ORIGINAL PAPER

Three‑Dimensional Thermal Vibration of CFFF Functionally Graded Carbon Nanotube‑Reinforced Composite Plates

Bahar Uymaz¹ [·](http://orcid.org/0000-0002-0036-0730) Gökay Uymaz[2](https://orcid.org/0000-0002-4068-1686)

Received: 6 April 2022 / Revised: 10 August 2022 / Accepted: 24 March 2023 / Published online: 11 April 2023 © Krishtel eMaging Solutions Private Limited 2023

Abstract

Purpose Three-dimensional thermal vibration analysis of functionally graded carbon nanotube (FG-CNT) reinforcement composite plates is performed for uniform, linear and sinusoidally temperature distribution.

Methods The reinforcement directions is considered through the thickness according to four reinforcement models as UD, FG-V, FG-O and FG-X are examined. As the components of the composite, the material properties of both the CNT forming the reinforcement phase and the polymer forming the matrix phase change depending on the temperature, and this is the focus of this study. The efective material properties of the FG-CNT reinforced composite are determined by the mixtures rule. The three displacements of the plates are expanded by a series of Chebyshev polynomials multiplied by appropriate functions to satisfy the essential boundary conditions. The natural frequencies are obtained by the Ritz method.

Results It is shown that the numerical results of the current approach are compared with the results of other researchers for validation, the results appear to be in good agreement. The efects of the thickness-to-length ratio and diferent volume fraction distributions for cantilever (CFFF) boundary conditions in considered thermal environments are investigated. The efect of diferent boundary conditions such as clamped (CCCC), simply supported (SSSS), simply supported through the x-axis and clamped through the y-axis (SCSC) and simply supported through the x-axis and free through the y-axis (SFSF) is also examined. It is shown that the increase in the amount of temperature and the type of temperature distribution are efective on the decrease of frequencies.

Keywords Thermal vibration · Thermal environment · Carbon nanotube-reinforced composite · Ritz method · Chebyshev polynomials

Introduction

Composites, which consist of two or more separate materials combined in a macroscopic structural unit, are made from various combinations of the other three materials. Composites are generally used because they have desirable properties which could not be achieved by either of the constituent materials acting alone. The most common example is the fbrous composite consisting of reinforcing fbers embedded

 \boxtimes Bahar Uymaz buymaz@nku.edu.tr Gökay Uymaz gokayuymaz@hattat.com.tr

¹ Engineering Faculty, Department of Mechanical Engineering, Tekirdağ Namık Kemal University, 59860 Çorlu, Tekirdağ, Turkey

² HEMA Endüstri A.Ş., Çerkezköy, Tekirdağ, Turkey

in a binder, or matrix material. Particle or fake reinforce-ment is also used, but it is not so effective as fibers [[1](#page-22-0)]. Advanced composites made from graphite, silicon carbide, aramid polymer, boron or other higher modulus fbers are used mainly in more exotic applications such as aerospace structures where their higher cost can be justifed based on improved performance [\[1](#page-22-0)]. Graphite or carbon fbers are the most widely used advanced fbers, and graphite/epoxy or carbon/epoxy composites are now used routinely in aerospace structures. Although carbon fbers were once prohibitively expensive, the cost has dropped signifcantly as production capacity and demand has increased recent years. Polymers are unquestionably the most widely used matrix materials in modern composites. The application where the superior potential of high specifc strength and high specifc stifness composites was frst realized was in military aircraft, where performance and maneuverability are highly dependent on weight. However, composite structural elements are used in

various components of automotive, aerospace, marine and architectural structures, as well as skis, golf clubs and it is also used in consumer products such as tennis rackets [\[1](#page-22-0)].

A new and rapidly developing feld in nanomaterials science has started with the first time obtaining of the C_{60} molecule, which is formed by sixty carbon atoms taking the form of a soccer ball-shaped lattice structure, unlike crystal structures such as carbon, diamond and graphite [[2\]](#page-22-1). Carbon nanotubes (CNTs) were frst reported by Iijima [[3\]](#page-22-2), and it was demonstrated by Griebel and Hamaekers [[4](#page-22-3)] that carbon can form a tube-shaped structure, with diameter ranges at nanoscale and lengths at micro scale.

Compared to carbon fber-reinforced polymer composites, carbon nanotube-reinforced polymer composites have the potential to increase strength and stifness and improve the structural, mechanical and electronic properties of the obtained composite due to CNTs low density and high aspect ratio [[5–](#page-22-4)[8](#page-22-5)]. Meguid and Sun [[9\]](#page-22-6) showed that the mechanical properties of the obtained composite would deteriorate if the CNT volume ratio exceeds a certain limit, and Han and Elliot [[10\]](#page-22-7) showed that the mechanical properties of the composite are also sensitive to the quantity and quality of the CNTs selected for the particular polymer. However, it was suggested to be used in the preferred direction in diferent gradients of CNT by Shen [[11\]](#page-22-8) to obtain nanocomposites desired performance. The fact that the mechanical properties of CNT and polymer change depending on temperature and that composite structures generally operate in high-temperature thermal environments have encouraged researchers to examine the behavior of CNT-reinforced polymer matrix composite structure components under mechanical and thermal loads for a high-quality design and production.

Three-dimensional thermoelastic analysis is researched by Alibeigloo and Liew [\[12](#page-22-9)] for FG-CNT/PmPV composite plates and by Alibeigloo [[13\]](#page-22-10) for FG-CNT/PmPV composite plates embedded in piezoelectric sensor and actuator layers. In both cases, the analyses are carried out using the Fourier series expansion and state-space method. Zhou and Song [\[14\]](#page-22-11) studied three-dimensional nonlinear bending analysis of FG-CNT/PmPV composite plates using the element-free Galerkin method based on the S–R decomposition theorem. Zhu et al. [[15\]](#page-22-12) investigated bending and free vibration analyses of FG-CNT/PmPV composite plates by a fnite element method based on the frst-order shear deformation plate theory. For determination of the efective material properties of the considered plate, the rule of mixture is used. Static and free vibration analyses are carried out for FG-CNT/PmPV composite plates by Singh and Sahoo [[16](#page-22-13)] using Navier's solution technique based on trigonometric shear deformation theory. Garcia-Macias et al. [\[17\]](#page-22-14) investigated static and free vibration analyses of FG-CNT/PMMA composite skew plates using an efficient finite element formulation based on the Hu–Washizu principle. The used shell theory is formulated in oblique coordinates and includes the efects of transverse shear strains by frst-order shear deformation plate theory. Wattanasakulpong and Chaikittiratana [\[18\]](#page-22-15) presented an exact solution based on generalized shear deformation plat theory for static and dynamic analyses of FG-CNT/ PmPV composite plates with Pasternak elastic foundation including shear layer and Winklersprings. Static response and free vibration of FG-CNT/PMMA composite plates resting on Winkler–Pasternak elastic foundations using Navier solution based on the frst-order shear deformation plate theory is investigated by Duc et al. [\[19\]](#page-22-16).

Lei et al. investigated free vibration [[20\]](#page-22-17) and buckling [[21\]](#page-22-18) of laminated FG-CNT/PmPV composite plates using kp-Ritz method based on first-order shear deformation theory. Malekzadeh and Zarei [\[22](#page-22-19)] investigated free vibration and Malekzadeh and Shojaee [[23\]](#page-22-20) investigated buckling behavior of quadrilateral laminated FG-CNT/PmPV composite plates by employing the diferential quadrature method (DQM) based on the frst-order shear deformation plate theory. Zhang et al. presented a free vibration analyses of FG-CNT/PmPV composite triangular plates [[24\]](#page-23-0) and buckling analysis of thick skew plates [[25](#page-23-1)] using element-free IMSL-Ritz method based on the frst-order shear deformation plate theory. For determination of the efective material properties of the considered plate, the rule of mixture is used. Zhang et al. [[26\]](#page-23-2) considered one more buckling analysis of FG-CNT/PmPV composite thick plates resting on Winkler foundations using element-freebased improved moving least squares-Ritz (IMLS-Ritz) method employed with frst-order shear deformation theory. Farzam and Hassani [\[27](#page-23-3)] investigated thermal and mechanical buckling analysis of FG-CNT/PmPV composite plates using isogeometric analysis based on modifed couple stress theory. Kiani [\[28\]](#page-23-4) studied thermal shear buckling of FG-CNT/PMMA composite plates in uniform temperature distribution using the Ritz method with Chebyshev polynomials based on the frst-order shear deformation theory. Kiani and Mirzaei [[29\]](#page-23-5) researched shear buckling of rectangular and skew FG-CNT/PMMA composite plates using the Ritz method whose shape functions are constructed according to the Gram–Schmidt process based on the frst-order shear deformation theory. Mehrabadi et al. [[30\]](#page-23-6) investigated the mechanical buckling of a rectangular FG-CNT/PMMA composite plate reinforced by aligned and straight singlewalled carbon nanotubes (SWCNTs) using the Mindlin plate theory considering the frst-order shear deformation efect and variational approach. The material properties of SWCNT are determined according to molecular dynamics (MDs), and then the efective material properties at a point are estimated by either the Eshelby–Mori–Tanaka approach or the extended rule of mixture. Wu and Chang [\[31\]](#page-23-7) considered a stability problem of FG-CNT/PmPV composite plates with surface-bonded piezoelectric actuator and sensor layers under bi-axial compression loads using a unifed formulation of fnite layer methods based on three-dimensional elasticity theory. Semi-analytical solutions to buckling and free vibration analysis of FG-CNT/PMMA composite thin plates applying the Galerkin technique with the classical plate theory presented by Wang et al. [\[32\]](#page-23-8).

