverse displacements 
independent of each other. The core layer's in-plane and trans-
verse displacements vary linearly throughout its thickness. The 
absence of sliding movement between layers at their interface 
ensured perfect continuity. The core material is assumed to 
be linearly viscoelastic with a complex frequency-dependent 
shear modulus.

Kinematic Equations

Based on FSDT, the displacement field equations at any point 
on the elastic base layer are as follows:

with p1 = h1+h2

2
 and −h1 −

h2

2
≤ z ≤ −

h2

2
 , where u1, v1 and w1 

are the mid-displacements of any point on the elastic base 
layer along the Cartesian coordinates. θx1' and 'θy1' are the 
rotations of the tangents of the mid-plane of the elastic base 
layer about the y-axis and x-axis, respectively. Similarly, for 
the elastic constraining layer, the displacement field equa-
tions at any point are:

(3a)

u�
1
= u1 + (z + p1)�x1

v�
1
= v1 + (z + p1)�y1

w�
1
= w1,

(3b)

u�
3
= u3 + (z − p3)�x3

v�
3
= v3 + (z − p3)�y3

w�
3
= w3,

Fig. 4  Schematic diagram of the sandwich structure
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with, p3 = h3+h2

2
 and h2

2
≤ z ≤ h2+h3

2
,where u3, v3 and w3 are 

the mid-displacements of a point on the elastic constraining 
layer along Cartesian coordinates. Here the y-axis and x-axis 
mid-plane rotational tangents of the elastic constraining lay-
ers are noted as 'θx3' and 'θy3', respectively.

The kinematic relations of the viscoelastic core layer are 
obtained from the top and bottom laminae's kinematics. As per 
the analysis assumptions, the transverse and in-plane displace-
ments are linear in the thickness direction. The displacement 
field equations for the viscoelastic core layer are as follows:

The strain–displacement relationship for the elastic face 
layers can be expressed as follows:

where, �kp , �kb and �ks are the in-plane axial, bending and 
shear strain vectors for the elastic face layers (k = 1, 3). The 
notations (),x and (),y signify the partial derivative concern-
ing the 'x' and the 'y' coordinate.

The strain–displacement relationship for the viscoelastic 
core layer can be expressed as follows:

(4)

u�
2
=

[
u1 + u3

2
+

h1�x1 − h3�x3

4

]
+

[
u3 − u1

h2
−

h1�x1 + h3�x3

2h2

]
z

v�
2
=

[
v1 + v3

2
+

h1�y1 − h3�y3

4

]
+

[
v3 − v1

h2
−

h1�y1 + h3�y3

2h2

]
z

w�
2
=

[
w1 + w3

2

]
+

[
w3 − w1

h2

]
z.

(5a)�kp =

⎡⎢⎢⎣

u�
k,x

v�
k,y

u�
k,y

+ v�
k,x

⎤⎥⎥⎦
,

(5b)�kb =

⎡⎢⎢⎣

�xk,x
�yk,y

�xk,y + �yk,x

⎤⎥⎥⎦
,

(5c)�ks =

[
�yk + w�

k,x

�xk + w�
k,y

]
,

(6a)�2l =

⎡⎢⎢⎣

u�
2,x

v�
2,y

u�
2,y

+ v�
2,x

⎤⎥⎥⎦
,

(6b)�2t =
[
w�
2,z

]
,

(6c)�2s =

[
u�
2,z

+ w�
2,x

v�
2,z

+ w�
2,y

]
,

where �2l , �2t and �2s are the longitudinal, transverse 
and shear strain vectors for the viscoelastic core layer, 
respectively.

Energy Expressions

Energy expressions for the strain energy (U) and kinetic 
energy (T) are used to calculate the structure's stiffness and 
mass matrices. The total strain energy (Ue) of the sandwich 
plate element is composed of the relative energy contribu-
tions of the base layer (U1e), viscoelastic core layer (U2e) 
and constraining layer (U3e), which can be represented as 
follows:

The sum of the strain energies caused by the in-plane 
axial, bending and shear deformation are used to character-
ize the total strain energy of the elastic face layers. This 
allows the total strain energy for the face layers (k = 1, 3) to 
be expressed in mathematical form as follows:

The coefficient matrices for the elastic face layers (k = 1, 
3) are presented as follows:

where the stiffness coefficients of the elastic face layers are 
given as follows:

Qk11 = Qk22 =
Ek

1−�2k
;Qk12 =

�kEk
1−�2k

;Qk44 = Qk55 = Qk66 =
Ek

2(1+�k)
 for 

k = 1, 3 and Ks is the shear correction factor whose value is 
taken as 5/6.

The sum of the strain energies resulting from longitudi-
nal, transverse and shear deformation are used to describe 
the total strain energy of the viscoelastic core layer. This 
allows the total strain energy for the viscoelastic core layer 
to be expressed in mathematical form as follows:

(7)Ue = U1e + U2e + U3e.

(8)

Uke =
1
2 ∫

A

(

�kp
)T(Akij

)(

�kp
)

dA + 1
2 ∫

A

(

�kb
)T(Dkij

)(

�kb
)

dA

+ 1
2 ∫

A

(

�ks
)T(Skij

)(

�ks
)

dA.

