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Abstract
Purpose Three-dimensional thermal vibration analysis of functionally graded carbon nanotube (FG-CNT) reinforcement 
composite plates is performed for uniform, linear and sinusoidally temperature distribution.
Methods The reinforcement directions is considered through the thickness according to four reinforcement models as UD, 
FG-V, FG-O and FG-X are examined. As the components of the composite, the material properties of both the CNT form-
ing the reinforcement phase and the polymer forming the matrix phase change depending on the temperature, and this is the 
focus of this study. The effective material properties of the FG-CNT reinforced composite are determined by the mixtures 
rule. The three displacements of the plates are expanded by a series of Chebyshev polynomials multiplied by appropriate 
functions to satisfy the essential boundary conditions. The natural frequencies are obtained by the Ritz method.
Results It is shown that the numerical results of the current approach are compared with the results of other researchers 
for validation, the results appear to be in good agreement. The effects of the thickness-to-length ratio and different volume 
fraction distributions for cantilever (CFFF) boundary conditions in considered thermal environments are investigated. The 
effect of different boundary conditions such as clamped (CCCC), simply supported (SSSS), simply supported through the 
x-axis and clamped through the y-axis (SCSC) and simply supported through the x-axis and free through the y-axis (SFSF) 
is also examined. It is shown that the increase in the amount of temperature and the type of temperature distribution are 
effective on the decrease of frequencies.

Keywords Thermal vibration · Thermal environment · Carbon nanotube-reinforced composite · Ritz method · Chebyshev 
polynomials

Introduction

Composites, which consist of two or more separate materials 
combined in a macroscopic structural unit, are made from 
various combinations of the other three materials. Compos-
ites are generally used because they have desirable proper-
ties which could not be achieved by either of the constituent 
materials acting alone. The most common example is the 
fibrous composite consisting of reinforcing fibers embedded 

in a binder, or matrix material. Particle or flake reinforce-
ment is also used, but it is not so effective as fibers [1]. 
Advanced composites made from graphite, silicon carbide, 
aramid polymer, boron or other higher modulus fibers are 
used mainly in more exotic applications such as aerospace 
structures where their higher cost can be justified based on 
improved performance [1]. Graphite or carbon fibers are the 
most widely used advanced fibers, and graphite/epoxy or car-
bon/epoxy composites are now used routinely in aerospace 
structures. Although carbon fibers were once prohibitively 
expensive, the cost has dropped significantly as production 
capacity and demand has increased recent years. Polymers 
are unquestionably the most widely used matrix materials 
in modern composites. The application where the superior 
potential of high specific strength and high specific stiffness 
composites was first realized was in military aircraft, where 
performance and maneuverability are highly dependent on 
weight. However, composite structural elements are used in 
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various components of automotive, aerospace, marine and 
architectural structures, as well as skis, golf clubs and it is 
also used in consumer products such as tennis rackets [1].

A new and rapidly developing field in nanomaterials 
science has started with the first time obtaining of the  C60 
molecule, which is formed by sixty carbon atoms taking the 
form of a soccer ball-shaped lattice structure, unlike crystal 
structures such as carbon, diamond and graphite [2]. Carbon 
nanotubes (CNTs) were first reported by Iijima [3], and it 
was demonstrated by Griebel and Hamaekers [4] that carbon 
can form a tube-shaped structure, with diameter ranges at 
nanoscale and lengths at micro scale.

Compared to carbon fiber-reinforced polymer compos-
ites, carbon nanotube-reinforced polymer composites have 
the potential to increase strength and stiffness and improve 
the structural, mechanical and electronic properties of the 
obtained composite due to CNTs low density and high aspect 
ratio [5–8]. Meguid and Sun [9] showed that the mechani-
cal properties of the obtained composite would deteriorate 
if the CNT volume ratio exceeds a certain limit, and Han 
and Elliot [10] showed that the mechanical properties of the 
composite are also sensitive to the quantity and quality of the 
CNTs selected for the particular polymer. However, it was 
suggested to be used in the preferred direction in different 
gradients of CNT by Shen [11] to obtain nanocomposites 
desired performance. The fact that the mechanical proper-
ties of CNT and polymer change depending on temperature 
and that composite structures generally operate in high-tem-
perature thermal environments have encouraged researchers 
to examine the behavior of CNT-reinforced polymer matrix 
composite structure components under mechanical and ther-
mal loads for a high-quality design and production.

Three-dimensional thermoelastic analysis is researched 
by Alibeigloo and Liew [12] for FG-CNT/PmPV composite 
plates and by Alibeigloo [13] for FG-CNT/PmPV composite 
plates embedded in piezoelectric sensor and actuator layers. 
In both cases, the analyses are carried out using the Fourier 
series expansion and state-space method. Zhou and Song 
[14] studied three-dimensional nonlinear bending analysis 
of FG-CNT/PmPV composite plates using the element-free 
Galerkin method based on the S–R decomposition theorem. 
Zhu et al. [15] investigated bending and free vibration analy-
ses of FG-CNT/PmPV composite plates by a finite element 
method based on the first-order shear deformation plate the-
ory. For determination of the effective material properties of 
the considered plate, the rule of mixture is used. Static and 
free vibration analyses are carried out for FG-CNT/PmPV 
composite plates by Singh and Sahoo [16] using Navier’s 
solution technique based on trigonometric shear deforma-
tion theory. Garcia-Macias et al. [17] investigated static 
and free vibration analyses of FG-CNT/PMMA composite 
skew plates using an efficient finite element formulation 
based on the Hu–Washizu principle. The used shell theory 