The free vibration analysis is considered for two directional FG-CNT/PmPV composite plates by Karamanlı and Aydoğdu [[33](#page-23-9)] employing fnite element method based on third-order shear deformation theory. A nonlinear vibration behaviors of FG-CNT/PMMA composite plates resting on an elastic foundation under uniform temperature distribution investigated by Wang and Shen [[34\]](#page-23-10) and the problem is solved by an improved perturbation technique based on a higher-order shear deformation plate theory. Guo and Zhang [[35](#page-23-11)] studied the nonlinear oscillations and chaotic dynamics of a FG-CNT/PmPV composite plate subjected to the in-plane and the transverse excitations. The Galerkin method based on the Reddy's third-order shear deformation plate theory and the geometric nonlinearity of Von Karman. For determination of the efective material properties of the considered plate, Mori–Tanaka theory and the Eshelby's method are used. Quoc et al. [[36](#page-23-12)] determined free vibration response of laminated piezoelectric FG-CNT/PMMA composite plates using the Navier technique based on a new fourvariable refned plate theory. The free vibration of arbitrarily shaped FG-CNT/PMMA composite plates was considered by Fantuzzi et al. [[37\]](#page-23-13) by employing generalized Diferential Quadrature Method based on the frst-order shear deformation theory. The free vibration and bending analysis of graphene-reinforced composite circular and annular plates was considered by Bisheh et al. [[38\]](#page-23-14) by employing Differential Quadrature Method based on the three-dimensional elasticity theory. Shahrbabaki and Alibeigloo [[39\]](#page-23-15) applied the Ritz method to analyze free vibration based on threedimensional elasticity theory. In this approach, orthogonal admissible functions were obtained from Jacobi polynomial. Efective material properties of the considered plate are estimated with the modifed rule of mixture approach. Wang et al. [\[40](#page-23-16)] investigated free vibration and buckling behavior of FG-CNT-reinforced plates in the quadrilateral geometrical form by diferential quadrature and fnite element method based on the frst-order shear deformation plate theory. Free vibration of regular and irregular plates with and without the temperature efect are considered for FG-CNT/PMMA composite plates and mechanical and thermal buckling considered for FG-CNT/PmPV composite plates under uniaxial and bi-axial in-plane load. Zhang et al. [[41\]](#page-23-17) considered free vibration of FG-CNT/PmPv composite plates subjected to in-plane loads using state-space Levy method based on Reddy's third-order shear deformation theory. Zhang and Selim [\[42](#page-23-18)] studied vibration analysis of FG-CNT/PmPV laminated thick composite plates employing element-free IMLS-Ritz method based on Reddy's higher-order shear deformation theory. The efective material properties of CNT-reinforced composite are estimated by a detailed and straightforward Mori–Tanaka approach.

Selim et al. [[43\]](#page-23-19) studied free vibration behavior of CNTreinforced plates using element-free kp Ritz method based on Reddy's higher-order shear deformation theory. Parametric studies performed for FG-CNT/PmPV composite plates to reveal the efects of CNT distribution, boundary conditions, side to thickness ratio on natural frequencies and performed for FG-CNT/PMMA composite plates to reveal the effects of uniform temperature distribution on natural frequencies. The unifed formulation of RMVT-based FPMs is extended to the free vibration analysis of FG-CNTreinforced composite plates and laminated fber-reinforced composite by Wu and Li [[44\]](#page-23-20). Lei et al. [[45\]](#page-23-21) analyzed free vibration of FG-CNT-reinforced composite plates using element-free kp-Ritz method based on first-order shear deformation theory. In this study the efect of the uniform temperature distribution for $V_{\text{CNT}}^* = 0.12$ volume fraction on UD and FG-V distributed composite on natural frequencies are obtained. Efective material properties of the considered plate are estimated with the Eshelby–Mori–Tanaka approach.

As mentioned in the literature, there are many studies on the bending, buckling and vibration behavior of CNTreinforced plates. However, although the properties of both CNT and polymer materials that form the components of the CNT-reinforced composite, and thus the properties of the composite, vary depending on temperature, there are limited studies in which the efect of temperature is taken into account. This conclusion has been the inspiration for this study. In the present study, vibration analysis of FG-CNT/PmPV-reinforced composite plates in diferent thermal environments such as uniform, linear and sinusoidally temperature distribution are considered using Ritz method based on three-dimensional elasticity. The effective material properties of the considered plate are estimated by the rule of mixture. Chebyshev polynomials are assumed admissible functions in the Ritz method. However, scope of the study on cantilever (CFFF) boundary condition, diferent boundary conditions such as CCCC, SSSS, SCSC and SFSF are also examined. Parametric studies are performed for the thickness-to-length ratio, aspect ratio, uniform, linear and sinusoidally temperature felds and diferent volume fraction distributions.

Problem Formulation

Material properties of considered FG-CNT plate are assumed to be temperature dependent and reinforcement in thickness direction according to distribution as UD, FG-V,

Table 1 Temperature-dependent material properties of SWCNT at uniform temperature distribution in the thickness direction

Young modulus P_0 P_1 P_2 P_3

 α_{11}^{CNT} (× 10⁻⁶ K) 3.4584 2.5039×10⁻³ -5.3839×10⁻⁶ 3.2738×10⁻⁹

Table 3 Convergence and comparison of frst six frequency parameters of SSSS square FG-CNT plates $(V_{\text{CNT}}^* = 0.11, \text{UD}, \Delta T = 0)$

 E_{11}^{CNT} (TPa)

 E_{22}^{CNT} (TPa)

 G_{12}^{CNT} (TPa)

 α_{22}^{CNT} ($\times 10^{-6}$ K)

FSDT frst-order shear deformation theory

FG-O and FG-X models are examined. And also the reinforcement in thickness direction is examined of distribution as FG-V model in comparison study. In this study, thermal vibration in three diferent thermal environment with threedimensional Ritz solution is performed.

Efective Material Properties of FG‑CNT‑Reinforced Composite Plates

The investigated FG-CNT reinforcement composite consists of CNT reinforcement phase that four type of distribution in the thickness direction and polymer matrix phase. The

 1.5849×10^{-4} 3.539×10^{-7} -3.707×10^{-10}

7.0800 -1.5852×10^{-4} 3.5408×10^{-7} -3.709×10^{-10}
 1.9445 8.3093×10^{-5} -1.7803×10^{-7} 8.5651×10^{-11}

1.9445 8.3093×10⁻⁵ -1.7803×10^{-7} 8.5651×10⁻¹¹

 $2.1682 -1.5646 \times 10^{-4}$ 6.0307×10^{-8} -9.4442×10^{-13}

material properties both of two phases are assumed to be temperature dependent and reinforcement distribution models are assumed to be as uniform distribution (UD), V-type distribution (FG-V), O-type of distribution (FG-O) and X-type distribution (FG-X). The sum of volume fraction of reinforcement and matrix phases is

$$
V_{\text{CNT}} + V_{\text{m}} = 1\tag{1}
$$

and the CNT volume fraction distributions in the thickness direction examined in the study are as follows.