(9a)
(
Akij,Dkij

)
=

hk∕2∫
−hk∕2

Qkij(1, z
2) dz i, j = 1, 2, 6 ,

(9b)(Skij) = Ks

hk∕2

∫
−hk∕2

Qkij dz i, j = 4, 5 ,
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The coefficient matrices for the viscoelastic core layer are 
presented as follows:

where the stiffness coefficients of the viscoelastic core are 
given as follows:

Q211
= Q222

=
E2

1−�2
2

;Q212
=

�2E2

1−�2
2

;Q244
= Q244

= Q266
= G2 

and Ks is the shear correction factor whose value is taken 
equal to 5/6.

In the present analysis, the rheological characteristics 
of the viscoelastic material are considered according to the 
complex modulus approach [36]. Thus for the core layer, the 
complex Young's modulus of the viscoelastic material can 
be represented as, E2 = Ev(1 + i�v) and the complex shear 
modulus can be defined as, G2 = Gv(1 + i�v) , where Ev and 
Gv represents the storage modulus and �v is the loss factor 
of the viscoelastic material.

In a similar manner, the total kinetic energy (Te) of the 
sandwich plate element is defined by the relative energy con-
tributions from the base layer (T1e), the viscoelastic core 

(10)

U2e =
1
2 ∫

A

(

�2l
)T(A2ij

)(

�2l
)

dA + 1
2 ∫

A

(

�2t
)TE2

(

�2t
)

dA

+ 1
2 ∫

A

(

�2s
)T(S2ij

)(

�2s
)

dA.

(11a)(A2ij1
,A2ij2

) =

h2∕2

∫
−h2∕2

Q2ij(1, z
2
n
) dz i, j = 1, 2, 6 ,

(11b)(S2ij1 , S2ij2 ) = Ks

h2∕2

∫
−h2∕2

Q2ij(1, z
2
n
) dz i, j = 4, 5 ,

layer (T2e), and the constraining layer (T3e), which can be 
expressed as follows:

where u̇′
k
, v̇′

k
, ẇ′

k
 are the 1st derivatives of the displacements 

with respect to time.

Degrees of Freedom (DOF) and Shape Functions

In the present study, an eight-node, three-layered rectangular 
sandwich element is proposed for the finite element discre-
tization of the sandwich plate. The nodes are presumed to 
be located on the sandwich panel's geometrical mid-plane, 
as shown in Fig. 5. Degrees of freedom are assigned to each 
node, comprising two axial displacements, one transverse 
displacement, and two angular rotations of the elastic base 
layer and the constraining layer, respectively [37].

By using iso-parametric mapping, any point (x, y) within 
the element can be represented as follows:

where Ni is a representation of the shape functions of the 
second order at the ith node in natural coordinates. At any 
point within the element, the generalized displacement vec-
tor (�) may be represented in the following form:

Expressing Eq. (14) in terms of matrix form as follows:

(12)

Te = T1e + T2e + T3e =
3∑

k=1

1

2 ∫
v

𝜌k(u̇
�2
k
+ v̇�2

k
+ ẇ�2

k
)dv,

(13)x =

8∑
i=1

Ni(�, �)xi, and y =

8∑
i=1

Ni(�, �)yi,

(14)� =
{
u1, v1,w1, �x1, �y1, u3, v3,w3, �x3, �y3

}T
.

(15)� =

8∑
i=1

Nqe
i
, i = 1, ...8,

Fig. 5  An eight-node finite sandwich plate element
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where,  N  i s  the shape funct ion matr ix and 
qe =

{
�1, �2, �3, ....�8

}T is the elemental displacement vec-
tor. The standard second-order serendipity shape functions 
( Ni ) from the shape function matrix are expressed as follows 
[38]:

where � = x∕a and � = y∕b are the reduced coordinates used 
in the above shape function expressions.

The elemental strain–displacement relationships of the face 
layers from Eq. (5) may be described in terms of the nodal-
displacement vector as follows:

where 
[
Be
kp

]
,
[
Be
kb

]
 and 

[
Be
ks

]
 are the elemental strain–displace-

ment matrices arising due to the in-plane axial, bending and 
shear deformation of the elastic face layers. Similarly, the 
elemental strain–displacement relationships of the viscoe-
lastic core layer from Eq. (6) may be described in terms of 
the nodal-displacement vector as follows:

where 
[
Be
2l

]
 , 
[
Be
2t

]
 and 

[
Be
2s

]
 are the elemental strain–displace-

ment matrices arising due to the longitudinal, transverse and 
shear deformation of the viscoelastic core layer.

The total strain energy for the sandwich plate element may 
be represented in the form of stiffness matrices, as follows:

where 
[
K1e

]
 , 
[
K2e

]
 and 

[
K3e

]
 are the elemental stiffness matri-

ces for the elastic base layer, viscoelastic core layer and 

(16)

N1 =
1
4
(1 − �)(1 − �)(−� − � − 1),

N2 =
1
4
(1 + �)(1 − �)(� − � − 1),

N3 =
1
4
(1 + �)(1 + �)(� + � − 1),

N4 =
1
4
(1 − �)(1 + �)(−� + � − 1),

N5 =
1
2
(1 + �)(1 − �)(1 − �),

N6 =
1
2
(1 + �)(1 + �)(1 − �),

N7 =
1
2
(1 + �)(1 − �)(1 + �),

N8 =
1
2
(1 − �)(1 + �)(1 − �),

(17)

[
�e
kp

]
=
[
Be
kp

]
qe,

[
�e
kb

]
=
[
Be
kb

]
qe and

[
�e
ks

]
=
[
Be
ks

]
qe for k = 1, 3 ,

(18)
[
�e
2l

]
=
[
Be
2l

]
qe,

[
�e
2t

]
=
[
Be
2b

]
qe and

[
�e
2s

]
=
[
Be
2s

]
qe ,

(19)