Table 4 Comparison of natural frequency parameters of SSSS square FG-CNT/PMMA plates subjected to uniform temperature rise (*h*/*b*=0.1, $V_{\text{CNT}}^*=0.12$

**T* Top surface temperature of the plate, *HSDT* higher-order shear deformation theory

$$
V_{\text{CNT}}\ (z) = V_{\text{CNT}}^*\quad\text{(UD)}\tag{2}
$$

$$
V_{\text{CNT}}\left(z\right) = V_{\text{CNT}}^*\left(1 + 2\frac{z}{h}\right) \quad \text{(FG - V)}\tag{3}
$$

$$
V_{\text{CNT}}(z) = 2V_{\text{CNT}}^* \left(1 - 2\frac{z}{h}\right) \quad (\text{FG - O})
$$
 (4)

$$
V_{\text{CNT}}\left(z\right) = 4V_{\text{CNT}}^*\left(\frac{|z|}{h}\right) \quad \text{(FG - X).}\tag{5}
$$

Here, the volume fraction of CNT (V_{CNT}^*) in the composite is defned as follows, based on the mass ratio of CNT.

$$
V_{\text{CNT}}^* = \frac{w_{\text{CNT}}}{w_{\text{CNT}} + \left(\frac{\rho^{\text{CNT}}}{\rho^{\text{m}}}\right) - \left(\frac{\rho^{\text{CNT}}}{\rho^{\text{m}}}\right)w_{\text{CNT}}},\tag{6}
$$

where w_{CNT} is the mass fraction of the CNT in the FG-CNT composite. In the study, the mass fraction of CNT is the same in all reinforcement distribution models. The efective material properties such as Young modulus (E_{ii}) , shear modulus (*Gij*) and Poisson ratio (*υij*) are defned according to the mixtures rule are given as follows.

$$
E_{11} (z, T) = \eta_1 V_{\text{CNT}} (z) E_{11}^{\text{CNT}} (T) + V_{\text{m}} (z) E^{\text{m}} (T) \tag{7}
$$

$$
\frac{\eta_2}{E_{22} (z, T)} = \frac{V_{\text{CNT}} (z)}{E_{22}^{\text{CNT}} (T)} + \frac{V_{\text{m}} (z)}{E^{\text{m}} (T)}
$$
(8)

$$
\frac{\eta_3}{G_{12} (z, T)} = \frac{V_{\text{CNT}} (z)}{G_{12}^{\text{CNT}} (T)} + \frac{V_{\text{m}} (z)}{G^{\text{m}} (T)}
$$
(9)

$$
v_{12} = V_{\text{CNT}}^* \ v_{12}^{\text{CNT}} + V_{\text{m}} v^{\text{m}} \tag{10}
$$

$$
v_{21} = v_{12} \frac{E_{22} (z, T)}{E_{11} (z, T)}
$$
\n(11)

$$
\rho(z) = V_{\text{CNT}}(z)\rho^{\text{CNT}} + V_{\text{m}}(z)\rho^{\text{m}},\tag{12}
$$

where E_{ii}^{CNT} (*i*, *j* = 1, 2, 3) are the Young modulus, G_{ij}^{CNT} (*i*, *j* = 1, 2, 3) are the shear modulus, v_{ij}^{CNT} (*i*, *j* = 1, 2, 3) are the Poisson ratio of the CNTs in in-plane directions *x* and *y* and in thickness direction *z*, respectively. E^m is the Young modulus, *G*m is the shear modulus, *υ*m is the Poisson ratio of the isotropic matrix material. η_i ($i = 1, 2, 3$) are the size-dependent material properties. ρ^{CNT} , ρ^{m} and ρ are mass density per unit volume of CNT, matrix and FG-CNT composite, respectively. v_{12} is considered as constant over the thickness of plate. The thermal coefficients (α_{ii}) ($i = 1, 2$) of the FG-CNT reinforcement composite are defned as,

$$
\alpha_{11} (z, T) = V_{\text{CNT}} (z) \alpha_{11}^{\text{CNT}} (T) + V_{\text{m}} (z) \alpha^{\text{m}} (T) \tag{13}
$$

5350 Journal of Vibration Engineering & Technologies (2024) 12:5345–5368

$$
\alpha_{22} (z, T) = (1 + v_{12}^{\text{CNT}}) V_{\text{CNT}} (z) \alpha_{22}^{\text{CNT}} (T) + (1 + v^{\text{m}}) V_{\text{m}} (z) \alpha^{\text{m}} (T) - v_{12} \alpha_{11} (z, T)
$$
 (14)

where α_{ii}^{CNT} (*i*, *j* = 1, 2, 3) and α^m are the thermal coefficient of the CNTs in *x* and *y* directions, and isotropic matrix material, respectively. And the other efective material properties are assumed as, [[13\]](#page-22-10).

 $E_{33} (z, T) = E_{22} (z, T)$ (15)

$$
G_{23}(z, T) = G_{31}(z, T) = G_{12}(z, T)
$$
\n(16)

2 Springer

 $v_{13} = v_{12}$ (17)

$$
v_{31} = v_{21} \tag{18}
$$

$$
v_{32} = v_{23} = v_{21} \tag{19}
$$

Stress–Strain Relations Based on Three‑Dimensional Elasticity

The considered moderately thick FG-CNT reinforcement plate in this paper is in the form of rectangular with length *a*,

 $\Delta T=0$)

width *b* and thickness *h*. The origin of the coordinate system (*x*, *y*, *z*) is placed at the geometric center of the plate and the axes are parallel to the edges of the plate and the corresponding displacement components *u*, *v* and *w* along the *x*, *y* and *z* directions, respectively. For free vibration problem based on three-dimensional elasticity theory the displacement feld is as follows

$$
u(x, y, z; t) = U(x, y, z) e^{i\omega t}
$$
 (20)

$$
v(x, y, z; t) = V(x, y, z) e^{i\omega t}
$$
 (21)

$$
w(x, y, z; t) = W(x, y, z) e^{i\omega t}
$$
 (22)

where *ω* corresponds the natural frequency of the plate and $i = \sqrt{-1}$. The strain components ε_{ij} (*i*, *j*=*x*, *y*, *z*) for small deformations are given as

$$
\varepsilon_x = u_{,x} \tag{23}
$$

$$
\varepsilon_{y} = v_{,y} \tag{24}
$$

$$
\varepsilon_z = w_{,z} \tag{25}
$$

Reinf. type	V_{CNT}^*	CCCC			SSSS			SCSC			SFSF		
		0.11	0.14	0.17	0.11	0.14	0.17	0.11	0.14	0.17	0.11	0.14	0.17
UD	Δ_1	28,5348	30,1369	35,4668	17,3111	18,9049	21,3968	18,3084	19,8508	22,6589	16,6694	18,3194	20,5850
	Δ_2	33,1181	34,6098	41,2389	21,4050	22,7900	26,5677	25,2017	26,5022	31,3502	16,9983	18,6137	21,0049
	Δ_3	43,8700	45,2873	54,7449	31,8427	33,0406	39,6955	38,5646	39,5488	48,1310	19,2036	20,6660	23,7988
	Δ_4	59,6824	62,2830	74,3275	38,8551	39,5488	48,6151	38,8551	39,7696	48,6151	26,3784	27,6132	32,8402
	Δ_5	60,7829	62,3452	75,9499	38,8551	39,5488	48,6151	52,6038	55,9375	65,3056	37,7006	38,5044	47,1425
	Δ_6	62,3785	64,9618	77,7215	49,8514	51,0997	62,2785	55,8644	58,6574	69,4235	38,8551	39,5488	48,6151
FG-V	Δ_1	25,8500	27,4876	32,1687	14,9621	16,3592	18,4680	16,1364	17,4743	19,9655	14,1617	15,6223	17,4457
	Δ_2	31,0030	32,5016	38,7031	19,7123	20,8971	24,5086	23,8339	24,9533	29,7336	14,5798	16,0030	17,9860
	Δ_3	42,5219	43,9391	53,2514	30,9358	31,9961	38,6975	37,8925	38,9912	47,4723	17,2571	18,5151	21,3981
	Δ_4	55,0349	57,8721	68,7329	38,9546	39,7254	48,9617	38,9546	39,7254	48,9617	25,1964	26,2653	31,4617
	Δ_5	58,1666	60,8975	72,6970	38,9546	39,7254	48,9617	46,9520	50,2814	58,3228	37,7732	38,6471	47,4410
	Δ_{6}	60,0651	61,5868	75,3458	46,5097	49,8613	57,7644	50,8492	53,9772	63,2814	38,9546	39,7254	48,9617
FG-O	Δ_1	23,8983	25,5745	29,7829	13,3747	14,6404	16,4857	14,6005	15,7856	18,0001	12,5079	13,8562	15,4204
	Δ_2	29,1968	30,6241	36,2853	18,2989	19,2824	22,5572	22,4889	23,3657	27,7479	12,9753	14,2751	15,9991
	Δ_3	40,7934	41,9780	50,5822	29,5722	30,3270	36,4834	36,5194	37,2684	45,1185	15,7828	16,8749	19,4632
	Δ_4	51,7642	54,8211	64,9387	38,9547	39,7256	48,9621	38,9547	39,7256	48,9621	23,8555	24,6717	29,4265
	Δ_5	55,0119	57,8806	68,8969	38,9547	39,7256	48,9621	43,0123	46,3851	53,5459	37,7835	38,6603	47,4562
	Δ_6	58,2589	59,3814	72,2013	42,5648	45,9669	52,9969	47,1454	50,2237	58,6263	38,9547	39,7256	48,8165
$FG-X$	Δ_1	30,6923	32,1025	38,0581	19,9118	21,6014	24,6148	20,8316	22,4968	25,8313	19,3588	21,0861	23,8808
	Δ_2	35,1517	36,5832	43,9216	23,6836	25,2575	29,5878	27,3358	28,8850	34,3403	19,6290	21,3310	24,2430
	Δ_3	45,8301	47,4053	57,7800	33,8200	35,3562	42,7617	38,9547	39,7256	48,9621	21,5892	23,1934	26,8425
	Δ_4	62.7961	64,7082	77,8947	38,9547	39,7256	48,9621	40,4874	42,0895	51,3010	28,4087	29,9093	35,7674
	Δ_5	62,8198	65,1191	79,5835	38,9547	39,7256	48,9621	57,2872	60,2382	70,8660	37,7833	38,6601	47,4560
	Δ_6	65,4008	67,7275	81,3363	51,8363	53,6043	65,8947	59,3036	61,1900	74,8449	38,9547	39,7256	48,9621

Table 7 Natural frequency parameters of FG-CNT-reinforced plate under diferent boundary conditions at room temperature (Δ*T*=0, *h*/*b*=0.05, $a/b=1$

$$
\gamma_{yz} = v_{,z} + w_{,y} \tag{26}
$$

 $\gamma_{xz} = u_{,z} + w_{,x}$ (27)

$$
\gamma_{xy} = u_{,y} + v_{,x} \tag{28}
$$

where $(x, y, z) = \left(\frac{\partial}{\partial z}\right)$ $\frac{\partial}{\partial x}$, $\frac{\partial}{\partial y}$, $\frac{\partial}{\partial z}$) . The stress–strain relations for a linear elastic orthotropic material are given by the generalized Hooke's law as follows

 $\sigma_x = C_{11} \varepsilon_x + C_{12} \varepsilon_y + C_{13} \varepsilon_z$ (29)

$$
\sigma_y = C_{12}\varepsilon_x + C_{22}\varepsilon_y + C_{23}\varepsilon_z \tag{30}
$$

$$
\sigma_z = C_{13}\varepsilon_x + C_{23}\varepsilon_y + C_{33}\varepsilon_z \tag{31}
$$

 $\tau_{yz} = C_{44} \gamma_{yz}$ (32)

 $\tau_{xz} = C_{55}\gamma_{xz}$ (33)

$$
\tau_{xy} = C_{66} \gamma_{xy} \tag{34}
$$

where [*C*] is stifness matrix and its components are defned as follows

$$
C_{11} = \frac{1 - v_{23}v_{32}}{E_2E_3\Delta} \tag{35}
$$

$$
C_{12} = \frac{v_{21} + v_{23}v_{31}}{E_2E_3\Delta} \tag{36}
$$

$$
C_{13} = \frac{v_{31} + v_{21}v_{32}}{E_2E_3\Delta} \tag{37}
$$

$$
C_{22} = \frac{1 - v_{13}v_{31}}{E_1E_3\Delta} \tag{38}
$$

$$
C_{23} = \frac{v_{32} + v_{12}v_{31}}{E_1E_3\Delta}
$$
 (39)

 UD

$$
C_{33} = \frac{1 - v_{12}v_{21}}{E_1E_2\Delta} \tag{40}
$$

 $C_{44} = G_{23}$ (41)

 $C_{55} = G_{31}$ (42)

 $C_{66} = G_{12}$ (43)

where Δ is defined as

$$
\Delta = (1 - \nu_{12}\nu_{21} - \nu_{23}\nu_{32} - \nu_{13}\nu_{31} - 2\nu_{21}\nu_{32}\nu_{13})/(E_1E_2E_3)
$$
\n(44)

Thermal Analysis

In this study, thermal analysis is performed for FG-CNT reinforcement composite plates under uniform, linear and sinusoidal temperature rise through the thickness direction.

Uniform Temperature Rise

The temperature feld under uniform temperature rise through the thickness is given as

$$
T = T_0 + \Delta T,\tag{45}
$$

where T_0 is the temperature of free stress state that T_0 =300 K and ΔT denotes the temperature change.

Linear Temperature Rise

The temperature feld under linear temperature rise through the thickness is given as

$$
T = T_{\rm b} + \Delta T \left(\frac{z}{h} + \frac{1}{2}\right),\tag{46}
$$

where $\Delta T = T_t - T_b$ is the temperature gradient, T_b and T_t at the bottom and top of the plate, T_b equals the initial temperature 300 K.

FG-V)

Sinusoidally Temperature Rise

The temperature feld under sinusoidally temperature rise through the thickness is given as

$$
T = T_{\rm b} + \Delta T \left(1 - \cos \left(\frac{\pi}{2} \left(\frac{z}{h} + \frac{1}{2} \right) \right) \right),\tag{47}
$$

where $\Delta T = T_t - T_b$ is the temperature gradient, T_b and T_t at the bottom and top of the plate, T_b equals the initial temperature 300 K.

Thermal Stresses Based on Three‑Dimensional Elasticity

The plate is initially stress free at temperature T_0 and thermal stresses occur in the plate with temperature change. The initial stresses due to a temperature change of $\Delta T(z)$ are defined for an orthotropic plate as:

$$
\sigma_x^T = -(C_{11}\alpha_1(z, T) + C_{12}\alpha_2(z, T))\Delta T (z)
$$
\n(48)

$$
\sigma_y^T = -\left(C_{12}\alpha_1(z, T) + C_{22}\alpha_2(z, T)\right)\Delta T (z). \tag{49}
$$

Three‑Dimensional Ritz Solution in Thermal Environment

The linear elastic strain potential energy U_s of the plate can be given as,

$$
U_{s} = \frac{1}{2} \int_{V} \left[\sigma_{x} \varepsilon_{x} + \sigma_{y} \varepsilon_{x} + \sigma_{z} \varepsilon_{x} + \tau_{yz} \gamma_{yz} + \tau_{xz} \gamma_{xz} + \tau_{xy} \gamma_{xy} \right] dV.
$$
\n(50)

The strain energy U_T from the initial stresses due to temperature rise can be given as,

$$
U_T = \frac{1}{2} \int_V \left[\sigma_x^T d_{xx} + 2\tau_{xy}^T d_{xy} + \sigma_y^T d_{yy} \right] dV \tag{51}
$$

 $\circled{2}$ Springer

Table

$$
d_{ij} = u_{,i}u_{,j} + v_{,i}v_{,j} + w_{,i}w_{,j} \quad (i, j = x, y). \tag{52}
$$

The kinetic energy T_p of the plate can be given as:

$$
T_{\rm p} = \frac{1}{2} \int_{V} \rho \left(z, T \right) \left[\left(\frac{\partial u}{\partial t} \right)^2 + \left(\frac{\partial v}{\partial t} \right)^2 + \left(\frac{\partial w}{\partial t} \right)^2 \right] dV. \quad (53)
$$

According to thermal vibration problem the maximum energy functional Π of the elastic plate is defined as:

$$
\Pi = \left(U_{\text{smax}} + U_{\text{Tmax}} \right) - T_{\text{max}},\tag{54}
$$

where U_{smax} is the nondimensionalized maximum of linear elastic strain potential energy, U_{Tmax} is the nondimensionalized maximum of thermal strain potential energy and T_{max} is the nondimensionalized maximum of kinetic energy. The nondimensionalization process is performed using the following nondimensionalized parameters:

$$
X = 2x/a \tag{55}
$$

$$
Y = 2y/b \tag{56}
$$

$$
Z = 2z/h \tag{57}
$$

Thus, the nondimensionalized maximum values of the energy equations are written as follows.