Ue = U1e + U2e + U3e

=
1

2

∑
k=1,3

qe
T
[
Ke
kp
+ Ke

kb
+ Ke

k�

]
qe +

1

2
qe

T
[
Ke
2l
+ Ke

2t
+ Ke

2�

]
qe

=
1

2
qe

T [
K1e + K2e + K3e

]
qe,

elastic constraining layer, respectively. As a result, the sand-
wich plate's element stiffness matrix, [Ke] may be expressed 
by summation of the stiffness matrices of the three layers 
as follows:

In its most generic form, the elemental stiffness matrix can 
be computed as follows:

(20)
[
Ke

]
=
[
K1e

]
+
[
K2e

]
+
[
K3e

]
.

(21)
[

Ke] =

1

∫
−1

1

∫
−1

[

BT ][D][B]dA.

Similarly, the total kinetic energy of the sandwich plate 
element may be represented in the form of mass matrices as 
follows:

The elemental mass matrices in the above expression 
are 

[
M1e

]
,
[
M2e

]
 and 

[
M3e

]
 accounted for the elastic base 

layer, viscoelastic core layer and elastic constraining layer, 
respectively. As a result, the sandwich plate's element mass 
matrix,[Me] may be expressed as a sum of the mass matrices 
of the  following three layers:

In its most generic form, the elemental mass matrix can 
be computed as follows:

Governing Equations of Motion

Based on Hamilton's principle, the governing equation of 
motion is derived for the sandwich plate element and can be 
presented as follows:

where Ue is the total strain energy and Te is the total kinetic 
energy for the sandwich plate element. Substituting the 

(22)

Te = T1e + T2e + T3e

=

3∑
k=1

1

2 ∫
v

𝜌k(u̇
�2

k
+ v̇�

2

k
+ ẇ�2

k
)dv

=
1

2
q̇e

T [
M1e +M2e +M3e

]
q̇e.

(23)
[
Me

]
=
[
M1e

]
+
[
M2e

]
+
[
M3e

]
.

(24)
[
Me

]
=

1

∫
−1

1

∫
−1

[
NT

]
[I][N]dA.

(25)

�2

∫
�1

�(Ue − Te) d� = 0,
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above-discussed energy expressions from Eqs.  (19) and 
(22) in Eq. (25), the equation of motion for the three-layered 
sandwich plate element is obtained as follows:

For the three-layered sandwich plate, the governing 
equation of motion in global coordinates can be derived by 
assembling the element matrices, which take the form as 
follows:

where [K] and [M] are the sandwich plate's global stiffness 
and mass matrix, respectively, and q stands for the global 
displacement vector. To find a substantial non-zero solution 
for the given expression, the following equation must hold:

Equation  (28) is an eigenvalue problem that may be 
solved analytically to get the values � . Due to the viscoe-
lasticity of the core material, the value of � is a complex 
number, which can be written as follows:

where � represents the natural frequency and �s represents 
the modal loss factor for the sandwich plate. The modal loss 
factor is a measure of the structure's damping capabilities. 
The modal loss factor signifies energy dissipation owing 
to the structure's viscoelasticity. The higher the modal loss 
factor value, the greater the amount of energy absorbed by 
the sandwich plate and the better the damping properties 
achieved. The natural frequency and the modal loss factor 
for the three-layered sandwich plate with a viscoelastic core 
can be given as follows:

Boundary Conditions

Three cases of boundary conditions have been considered 
for the sandwich plate as follows:

(a) Clamped (C)

(b) Free (F)

(26)(Ke − �eMe)qe = 0.

(27)(K − �M)q = 0,

(28)|K − �M| = 0.

(29)� = �2
(
1 + j�s

)
,

(30)� =
√
Real(�) and �s =

Imag(�)

Real(�)
.

u1 = v1 = w1 = �x1 = �y1 = u3 = v3 = w3 = �x3 = �y3 = 0

at x = 0, a and y = 0, b.

(c) Simply supported (S)

Identification of Material Parameters

Description of the Inverse Optimization Problem

One of the main goals of this study is to find the fre-
quency-dependent constitutive properties of the viscoe-
lastic material which is used as a core in the sandwich 
plate. The behaviour of the viscoelastic material is char-
acterized by the complex modulus approach. The design 
variables are the parameters that need to be identified, i.e. 
the shear storage modulus and the material loss factor of 
the viscoelastic core. In a forward procedure, the mate-
rial properties are needed in order to calculate the Eigen 
characteristics. The opposite task, i.e. the determination 
of the material properties based on the modal test results 
of the structure, requires an inverse approach to be accom-
plished. This inverse approach accepts a numerical model 
of the structure under consideration (finite element model 
in our case) and couples it with an optimization algorithm 
which tries to find the queried material properties (treated 
as design variables) by minimizing the least square error 
between the numerically calculated eigenmodes and the 
eigenmodes observed in experiments. Ideally, if this error 

u1 = v1 = w1 = �x1 = �y1 = u3 = v3 = w3 = �x3 = �y3 ≠ 0

at x = 0, a and y = 0, b.

u1 = v1 = w1 = �y1 = u3 = v3 = w3 = �y3 = 0 at x = 0, a,

u1 = v1 = w1 = �x1 = u3 = v3 = w3 = �x3 = 0 at y = 0, b.

Step 1: Perform the experimental modal analysis of the sandwich plate and 
measured the structural fundamental and higher order Eigen frequencies

Step 2: Development of finite element model for simula�on of the sandwich 
plate to obtain its fundamental and higher order Eigen frequencies

Step 3: Configura�on of the NNO op�miza�on algorithm

Step 4: Calibra�on of the viscoelas�c material parameters for the core of the 
sandwich plate using the NNO inverse op�miza�on algorithm to converge with 
the measured structural response from experiments.

Step 5: Obtain op�mized values of the viscoelas�c material’s consecu�ve 
proper�es

Fig. 6  Flow chart of the material properties' identification procedure



2158 Journal of Vibration Engineering & Technologies (2024) 12:2147–2173

1 3

is zero, then the result of the optimization algorithm is a 
candidate solution for the searched material properties. 
Therefore, the aforementioned procedure works as a cali-
bration tool for the finite element model, which is used 
for the simulation of the sandwich plate. In the present 
study, the experimental Eigen frequencies and loss factors 
are obtained using the impact hammer technique through 
modal analysis software. The numerical Eigen frequencies 
and loss factors are taken with the finite element method, 
which is programmed in integrated, independent code 
using the MATLAB programming language. The inverse 
procedure followed in the present study is shown in Fig. 6.

The Neural Network Optimization (NNO) Algorithm

The NNO algorithm [27] is used for inverse optimization. 
This algorithm uses a genetic algorithm coupled with an 
artificial neural network (ANN). The latter reinforces the 
search for the optimum made by the former, drastically 
increasing its convergence rate and the quality of the result. 
Since the NNO algorithmic framework allows for the use 
of a large variety of alternative optimizers and/or machine 
learning objects, it can be suitably configured to deal with 
nearly all optimization problems. A flowchart of the NNO 
algorithm used in this study is shown in Fig. 7. For more 
detailed descriptions of the NNO algorithm, the reader is 
encouraged to refer to references [39, 40].

Objective Function and Optimization Space

The objective function is a function that takes any set of 
design variable values (ANN's input data) and returns the 

output as the error (ANN's output data). Furthermore, as 
the algorithm progresses, the training data size increases, 
the trained ANN gets "better," and the objective function, 
which is based on this ANN, becomes "better" as well. This 
signifies that the objective function changes continuously as 
the algorithm progresses, causing the optimal values of the 
design variables and the objective function to vary continu-
ously. Within the NNO framework, an ANN tries to mimic 
the objective function defined by the user, thus playing the 
role of a "digital twin" of the last. A genetic algorithm is 
used to optimize this "digital twin" ANN. The original ine-
quality constrained minimization problem can be expressed 
as follows:

subject to:

where, LB and UB are vectors representing the design vari-
able's lower and upper limits, and X is a vector comprised 
of the two design variables. The aforementioned limits need 
to be set so that the search space is both sufficiently large to 
include the optimal solution and sufficiently small to mini-
mize the computational effort required for the optimization 
procedure. The values of the design variables may be chosen 
arbitrarily or by trial and error. The proper selection of the 
initial values of the design variables is essential to enhance 
the effectiveness of the inverse technique.

(31)min
x

{
�ANN(X)

}
,

(32)h(X) =

[
LB − X

X − UB

]
≤
[
0

0

]
,

Fig. 7  Flow chart of the NNO 
algorithm
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Results and Discussion

Convergence Study and Validation of the Present 
Finite Element Formulation

To determine the optimal mesh size of the finite element 
model, a convergence analysis with various levels of dis-
cretization is performed for the sandwich plate with a vis-
coelastic core layer constrained between two isotropic face 
layers. The convergence of the first three modes of natural 
frequencies and their corresponding modal loss factors of 
the sandwich plate under all side clamped boundary condi-
tions over different mesh sizes for an aspect ratio (a/b) = 1 
is reported in Table 1. A graphical representation of the 
convergence analysis is shown in Fig. 8. Observations 
from Fig. 8 indicate that a mesh size of 10 × 10 produces 
satisfactory results, and the same mesh size is employed 
throughout the present analysis.

For the validation of the proposed finite element for-
mulation, a comparison study is performed with the exist-
ing works of literature using the material properties as 
provided in Table 2 within the equal testing domain. The 
resulting outcomes, along with a comparison to the present 
finite element model, are listed in Tables 3 and 4. The 
first three mode shapes of the sandwich plate for all sides 
clamped boundary conditions obtained from the developed 
finite element model are presented in Fig. 9. It can be 
clearly observed that the values of natural frequencies and 
modal loss factors obtained from the present finite element 
analysis are in accordance with the literature results.

Free Vibration Analysis

Free vibration test is carried out on a symmetric three-lay-
ered sandwich plate by taking natural rubbers as viscoelastic 
core constrained between two aluminium faces. The geomet-
ric signatures of the sandwich plate are confirmed through 