$$
U_{\text{smax}} = \frac{h}{4\lambda} \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} \left[C_{11} \overline{\epsilon}_{x}^{2} + C_{22} \overline{\epsilon}_{y}^{2} + C_{33} \overline{\epsilon}_{z}^{2} + C_{12} \overline{\epsilon}_{y} \overline{\epsilon}_{z} \right]
$$

+2\left(C_{12} \overline{\epsilon}_{x} \overline{\epsilon}_{y} + C_{13} \overline{\epsilon}_{x} \overline{\epsilon}_{z} + C_{23} \overline{\epsilon}_{y} \overline{\epsilon}_{z} \right)
+C_{44} \overline{\gamma}_{yz}^{2} + C_{55} \overline{\gamma}_{xz}^{2} + C_{66} \overline{\gamma}_{xy}^{2} \right] dZ dY dX (58)

$$
U_{\text{Tmax}} = \frac{h}{4\lambda} \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} \left[(C_{11}\alpha_1 + C_{12}\alpha_2) \Delta T \left\{ \left(\frac{\partial U}{\partial X} \right)^2 + \left(\frac{\partial V}{\partial X} \right)^2 + \left(\frac{\partial W}{\partial X} \right)^2 \right\} \right. \\
\left. + (C_{12}\alpha_1 + C_{22}\alpha_2) \lambda^2 \Delta T \left\{ \left(\frac{\partial U}{\partial X} \right)^2 + \left(\frac{\partial V}{\partial X} \right)^2 + \left(\frac{\partial W}{\partial X} \right)^2 \right\} \right] dZ dY dX
$$
\n(59)

$$
T_{\text{max}} = \frac{abh}{16} \rho \omega^2 \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} \left[U^2 + V^2 + W^2 \right] dZ dY dX \quad (60)
$$

 $FG-X)$

The above parameters are defned as follows:

$$
\overline{\varepsilon}_X = \frac{\partial U}{\partial X} \tag{61}
$$

$$
\overline{\varepsilon}_y = \lambda \frac{\partial V}{\partial Y} \tag{62}
$$

$$
\overline{\varepsilon}_z = \frac{\lambda}{\gamma} \frac{\partial W}{\partial Z} \tag{63}
$$

$$
\overline{\gamma}_{xy} = \lambda \frac{\partial U}{\partial Y} + \frac{\partial V}{\partial X} \tag{64}
$$

$$
\overline{\gamma}_{yz} = \frac{\lambda}{\gamma} \frac{\partial V}{\partial Z} + \lambda \frac{\partial W}{\partial Y}
$$
\n(65)

$$
\overline{\gamma}_{zx} = \frac{\lambda}{\gamma} \frac{\partial U}{\partial Z} + \frac{\partial W}{\partial X} \tag{66}
$$

and in here:

 $\lambda = a/b$ (67)

$$
\gamma = h/b. \tag{68}
$$

In this thermal vibration problem of FG-CNT reinforcement plates, the Chebyshev polynomials are preferred which are the orthogonal polynomials reduced the computational effort $[46]$ $[46]$ $[46]$. In accordance with the Ritz method, each of the displacement amplitude functions is written as a triple series of Chebyshev polynomials, the displacement component of which is multiplied by a boundary function that satisfes the geometric boundary conditions of the plate. The displacement components are written in terms of nondimensionalized coordinates

$$
U(X, Y, Z) = F_u(X, Y) \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} A_{ijk} P_i(X) P_j(Y) P_k(Z)
$$
\n(69)

$$
V(X, Y, Z) = F_{v}(X, Y) \sum_{l=1}^{\infty} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} B_{lmn} P_{l}(X) P_{m}(Y) P_{n}(Z)
$$
\n(70)

$$
W(X, Y, Z) = F_w(X, Y) \sum_{p=1}^{\infty} \sum_{q=1}^{\infty} \sum_{r=1}^{\infty} C_{pqr} P_p(X) P_q(Y) P_r(Z)
$$
\n(71)

bour

 $(alb$

where $P_s(\zeta) = \cos[(s-1)\arccos(\zeta)]$ ($s = 1, 2, 3,...;$ *ζ*=*X*, *Y*, *Z*) is the *s*th order one-dimensional Chebyshev polynomial and $F_{\alpha}(X, Y) = f_{\alpha}^1(X, Y) f_{\alpha}^2(X, Y)$ ($\alpha = U, V, W$) is the boundary function satisfying the geometric boundary conditions, are as follows in terms of nondimensionalized coordinates and Chebyshev polynomials. The boundary functions used for boundary condition in this study that *CC* $(f_u^1(X) = 1 - X^2, f_v^1(X) = 1 - X^2, f_w^1(X) = 1 - X^2$, $f_u^2(Y) = 1 - Y^2, f_v^2(Y) = 1 - Y^2, f_w^2(Y) = 1 - Y^2$; $SS(f_u^1(X) = 1,$ $f_v^1(X) = 1 - X^2$, $f_w^1(X) = 1 - X^2$; $f_u^2(Y) = 1 - Y^2$, $f_v^2(Y) = 1$, $f_w^2(Y) = 1 - Y^2$; *CF* $(f_u^1(X) = 1 + X, f_v^1(X) = 1 + X$, $f_w^{-1}(X) = 1 + X$; $f_u^{-2}(Y) = 1 + Y$, $f_v^{-2}(Y) = 1 + Y$, $f_w^{-2}(Y) = 1 + Y$ and *FF* $(f_u^1(X) = 1, f_v^1(X) = 1, f_w^1(X) = 1; f_u^2(Y) = 1, f_v^2(Y) = 1,$ $f_w^2(Y) = 1$.

In accordance with the Ritz method, by substituting the displacement components given by Eq. ([72\)](#page-12-0) at the maximum energy values given by Eq. ([59](#page-10-0)) and substituting the maximum energy values in the maximum energy functional given by Eq. (55) (55) , the energy functional Π is obtained in terms of Chebyshev polynomials. Then the energy functional Π is minimized according to the unknown coefficients A_{ijk} , B_{lmn} and C_{pqr} .

$$
\frac{\partial \Pi}{\partial A_{ijk}} = 0\tag{72}
$$

$$
\frac{\partial \Pi}{\partial B_{lmn}} = 0\tag{73}
$$

$$
\frac{\partial \Pi}{\partial C_{pqr}} = 0\tag{74}
$$

As a result of the Ritz procedure, the eigenvalue problem given below is obtained, and the solution of the system of equations gives the natural frequencies of the free vibration problem occurring in the thermal environment under the influence of temperature.

 $(a/b = 1.5, FG-V)$

5358 Journal of Vibration Engineering & Technologies (2024) 12:5345–5368

$$
\begin{pmatrix}\n[K_{uu}] & [K_{uv}] & [K_{uv}] \\
[K_{uv}]^T & [K_{vv}] & [K_{vv}] \\
[K_{uv}]^T & [K_{vv}]^T & [K_{vw}] \\
[K_{mw}]^T & [K_{vw}]^T & [K_{ww}]\n\end{pmatrix} - \Omega^2 \begin{bmatrix}\n[M_{uu}] & 0 & 0 \\
0 & [M_{vv}] & 0 \\
0 & 0 & [M_{vv}] \n\end{bmatrix}
$$
\n
$$
\begin{Bmatrix}\n\{A_{ijk}\} \\
\{B_{lmn}\} \\
\{C_{pqr}\}\n\end{Bmatrix} = \begin{Bmatrix}\n\{0\} \\
\{0\} \\
\{0\}\n\end{Bmatrix}
$$
\n(75)

where $[K_{ij}]$ and $[M_{ij}]$ $(i, j = u, v, w)$ are the stiffness matrix and diagonal mass matrix, respectively. The dimensionless coefficients $\{A_{ijk}\}\$, $\{B_{lmn}\}\$ and $\{C_{pqr}\}\$ corresponding to the eigenvectors in the eigenvalue problem, represent the amplitude. Also, *Ω* is the non-dimensional frequency parameter and obtained as:

$$
\Omega = \omega \ (a^2/h) \sqrt{\rho^{m0} / E^{m0}}
$$
\n(76)

Here ω is the natural frequency and ρ^{m0} and E^{m0} are mass density per unit volume and Young modulus of matrix material at room temperature $(T_0 = 300 \text{ K})$.