Table 1  Convergence analysis 
for the present finite element 
model

Mesh size Natural frequency (Hz) Modal loss factor

Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

6 × 6 100.3970 191.2935 196.5162 0.1358 0.1002 0.1025
7 × 7 93.1137 174.2448 180.1155 0.1605 0.1260 0.1270
8 × 8 89.8478 163.9567 170.4213 0.1722 0.1450 0.1442
9 × 9 88.3196 158.9010 165.7000 0.1776 0.1546 0.1528
10 × 10 87.5759 156.3368 163.3101 0.1803 0.1593 0.1570
11 × 11 87.2005 154.9709 162.0284 0.1815 0.1617 0.1591
12 × 12 87.0035 154.2152 161.3106 0. 1822 0.1630 0.1602
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Fig. 8  Convergence analysis of the finite element model for the first three eigenmodes: a natural frequencies, b modal loss factor
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a vernier calliper, taking repeated measurements on the test 
sample to avoid experimental errors. Table 5 represents the 
sandwich plate's geometrical and material parameters for 
all the layers considered for this present study. The overall 
length of the sandwich plate is 267 mm; 23 mm is taken as 
the clamping length to ensure rigidity. So 244 mm is the 
effective length of the sandwich plate for the clamped-free 
boundary condition. The node points are selected on the 
surface of the sandwich plate and marked for excitation. The 
sandwich plate is fixed along one side of the width with the 
help of C-clamps to the pre-assembled iron frame, ensuring 
a clamped-free boundary condition. The free vibration test 
is conducted at room temperature around 23 °C using the 
impact hammer technique. The experimental modal analysis 
software ME'scope is used to obtain the sandwich plate's 
vibrational characteristics. The first five modes of experi-
mental natural frequencies and their corresponding modal 
loss factors of the sandwich plate are presented in Table 6.

Identification of Frequency‑Dependent Viscoelastic 
Material Parameters

Considering the viscoelastic core's shear storage modulus 
and material loss factor as design variables and the differ-
ence between experimental and numerical sandwich plate's 
natural frequencies and modal loss factors as the objective 
function, the NNO algorithm is used for the identification 
of the former. For this identification procedure, the upper 
and lower limits for the shear storage modulus are set as 
0.2–1.2 MPa and for the material loss factor as 0.1–0.2 for 
a frequency range of 1–500 Hz. From the proposed inverse 
method, the optimal values of shear storage modulus and 
material loss factor of the viscoelastic core are obtained as 
0.94573 MPa and 0.12430, respectively.

Figure  10 shows the evolution of the error between 
the experimental data and the finite element results dur-
ing the execution of the proposed NNO algorithm for the 

Table 2  Geometrical and 
material properties considered 
for validation of the proposed 
finite element model

Boundary condition Properties Isotropic face layers Viscoelastic core layer

Araujo et al. [16] (CCCC) Length (m) a = 0.348 a = 0.348

Width (m) b = 0.3048 b = 0.3048

Thickness (m) h
1
= h

3
= 0.000762 h

2
= 0.000254

Modulus (Gpa) E
1
= E

3
= 68.9 G

v
= 0.000896

Density (Kg/m3) �
1
= �

3
= 2740 �

2
= 2740

Poisson's ratio �
1
= �

3
= 0.3 �

2
= 0.49

Material loss factor – �
v
= 0.5

Lall et al. [2] (SSSS) Length (m) a = 0.4 a = 0.4

Width (m) b = 0.4 b = 0.4

Thickness (m) h
1
= h

3
= 0.005 h

2
= 0.005

Modulus (Gpa) E
1
= E

3
= 207 G

v
= 0.004

Density (Kg/m3) �
1
= �

3
= 7800 �

2
= 2000

Poisson's ratio �
1
= �

3
= 0.334 �

2
= 0.498

Material loss factor – �
v
= 0.38

Table 3  Comparison of the first 
three natural frequencies and 
modal loss factors of a sandwich 
plate with viscoelastic core 
for all sides clamped (CCCC) 
boundary condition

Mode no. Natural frequency (Hz) Modal loss factor

Present FE model Araujo et al. [16] Present FE model Araujo et al. [16]

1 87.575 87.66 0.1803 0.1886
2 156.336 150.10 0.1593 0.1630
3 163.310 170.99 0.1570 0.1527

Table 4  Comparison of the first 
four natural frequencies and 
modal loss factors of a sandwich 
plate with viscoelastic core 
for all sides simply supported 
(SSSS) boundary condition

Mode no. Natural frequency (Hz) Modal loss factor

Present FE model Lall et al. [2] Present FE model Lall et al. [2]

1 158.613 155.20 0.0461 0.0443
2 381.568 374.13 0.0198 0.0191
3 381.568 374.13 0.0198 0.0191
4 604.528 592.90 0.0124 0.0122
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user-supplied objective function and for the ANN objective 
function. It is noted that the size of the initial simulated 
data (before the iterative procedure begins) is 20, and it is 
observed that for these first 20 objective function evalua-
tions, the objective values exhibit a random variation, as is 
expected since these initial samples are selected based on the 
Latin Hypercube Sampling technique. From the 21st objec-
tive function evaluation and forth, it is apparent that the error 

decreases rapidly in Fig. 10a, ultimately converging to the 
desired minimum. In Fig. 10b, it is seen that the evolution of 
the error of the ANN (used as an objective function) shows a 
similar trend with the variation of the error in Fig. 10a after 
the 21st objective function evaluation. This observation veri-
fies the fundamental hypothesis that the ANN is trying to 
mimic the actual user-supplied objective function internally 
in the NNO algorithm and provides some solid proof of its 
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theoretical soundness. On the other hand, the final error of 
the objective function and the simulated ANN are close to 
each other, which implies that the NNO algorithm is suc-
cessfully applied.