Numerical Results

In this study, a polymer matrix composite as defned Poly*co*-vinylene (PmPV) reinforced by CNT in the thickness direction in three type of diferent form that UD, FG-V, FG-O and FG-X are examined. The mechanical properties of the matrix material PmPV, some of which are temperature dependent, are as follows [[27\]](#page-23-3):

$$
E^{\rm m} = (3.51 - 0.0047 \, \text{T}) \, \text{GPa} \tag{77}
$$

$$
v^{\mathrm{m}} = 0.34\tag{78}
$$

$$
\rho^{\mathrm{m}} = 1150 \text{ kg/m}^3 \tag{79}
$$

$$
\alpha^{\rm m} = 45(1 + 0.0005\Delta T) \times 10^{-6} / \text{K}
$$
 (80)

$$
Gm = \frac{Em}{2(1 + vm)} \text{ GPa}
$$
 (81)

 (a)

The efficiency parameters of FG-CNT-reinforced composite are considered $\eta_1 = 0.149$ and $\eta_2 = \eta_3 = 0.934$ for VCNT* = 0.11; $\eta_1 = 0.150$ and $\eta_2 = \eta_3 = 0.941$ for $VCNT^* = 0.14$; $\eta_1 = 0.149$ and $\eta_2 = \eta_3 = 1.381$ for $VCNT* = 0.17$. The temperature-dependent mechanical properties of the reinforcement material SWCNT which the type of armchair (10,10) are tabulated in Table [1](#page-3-0) [[27\]](#page-23-3).

Using the data given in Table [1,](#page-3-0) the material properties of SWCNTs whose material properties depend on temperature were defned as a third-order polynomial as follows, thus provided the estimation of material properties at temperatures other than these:

$$
P(T) = P_0 \left(1 + P_1 \Delta T + P_2 \Delta T^2 + P_3 \Delta T^3 \right)
$$
 (82)

where P_0 is the material property of CNT at temperature T_0 . P_0 and the coefficients of material properties depending on temperature, P_i ($i=0, 1, 2, 3$) are given in Table [2](#page-3-1) [[27\]](#page-23-3).

The material properties of the CNT reinforcement polymer matrix composite plate examined in the study are temperature dependent, and it has been reinforced in four different forms as UD, FG-V, FG-O and FG-X in the thickness

direction. The investigated problem is the thermal vibration problem and three diferent thermal environments are taken into account.

Convergence and Accuracy Studies

In this study, the natural frequencies are obtained by Ritz method and the Chebyshev polynomials which defned between the interval $[-1, 1]$ and also by a set of separable orthogonal polynomial functions are used as admissible functions. This ensures more rapid convergence and better stability in the numerical computation can be accomplished compared with other polynomial series [[46\]](#page-23-22). As it is known, the natural frequencies obtained by the Ritz method converge to the exact values from the upper bound and more accurate results can be obtained by increasing the number of terms of the admissible functions. In the current study, 3D solutions are obtained using Chebyshev polynomials with $8 \times 8 \times 8$ terms. The convergence study of SSSS square FG-CNT/PmPV composite with UD reinforcement in the stress-free temperature environment is performed for frst six frequency parameters.

Table 15

boundary

with T_0 = $(a/b = 1.5)$

Throughout the study, including the convergence and comparison studies, the non-dimensional frequency parameter *Ω* is taken as given in Eq. ([26](#page-7-0)). As can be seen in Table [3](#page-3-2), where the convergence rate of the frst six frequency parameters is given, the convergence rate is good for each *h*/*b* ratio examined, and the variation of the frequency parameters decreases as the number of terms increases, and the frequency parameters approach a defnite value.

The material examined in this study is FG-CNT/PmPV. However, FG-CNT/PMMA was taken into account in the comparison of the accuracy of the results obtained from the thermal vibration problem as it is available in the literature. The results given in Table [4](#page-4-0) for SSSS square FG-CNT/PMMA composite are compared at uniform temperature rise. For this case, the assumed efficiency parameters dependent on SWCNT volume fraction for PMMA/CNT composite are taken from Wang and Shen [[34](#page-23-10)] and, hence, for $V_{\text{CNT}}^* = 0.12$ are $\eta_1 = 0.137$, $\eta_2 = 1.022$ and $\eta_3 = 0.715$, V_{CNT} ^{*} = 0.17 are η_1 = 0.142, η_2 = 1.626 and η_3 = 1.138 and V_{CNT} = 0.28 are η_1 = 0.141, η_2 = 1.585 and η_3 = 1.109. From the comparison results given in Tables [3](#page-3-2) and [4,](#page-4-0) it is

seen that the results obtained in this study are consistent and stable.

Parametric Studies

In the study is focused on to investigation efect of the temperature on frequency parameters in diferent thermal environment of Poly-*co*-vinylene (PmPV) matrix composite that reinforced by CNT in the thickness direction. The frst six free vibration frequencies of the composite are obtained for the plate having CFFF, CCCC, SSSS, SCSC and SFSF boundary conditions at room temperature. The results are given in Tables [5,](#page-5-0) [6](#page-6-0), [7](#page-7-1). The frst six free vibration frequencies of the composite are obtained for uniform temperature increase, linear temperature increase and sinusoidal temperature increase in the thickness direction when the lower surface of the plate at $T_b = T_0 = 300$ K and the upper surface of the plate at $T_t=500$ K. The reinforcement modeling UD, FG-V, FG-O and FG-X of PmPV/FG-CNT plate at two side/ side ratios 1 and 1.5, three diferent thickness/side ratios 0.05, 0.1 and 0.2 which corresponding, respectively, thin moderately thick and thick plates are considered for CFFF

Table 16 Natural frequency parameters of FG-CNT-reinforced plate under different boundary conditions with $T_0 = 300$ K, $T_1 = 500$ K $(V_{\text{CNT}}^* = 0.11, h/b = 0.05, a/b = 1)$

		UD			$FG-V$			$FG-O$			$FG-X$			
		Uniform Linear		Sinusoidal	Uniform Linear		Sinusoidal	Uniform Linear		Sinusoidal	Uniform	Linear	Sinusoidal	
CCCC	Δ_1	22,9446	25,8019	26,5777	21,0110	23,1132	23,7513	19,6416	21,7502 22,3192		24,2294	27,5350	28,4400	
	Δ_{2}	26,0246	29,5840	30,4509	24,4436	27,4300	28,1813	23,1405	26,1118	26,8062	27,2858	31,2394	32,2180	
	Δ_{3}	33,5694	38,6731	39,7704	32,5037	37,2722	38,2860	31,2263	35,9221	36,8934	34,8618	40,2964	41,4801	
	Δ_4	45,7720	53,1878	54,6862	43,4769	48,5128	50,1493	41,2830	46,6401	48,2076	47,1855	54,8964	56,4624	
	Δ_{5}	46,7503	53,4060	55,2953	45,1566	51,1375	52,8362	43,3910	49,2825	50,9176	48,6438	55,8909	57,9310	
	Δ_6	48,5376		55,6104 57,5471	45,5340	52,4210	53,8632	43,8076		50,9310 52,3394	50,4013	58,0342	60,1131	
SSSS	Δ_1	15,0536		15,9920 16,2212	12,9233	13,6218	13,8030	11,4905	12,1298	12,2771	17,1322	18,3980	18,7165	
	Δ_{2}	17,6044		19,2964 19,6492	15,9429	17,5523	17,8770	14,6606	16,2052	16,5046	19,4779	21,4214	21,8454	
	Δ ₃	24,7019	28,0595	28,6897	23,7027	27,1117	27,7289	22,5263	25,8202	26,4191	26,3367	29,8825	30,5616	
	Δ_4	28,6118	34,0047	35,3356	28,6864	33,8870	35,2177	28,6865	34,0931	35,4681	28,6865	34,0927	35,3849	
	Δ_{5}	28,8726		34,2242 35,5469	28,9465	34,1075	35,4298	28,9466	34,3121	35,6786	28,9466	34,3117	35,5960	
	Δ_6	37,5994		43,5114 44,5980	37,1233	41,8895	42,9617	35,7039	39,0579	39,9924	39,1894	45,2882	46,4118	
SCSC	Δ_1	15.6829	16,8051	17,0636	13,6704	14,6036	14.8210	12,2767	13,1500	13.3364	17,7171	19.1456	19,4883	
	Δ_2	20,1739		22,4884 22,9469	18,7757	21,0655	21,5039	17,5664	19,7869	20,2050	21,9452	24,4771	24,9961	
	Δ_{3}	28,8726	33,8453	34,6610	28,7240	33,1360	33,9427	27,5636	31,8461	32.6363	28,9466	34,3117	35,5960	
	Δ_4	29,5099	34,2242	35,5469	28,9465	34,1075	35,4298	28,9466	34,3121	35,6786	31,0895	35,6031	36,4616	
	Δ_5	43,0136	47,8951	49,2490	38,8349	42,2692	43,3537	35,9887	39,4243	40,3705	44,6559	51,7073	53,1290	
	Δ_6	43,0784	50,0171	51.3271	41,2661	45.4560	46,6492	38,5499	42,7412	43,8088	45,8871	51,7822	53,3419	
SFSF	Δ_1	14,6989	15,5042	15,7097	12,4666	12,9951	13,1477	10,9875	11,4465	11,5620	16,8306	17,9833	18,2822	
	Δ_{2}	14,8599		15,7354 15,9545	12,6834	13,2959	13,4644	11,2382	11,7953	11,9290	16,9564	18,1667	18,4769	
	Δ_3	16,1396	17,4499	17,7431	14,2845	15,4565	15,7152	12,9450	14,0529	14,2812	18,0832	19,6730	20,0453	
	Δ_4	20,8346		23,3634 23,8565	19,5905	22,1234	22,5994	18,4051	20,8529	21,3070	22,5214	25,2511	25,8015	
	Δ_{5}	27,9967	33,1154	34,3695	28,0464	32,9841	34,2395	28,0573	33,1876	34,4844	28,0571	33,1882	34,4043	
	Δ_6	28,8726		34,2242 35,5469	28,9465	34,1075	35,4298	28,9466	34,3121 35,1944		28,9466	34,3117	35,5960	

boundary condition and at side/side ratios 1, thickness/side ratios 0.05 are considered for CCC, SSSS, SCSC and SFSF boundary conditions. The results obtained for these conditions are given in Tables [8,](#page-8-0) [9,](#page-9-0) [10](#page-10-2), [11](#page-11-0), [12](#page-12-1), [13](#page-13-0), [14](#page-14-0), [15](#page-15-0), [16](#page-16-0).

It is seen that the frequency values for the FG-X model are greater than the other models and the frequency values for the FG-O model are smaller than in all boundary conditions and the frequency values obtained at *a*/*b*=1.5 ratio are greater than $a/b = 1$ ratio. However, the frequency values increase as the volume ratio increases and decrease as the thickness increases at the same volume ratio. At the same volume ratio and thickness values, with the increase of the *a*/*b* ratio, the amount of increase in the second and higher frequencies is greater than the amount of increase in the fundamental frequencies. For all reference parameters, the highest frequency values were obtained in the thermal environment where the temperature increased sinusoidally, and the lowest frequency values were obtained in the uniform temperature increase. The frequency values obtained in linear temperature variation were always obtained between the frequency values obtained from the uniform and sinusoidal temperature change.

When it is investigated according to boundary conditions, it is seen that the frequency values increase with increasing constraints on boundaries. And accordingly, the frequencies for each volume ratio are sorted from the highest to the lowest value according to boundary conditions CCCC, SCSC, SSSS, SFSF and CFFF, respectively.

The variation of the fundamental frequency parameters with temperature was investigated graphically for the 0.11, 0.14 and 0.17 values of the V_{CNT}^* while $h/b = 0.1$ and $a/b = 1$ in considered three thermal environments. Graphs are given in Fig. [1](#page-17-0)a–d for the reinforcement type that UD, FG-V, FG-O and FG-X, respectively. The curves show the efect of three diferent temperature distributions on the fundamental frequency parameters at each volume ratio. The fundamental frequency values for each volume ratio are higher for the reinforcement type that FG-X and the fundamental frequency values for each volume ratio are smaller for the reinforcement type that FG-O. The fundamental frequency values decrease as the temperature increases and show the greatest change in the uniform temperature distribution. In general, it is seen that the behavior of the material is more

Fig. 1 The fundamental frequency parameters of FG-CNTreinforced plate with CFFF boundary condition $(h/b=0.1)$

stable in the sinusoidal temperature distribution compared to other temperature distributions.

The greatest decrease in frequency values is observed in the uniform temperature distribution and the least decrease in the sinusoidal temperature distribution. When compared in terms of volume ratios, the rate of decrease in frequency value is higher at V_{CNT}^* = 0.11 for all boundary conditions. When compared in terms of fundamental frequency and high frequencies, the frequency that is least afected by temperature changes in all volume ratios is the fundamental frequency.

Figures [2,](#page-18-0) [3](#page-19-0), [4](#page-20-0), [5](#page-21-0) show the mode shapes for the frst 6 frequencies of the FG-CNT plate with CFFF boundary condition for all reinforcement models, at room temperature and uniform, linear and sinusoidal temperature increase. The mode shapes describe the deformation of the vertical component (W) of the FG-CNT composite plate when vibrating at natural frequency at room temperature and at diferent thermal environments. In the uniform temperature condition, fuctuations are observed in the nodal lines starting from the fourth frequency. In linear and sinusoidal temperature distribution, there is a tendency to increase in the number of waves starting from the fourth frequency.

Conclusions

The free vibration of FG-CNT/PmPV composite plate constructed by embedding a single wall carbon nanotube with chiral index (10,10) in diferent volume fractions into PmPV polymer matrices is investigated using Ritz method based on three-dimensional elasticity for three diferent thermal condition. Assumed thermal conditions are uniform, linear and sinusoidal temperature distribution in the study. The following conclusions can be carried out from the obtained results for the considered problem.

- The Chebyshev polynomials chosen as admissible functions in Ritz method provide high accuracy, consistent in the computation and rapid convergence.
- An increase in the volume ratio of CNT results in an increase in the natural frequency, and an increase in thickness at the same volume ratio results in a decrease in the natural frequency.
- The greatest and smallest frequency values for the reinforcement models were obtained for the FG-X model and for the FG-O model, respectively.
- The frequencies for each volume ratio are sorted from the highest to the lowest value according to boundary conditions CCCC, SCSC, SSSS, SFSF and CFFF, respectively.
- An increase in temperature causes the natural frequency to decrease.

 \bigcirc Springer

Fig. 2 First six mode shapes of square FG-CNT-reinforced plate with CFFF boundary condition (UD, $V_{\text{CNT}}^* = 0.14$, $h/b = 0.05$, $T_b = 300$ K, $T_t = 500 \text{ K}$

Fig. 3 First six mode shapes of square FG-CNT-reinforced plate with CFFF boundary condition (FG-V, V_{CNT}^* =0.14, h/b =0.05, T_b =300 K, $T_t = 500 \text{ K}$

Fig. 4 First six mode shapes of square FG-CNT-reinforced plate with CFFF boundary condition (FG-O, V_{CNT}^* =0.14, h/b =0.05, T_b =300 K, $T_t = 500 \text{ K}$

Fig. 5 First six mode shapes of square FG-CNT-reinforced plate with CFFF boundary condition (FG-X, V_{CNT}^* =0.14, h/b =0.05, T_b =300 K, $T_t = 500 \text{ K}$

 \hat{Z} Springer

- The greatest and smallest frequency values for the three thermal conditions examined were obtained in sinusoidal and uniform temperature distribution, respectively.
- It is observed that in the uniform temperature distribution, frequencies sharply decrease and in the sinusoidal temperature distribution, frequencies monotonically decrease.
- The frequencies obtained in the linear temperature distribution were greater than the values obtained in the uniform temperature distribution and smaller than the values obtained in the sinusoidal temperature distribution for each condition. However, the variation of frequencies are more similar to the behavior in the sinusoidal temperature condition.
- As the temperature increases, the frequency decreases, and decrease ratio of frequency always higher at the lowest volume ratio of the CNT.
- For given boundary condition and at a certain temperature, in the change of temperature distributions, changes are also observed in the order of the mode shapes.
- Mode shapes are not greatly affected by the reinforcement model and temperature, but the greatest irregularity is seen in the FG-X model and uniform temperature distribution.

Funding The authors received no fnancial support for the research, authorship, and/or publication of this article.

Data availability The authors confrm that the data supporting the fndings of this study are available within the article [and/or] its supplementary materials.

Declarations

Conflict of Interest The authors declare that no conficts of interest exist with respect to the research, authorship, and/or publication of this article.