An illustration of the evolution of the NNO algorithm is 
presented in Fig. 11, which provides a visual representation 

of the optimization space and the points where the objective 
function evaluation has taken place until convergence. These 
points are shown in black dots. It is apparent that the concen-
tration of the black dots near the optimum (illustrated as the 
red region of the 3D surface) increases compared to other 
regions of the optimization space. Another significant obser-
vation is that, at the initial stage of the NNO algorithm, the 
initial samples are shown to be uniformly distributed in the 
optimization space, and this is a result of the Latin Hyper-
cube Sampling methodology used for their selection [41]. 
This sampling method definitely makes the subsequently 
trained ANN less biased and more robust as a representative 
of the true objective function, which highly contributes to 
the successful solution of the inverse optimization problem.

Verification of the Identified Frequency‑Dependent 
Viscoelastic Material Parameters

Viscoelastic material properties of natural rubber are deter-
mined experimentally with the help of a dynamic mechanical 
analyzer, DMA 8000. The shear test experiments are carried 
out on DMA-8000, and the viscoelastic material properties 
are obtained in the frequency domain for a frequency range 
of 1–100 Hz. The linearity of the viscoelastic behaviour of 
natural rubber from the DMA test is presented in Table 7.

The summary of the test results shows that the shear stor-
age modulus exhibits an average magnitude of 0.92439 MPa, 
whereas the associated material loss factor averages 0.12323. 
In comparison with the results elicited from the proposed 

Table 5  Geometrical and material properties of the sandwich plate

Face layers (aluminium, AL 6061) Thickness, 1.485 mm
Elastic modulus, 68.9 ×  109 Pa
Density, 2700 kg/m3

Poisson's ratio, 0.33
Core layer (natural rubber) Thickness, 2.738 mm

Density, 930 kg/m3

Poisson's ratio, 0.49
Whole structure Effective length, a = 244 mm

Width, b = 132 mm
Thickness, h = 5.708 mm

Table 6  Experimental natural frequencies and modal loss factors of 
the sandwich plate under a clamped-free boundary condition

Mode no. Natural frequency (Hz) Modal loss factor

1 36 0.06936
2 110 0.04282
3 148 0.03987
4 284 0.02568
5 364 0.01908
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NNO algorithm, the DMA test results show a fine resem-
blance. Quantifying the error, the shear storage modulus and 
material loss factor exhibit 2.05 and 0.86%, respectively. 

This excellent agreement clearly shows the robustness of the 
proposed NNO algorithm, as depicted in Fig. 12.

Taking these identified viscoelastic material properties of 
the core from the NNO algorithm as input parameters for the 
numerical finite element model, the sandwich plate's natu-
ral frequencies and modal loss factors are obtained. Table 8 
provides the validation of the obtained numerical results 
for natural frequencies and modal loss factors against the 
experimental test results. For a comprehensive understand-
ing, an illustrative summarization is presented in Fig. 13. 
Furthermore, the graphical depiction of modal characters for 
first, second and third eigenmodes are presented in Figs. 14 
and 15 as elicited from the experimentation and numerical 
simulation, respectively. It is observed from the results that 
the experimental and numerical outcomes express simili-
tude, which substantiates the effectiveness of the present 
inverse analysis.

Parametric Study

Understanding the resonance phenomenon in the structure 
may control the vibration range, avoids structural failure. 
To this end, a parametric study is carried out considering 
the optimized viscoelastic material properties of the core 
to investigate the effect of geometrical parameters on the 
free vibration response of the proposed sandwich plate for 
different boundary conditions. Furthermore, the sandwich 
plate's core thickness ratio and aspect ratio are considered 
as influencing factors of this investigation.

Influence of Different Boundary Conditions

A numerical study is performed considering the following 
edge conditions: clamped free (FCFF), two opposite short 
sides clamped (FCFC), all sides simply supported (SSSS), 
and all sides clamped (CCCC). A detailed summarization 
of the free vibration response of the sandwich plate under 
these edge conditions is illustrated in Fig. 16. It is evident 
from Fig. 16a that the sandwich plate with FCFF boundary 
condition exhibits the lowest natural frequency, followed by 
FCFC, SSSS and CCCC in ascending order for all modes 
of vibration. Because of the constrained effects at the edges 
of the structure, it becomes stiffer. As a result, its natural 
frequency increases. Figure 16b shows that the sandwich 
plate's modal loss factors have the highest value for the 
FCFF boundary condition, followed by the FCFC, SSSS, 
and CCCC boundary conditions in descending order for all 
modes of vibration. This signifies that the amount of damp-
ing reduces as the structure stiffens.

The natural frequencies of the sandwich plate are influ-
enced by the type of boundary conditions applied, such 
as clamped, free, or simply supported edges. The modal 
loss factors, on the other hand, depend on the viscoelastic 
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Table 7  Viscoelastic material properties of natural rubber obtained 
from the DMA test

DMA test

Frequency (Hz) Shear storage modulus Loss factor

1 0.88965 0.11452
5 0.89314 0.11651
10 0.89519 0.11759
15 0.89847 0.11954
18.5 0.89918 0.12096
20 0.90116 0.12150
25 0.90245 0.12189
30 0.90496 0.12248
35 0.90672 0.12316
40 0.90849 0.12384
45 0.91596 0.12410
50 0.92438 0.12483
55 0.93489 0.12563
58.5 0.94580 0.12585
60 0.95781 0.12610
65 0.95846 0.12635
70 0.95940 0.12641
75 0.96012 0.12658
80 0.96117 0.12667
90 0.96156 0.12673
100 0.96184 0.12679
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properties of the core material and the damping introduced 
by the boundary conditions. In case of the CCCC boundary 
condition, the plate is firmly attached at all edges, resulting 
in high stiffness and low deflection. This leads to the highest 
natural frequencies and the lowest modal loss factors, with 
most of the energy concentrated at the edges. In contrast, 
the FCFF boundary condition results in the lowest natural 
frequencies but the highest modal loss factors. The SSSS and 
FCFC boundary conditions provide an intermediate result, 
balancing the effects of CCCC and FCFF boundary condi-
tions. The influence of boundary conditions on natural fre-
quencies and modal loss factors must be carefully considered 
when designing the sandwich plate with a viscoelastic core.

Influence of Core Thickness Ratio

The effect of the core thickness ratio (h2/h1) on the free 
vibration characteristics of the sandwich plate is explored 

by varying the thickness of the viscoelastic core layer against 
the thickness of the face layers. Figures 17, 18, 19 and 20 
depicts the influence of the core thickness ratio on the natu-
ral frequencies of the sandwich plate and the corresponding 
modal loss factors for various boundary conditions.

It is evident from Figs. 17a, 18a, 19a and 20a that the 
natural frequencies of the sandwich plate decrease with an 
increase in the core thickness ratio for all boundary condi-
tions. This is because as the thickness of the core increases, 
owing to the viscoelastic material's softness, the plate 
becomes less stiff, resulting in a reduction in the frequency 
value. However, the decrease in natural frequency magnitude 
is not significant for lower modes, but there is a remarkable 
reduction in the case of higher modes for all boundary condi-
tions. Observations from Fig. 17b indicate that for the FCFF 
boundary condition, the modal loss factor for mode 1 shows 
a noticeable increment as the core thickness ratio increases, 
whereas modal loss factors for modes 2 and 3 first decrease 

NNO algorithm DMA
Method

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
he

ar
 s

to
ra

ge
 m

od
ul

us
 (M

P
a)

NNO algorithm DMA
Method

0

0.02

0.04

0.06

0.08

0.1

0.12

M
at

er
ia

l l
os

s 
fa

ct
or

(a) (b)

Fig. 12  Validation of the proposed NNO algorithm with the DMA test: a shear storage modulus, b material loss factor

Table 8  Comparison between 
experimental and numerical 
free vibration responses for the 
optimized viscoelastic material 
properties calculated from the 
NNO algorithm

Mode no. Natural frequency (Hz) Modal loss factor

Experimental 
results ( f EXP)

FEM 
results 
( f FEM)

% deviation Experimental 
results ( �EXP)

FEM results ( �FEM) % deviation

1 36 35.10 2.47 0.06936 0.06765 2.41
2 110 108.41 1.44 0.04282 0.04173 2.17
3 148 146.98 0.68 0.03987 0.03937 1.25
4 284 279.41 1.61 0.02568 0.02499 2.18
5 364 361.51 0.68 0.01908 0.01887 1.20
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and then gradually increase. As the core thickness ratio rises, 
the modal loss factor for the higher modes decreases rapidly. 
Due to the viscoelasticity of the core material, as the core 
layer thickness increases, damping rises to a limit, beyond 
which the structure becomes less stiff and more prone to 
failure. Figures 18b, 19b and 20b show that, for all modes 
of vibration of the sandwich plate under FCFC, SSSS, and 
CCCC boundary conditions, the modal loss factors initially 
decrease rapidly and then gradually rise as the core thickness 
ratio increases. The trend that the sandwich plate has the 
highest value of modal loss factor under the FCFF boundary 
condition and the lowest value of modal loss factor under the 
CCCC boundary condition is clearly noticeable.

The influence of the core thickness ratio on the free vibra-
tion response of the sandwich plate with a viscoelastic core 
is significant and depends on the specific boundary condi-
tion. As the core thickness ratio increases, the natural fre-
quencies of the sandwich plate decrease while the modal 
loss factors increase. This is due to the fact that a thicker 
viscoelastic core acts as a more effective damping material, 
reducing the amplitude of vibrations and, in turn, increas-
ing the modal loss factor. In addition, one of the reasons for 
the decreased natural frequencies of the plate is that when 
the core thickness ratio is increased, the mass per square 
meter of the plate is increased, since the natural frequency 
is inversely proportional to mass. However, the reduction 
in natural frequencies can also make the sandwich plate 
more susceptible to overall structural instability. The opti-
mal balance between reducing the natural frequencies and 

increasing the modal loss factor should be considered for 
each boundary condition when designing the sandwich plate 
with a viscoelastic core.

Influence of Aspect Ratio

In this study, the aspect ratio is defined as the ratio between 
the sandwich plate's length (a) and width (b), and the length 
varies against the width. The influence of aspect ratio on 
the free vibration characteristics of the sandwich plate for 
different boundary conditions is presented in Figs. 21, 22, 
23 and 24.

It can be observed from Figs. 21a, 22a, 23a and 24a that 
as the aspect ratio increases, the sandwich plate's natural fre-
quencies reduce for all modes of vibration across all bound-
ary conditions. With an increase in aspect ratio from 0.5 
to 1, the natural frequency value of mode 1 shows a rapid 
reduction for all boundary conditions. However, further 
increasing the aspect ratio, the natural frequencies for other 
modes of vibration decrease gradually. The order of natural 
frequencies follows the same trend under different boundary 
conditions. Thus, compared to longer plates (a/b = 2.5 and 
3), shorter and wider plates (a/b = 0.5) have a significant 
impact on increasing natural frequencies. It is evident from 
Figs. 21b, 22b, 23b and 24b that the FCFF boundary con-
dition yields the highest modal loss factor value, followed 
by the FCFC, SSSS, and CCCC boundary conditions. Fig-
ures 21b, 22b and 23b show that the modal loss factor of 
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mode 1 increases more rapidly than the other modes under 
the FCFF and SSSS boundary conditions. Figures 21b and 
22b indicate that the modal loss factors for higher modes 
under FCFF and FCFC boundary conditions first increase 
and then reduce when the aspect ratio is increased from 1.5 
to 2. Further increasing the aspect ratio above 2, the modal 
loss factor increases gradually. However, for the higher 
modes, complicacy arises due to the complex configuration 
shapes of the eigenmodes.