References

- 1. Gibson RF (2016) Principles of composite material mechanics. CRC Press, New York
- 2. Kroto HW, Heath JR, O'Brien SC, Curl RF, Smalley RE (1985) C60 buckminsterfullerene. Nature 318:162–163
- 3. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58
- 4. Griebel M, Hamaekers J (2004) Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites. Comput Methods Appl Mech Eng 193:1773–1778
- 5. Lau KT, Hui D (2002) The revolutionary creation of new advanced materials-carbonnanotube composites. Compos B Eng 33:263–277
- 6. Shirasu K, Nakamura A, Yamamoto G, Ogasawara Y, Shimamura Y, Inoue Y, Hashida T (2017) Potential use of CNTs for production of zero thermal expansion coefficient composite materials: An experimental evaluation of axial thermal expansion of CNTs using a combination of thermal expansion and uniaxial tensile tests. Compos A Appl Sci Manuf 95:152–160
- 7. Hassanzadeh-Aghdam MK, Mahmoodi MJ (2018) Micromechanical modelling of thermal conducting behavior of general carbon nanotube-polymer nanocomposites. Mater Sci Eng B 229:173–183
- 8. Sun CH, Li F, Cheng HM, Lu GQ (2005) Axial Young's modulus prediction of singlewalled carbon nanotubes arrays with diameters from nanometer to meterscales. Appl Phys Lett 87:193101–193104
- 9. Meguid SA, Sun Y (2004) On the tensile and shear strength of nano-reinforced composite interfaces. Mater Design 25:289–296
- 10. Han Y, Elliot J (2007) Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput Mater Sci 39:315–323
- 11. Shen HS (2009) Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Compos Struct 91:9–19
- 12. Alibeigloo A, Liew KM (2013) Thermoelastic analysis of functionally graded carbon nanotube-reinforced composite plate using theory of elasticity. Compos Struct 106:873–881
- 13. Alibeigloo A (2014) Three-dimensional thermoelasticity solution of functionally graded carbon nanotube reinforced composite plate embedded in piezoelectric sensor and actuator layers. Compos Struct 118:482–495
- 14. Zhou T, Song Y (2019) Three-dimensional nonlinear bending analysis of FG-CNTs reinforced composite plates using the element-free Galerkin method based on the S-R decomposition theorem. Compos Struct 207:519–530
- 15. Zhu P, Lei ZX, Liew KM (2012) Static and free vibration analyses of carbon nanotube-reinforced composite plates using fnite element method with frst order shear deformation plate theory. Compos Struct 94:1450–1460
- 16. Singh SD, Sahoo R (2020) Static and free vibration analysis of functionally graded CNT reinforced composite plates using trigonometric shear deformation theory. Structures 28:685–696
- 17. Garcia-Macias E, Castro-Triguero R, Flores EIS, Friswell MI, Gallego R (2016) Static and free vibration analysis of functionally graded carbon nanotube reinforced skew plates. Compos Struct 140:473–490
- 18. Wattanasakulponga N, Chaikittiratana A (2015) Exact solutions for static and dynamic analyses of carbon nanotube-reinforced composite plates with Pasternak elasticfoundation. Appl Math Model 39:5459–5472
- 19. Duc ND, Lee J, Nguyen-Thoid T, Thangd PT (2017) Static response and free vibration of functionally graded carbon nanotube-reinforced composite rectangular plates resting on Winkler– Pasternak elastic foundations. Aerosp Sci Technol 68:391–402
- 20. Lei ZX, Zhang LW, Liew KM (2015) Free vibration analysis of laminated FG-CNT reinforced composite rectangular plates using the kp-Ritz method. Compos Struct 127:245–259
- 21. Lei ZX, Zhang LW, Liew KM (2016) Buckling analysis of CNT reinforced functionally graded laminated composite plates. Compos Struct 152:62–73
- 22. Malekzadeh P, Zarei AR (2014) Free vibration of quadrilateral laminated plates with carbon nanotubes reinforced composite layers. Thin Walled Struct 82:221–232
- 23. Malekzadeh P, Shojaee M (2013) Buckling analysis of quadrilateral laminated plates with carbon nanotubes reinforced composite layers. Thin Walled Struct 71:108–118

- 24. Zhang LW, Lei ZX, Liew KM (2015) Free vibration analysis of functionally graded carbon nanotube-reinforced composite triangular plates using the FSDT and element-free IMSL-Ritz method. Compos Struct 120:189–199
- 25. Zhang LW, Lei ZX, Liew KM (2015) Buckling analysis of FG-CNT reinforced composite thick skew plates using an element-free approach. Compos B Eng 75:36–46
- 26. Zhang LW, Lei ZX, Liew KM (2015) An element-free IMLS-Ritz framework for buckling analysis of FG–CNT reinforced composite thick plates resting on Winkler foundations. Eng Anal Bound Elem 58:7–17
- 27. Farzam A, Hassani B (2018) Thermal and mechanical buckling analysis of FG carbon nanotube reinforced composite plates using modifed couple stress theory and isogeometric approach. Compos Struct 206:774–790
- 28. Kiani Y (2016) Shear buckling of FG-CNT reinforced composite plates using Chebyshev–Ritz method. Compos B Eng 105:176–187
- 29. Kiani Y, Mirzaei M (2018) Rectangular and skew shear buckling of FG-CNT reinforced composite skew plates using Ritz method. Aerosp Sci Technol 77:388–398
- 30. Mehrabadi JS, Sobhani AB, Khoshkhahesh V, Taherpour A (2012) Mechanical buckling of nanocomposite rectangular plate reinforced by aligned and straight single walled carbon nanotubes. Compos B Eng 43:2031–2040
- 31. Wu CP, Chang SK (2014) Stability of carbon nanotube-reinforced composite plates with surface-bonded piezoelectric layers and under bi-axial compression. Compos Struct 111:587–601
- 32. Wang M, Li ZM, Qiao P (2016) Semi-analytical solutions to buckling and free vibration analysis of carbon nanotube-reinforced composite thin plates. Compos Struct 144:33–43
- 33. Karamanlı A, Aydoğdu M (2021) Vibration behaviors of two directional carbon nanotube reinforced functionally graded composite plates. Compos Struct 262:113639
- 34. Wang ZX, Shen HS (2011) Nonlinear vibration of carbon nanotubereinforced composite plates in thermal environments. Comput Mater Sci 50:2319–2330
- 35. Guo XY, Zhang W (2016) Nonlinear vibrations of a reinforced composite plate with carbon nanotubes. Compos Struct 135:96–108
- 36. Quoc TH, Tu TM, Tham VV (2019) Free vibration analysis of smart laminated functionally graded CNT reinforced composite plates via new four-variable refned plate theory. Materials 12:3675
- 37. Fantuzzi N, Tornabene F, Bacciocchi M, Dimitri R (2017) Free vibration analysis of arbitrarily shaped functionally graded carbon nanotube-reinforced plates. Compos B Eng 115:384–408
- 38. Bisheh H, Alibeigloo A, Safarpour M, Rahimi AR (2019) Threedimensional static and free vibrational analysis of graphene reinforced composite circular/annular plate using diferential quadrature method. Int J Appl Mech 11(8):1950073
- 39. Shahrbabaki EA, Alibeigloo A (2014) Three-dimensional vibration of carbon nanotube-reinforced composite plates with various boundary conditions using Ritz method. Compos Struct 111:362–370
- 40. Wang JF, Cao SH, Zhang W (2021) Thermal vibration and buckling analysis of functionally graded carbon nanotube reinforced composite quadrilateral plate. Eur J Mech A Solids 85:104105
- 41. Zhang LW, Song ZG, Liew KM (2015) State-space Levy method for vibration analysis of FG-CNT compositeplates subjected to inplane loads based on higher-order shear deformation theory. Compos Struct 134:989–1003
- 42. Zhang LW, Selim BA (2017) Vibration analysis of CNT-reinforced thick laminated composite plates based on Reddy's higher-order shear deformation theory. Compos Struct 160:689–705
- 43. Selim BA, Zhang LW, Liew KM (2016) Vibration analysis of CNT reinforced functionally graded composite plates in a thermal environment based on Reddy's higher-order shear deformation theory. Compos Struct 156:276–290
- 44. Wu CP, Li HY (2016) Three-dimensional free vibration analysis of functionally graded carbon nanotube-reinforced composite plates with various boundary conditions. J Vib Control 22(1):89–107
- 45. Lei ZX, Liew KM, Yu JL (2013) Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment. Compos Struct 106:128–138
- 46. Zhou D, Cheung YK, Au FTK, Lo SH (2002) Three-dimensional vibration analysis of thick rectangular plates using Chebyshev polynomial and Ritz method. Int J Solids Struct 39:6339–6353

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.