The aspect ratio of the sandwich plate with a viscoe-
lastic core can significantly affect its natural frequen-
cies and modal loss factors. In the cases that the plate is 
vibrating in a predominantly bending deformation, e.g. 
in the FCFF and FCFC cases where the smaller edges are 
clamped and for high values of aspect ratio, its natural 
frequencies tend to be lower, since the plate has increased 
flexibility in these cases. The effect of increased aspect 
ratio is that the boundary conditions of the shorter edges 
of the plate gradually fade away. For increasing aspect 

ratio the following trends are observed in this study, and 
should also be expected according to the aforementioned 
rationale: (a) in the FCFF case since the smaller edges are 
fixed, natural frequency decreases, (b) in the FCFC case, 
if the smaller edge is fixed, then the natural frequency 
decreases, otherwise if the larger edge is fixed, the natu-
ral frequency increases, (c) in the SSSS case the natural 
frequency always decreases and (d) in the CCCC case the 
natural frequency always decreases. However, the influ-
ence of aspect ratio on the natural frequencies and modal 
loss factors of a sandwich plate with a viscoelastic core is 
generally complex and depends on the material properties, 
geometry, and boundary conditions of the plate.

Fig. 14  First three mode shapes of the sandwich plate fixed along the width for a clamped-free boundary condition obtained from the experi-
mental modal analysis: a 1st eigenmode, b 2nd eigenmode, c 3rd eigenmode
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Concluding Remarks

The free vibration characteristics of a three-layered sand-
wich plate with isotropic face layers of aluminium and a 
viscoelastic core layer of natural rubber are investigated 
experimentally and numerically. The experimental modal 
analysis is performed utilizing the impact hammer method, 

and the numerical simulations are carried out using the finite 
element approach. Based on the experimental modal analysis 
results of the sandwich plate, a neural network optimiza-
tion (NNO) algorithm is proposed to identify the frequency-
dependent viscoelastic material properties of natural rubber.

The viscoelastic material properties of natural rub-
ber are determined experimentally using a dynamic 
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mechanical analyzer, DMA-8000. The identified consti-
tutive parameters of the natural rubber material from the 
NNO algorithm show an excellent agreement with the 
experimental DMA test results. This demonstrates that 
the NNO approach provides an adequately robust and 

precise inverse optimization technique. In light of this, 
the suggested NNO algorithm may calibrate viscoelastic 
material parameters utilizing experimental modal analysis 
responses without the need for expensive and time-con-
suming dynamic mechanical analysis experiments.
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Furthermore, the optimized viscoelastic material 
properties obtained from the NNO algorithm are used 
to explore the effect of various parameters on the free 
vibration response of the sandwich plate. The numeri-
cal parametric study indicates that the edge conditions 

considerably influence the dynamic performance of the 
sandwich plate. It is observed that the sandwich plate with 
one side clamped boundary condition exhibits the lowest 
natural frequency than other support conditions. In con-
trast, the observation for the modal loss factor follows the 
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reverse trend. This explains why the largest magnitude 
of modal loss factor is achieved for the one side clamped 
boundary condition, whereas the lowest magnitude is 
observed for all sides clamped boundary condition.

The core thickness ratio significantly affects the sandwich 
plate's free vibration characteristics. The natural frequencies 
of each vibration mode of the sandwich plate decrease as 
the core thickness ratio increases. However, the modal loss 
factor of the first mode increases, whereas the modal loss 
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factors of higher modes first decrease and then gradually 
increase as core thickness increases.

The aspect ratio of the sandwich plate has a large 
impact on its free vibration response. The natural fre-
quencies of the sandwich plate decrease as the aspect 
ratio increases for all modes of vibration under different 

boundary conditions. The variations in natural frequency 
are significantly higher in shorter and wider plates than 
in longer plates. Concerning the effect of aspect ratio, 
the sandwich plate exhibits a lower modal loss factor in 
shorter and wider plates, and the modal loss factor is rela-
tively higher in longer plates.
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Fig. 22  Influence of aspect ratio on the free vibration characteristics of the sandwich plate under FCFC boundary condition: a natural frequen-
cies, b modal loss factors
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Knowledge about the material properties is essential 
for the dynamic analysis of a structure in the vibration 
reduction technique. Thus the present inverse method is 
of great significance as it can be applied to characterize 
the material properties of viscoelastic materials embedded 
for both FLD and CLD configurations. By calibrating the 
frequency-dependent material properties of viscoelastic 
materials, the proposed inverse identification method pro-
vides new insights into the behaviour of these materials 
and their responses to external excitations. The present 
inverse identification technique is fast and efficient hav-
ing a high convergence rate for identification of dynamic 
properties without sacrificing accuracy, and therefore con-
tributes to the advancement of the field of computational 
materials science by providing a new tool for character-
izing and understanding viscoelastic materials utilizing 
their vibrational dynamic response.
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