is formulated in oblique coordinates and includes the effects 
of transverse shear strains by first-order shear deformation 
plate theory. Wattanasakulpong and Chaikittiratana [18] pre-
sented an exact solution based on generalized shear deforma-
tion plat theory for static and dynamic analyses of FG-CNT/
PmPV composite plates with Pasternak elastic foundation 
including shear layer and Winklersprings. Static response 
and free vibration of FG-CNT/PMMA composite plates rest-
ing on Winkler–Pasternak elastic foundations using Navier 
solution based on the first-order shear deformation plate 
theory is investigated by Duc et al. [19].

Lei et al. investigated free vibration [20] and buckling 
[21] of laminated FG-CNT/PmPV composite plates using 
kp-Ritz method based on first-order shear deformation 
theory. Malekzadeh and Zarei [22] investigated free vibra-
tion and Malekzadeh and Shojaee [23] investigated buck-
ling behavior of quadrilateral laminated FG-CNT/PmPV 
composite plates by employing the differential quadrature 
method (DQM) based on the first-order shear deforma-
tion plate theory. Zhang et al. presented a free vibration 
analyses of FG-CNT/PmPV composite triangular plates 
[24] and buckling analysis of thick skew plates [25] using 
element-free IMSL-Ritz method based on the first-order 
shear deformation plate theory. For determination of the 
effective material properties of the considered plate, the 
rule of mixture is used. Zhang et al. [26] considered one 
more buckling analysis of FG-CNT/PmPV composite thick 
plates resting on Winkler foundations using element-free-
based improved moving least squares-Ritz (IMLS-Ritz) 
method employed with first-order shear deformation theory. 
Farzam and Hassani [27] investigated thermal and mechani-
cal buckling analysis of FG-CNT/PmPV composite plates 
using isogeometric analysis based on modified couple stress 
theory. Kiani [28] studied thermal shear buckling of FG-
CNT/PMMA composite plates in uniform temperature dis-
tribution using the Ritz method with Chebyshev polynomi-
als based on the first-order shear deformation theory. Kiani 
and Mirzaei [29] researched shear buckling of rectangular 
and skew FG-CNT/PMMA composite plates using the Ritz 
method whose shape functions are constructed according 
to the Gram–Schmidt process based on the first-order shear 
deformation theory. Mehrabadi et al. [30] investigated the 
mechanical buckling of a rectangular FG-CNT/PMMA 
composite plate reinforced by aligned and straight single-
walled carbon nanotubes (SWCNTs) using the Mindlin 
plate theory considering the first-order shear deformation 
effect and variational approach. The material properties of 
SWCNT are determined according to molecular dynamics 
(MDs), and then the effective material properties at a point 
are estimated by either the Eshelby–Mori–Tanaka approach 
or the extended rule of mixture. Wu and Chang [31] con-
sidered a stability problem of FG-CNT/PmPV composite 
plates with surface-bonded piezoelectric actuator and sensor 
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layers under bi-axial compression loads using a unified for-
mulation of finite layer methods based on three-dimensional 
elasticity theory. Semi-analytical solutions to buckling and 
free vibration analysis of FG-CNT/PMMA composite thin 
plates applying the Galerkin technique with the classical 
plate theory presented by Wang et al. [32].

The free vibration analysis is considered for two direc-
tional FG-CNT/PmPV composite plates by Karamanlı and 
Aydoğdu [33] employing finite element method based on 
third-order shear deformation theory. A nonlinear vibration 
behaviors of FG-CNT/PMMA composite plates resting on 
an elastic foundation under uniform temperature distribu-
tion investigated by Wang and Shen [34] and the problem 
is solved by an improved perturbation technique based on 
a higher-order shear deformation plate theory. Guo and 
Zhang [35] studied the nonlinear oscillations and chaotic 
dynamics of a FG-CNT/PmPV composite plate subjected 
to the in-plane and the transverse excitations. The Galerkin 
method based on the Reddy’s third-order shear deformation 
plate theory and the geometric nonlinearity of Von Karman. 
For determination of the effective material properties of the 
considered plate, Mori–Tanaka theory and the Eshelby’s 
method are used. Quoc et al. [36] determined free vibration 
response of laminated piezoelectric FG-CNT/PMMA com-
posite plates using the Navier technique based on a new four-
variable refined plate theory. The free vibration of arbitrarily 
shaped FG-CNT/PMMA composite plates was considered 
by Fantuzzi et al. [37] by employing generalized Differen-
tial Quadrature Method based on the first-order shear defor-
mation theory. The free vibration and bending analysis of 
graphene-reinforced composite circular and annular plates 
was considered by Bisheh et al. [38] by employing Differ-
ential Quadrature Method based on the three-dimensional 
elasticity theory. Shahrbabaki and Alibeigloo [39] applied 
the Ritz method to analyze free vibration based on three-
dimensional elasticity theory. In this approach, orthogonal 
admissible functions were obtained from Jacobi polynomial. 
Effective material properties of the considered plate are esti-
mated with the modified rule of mixture approach. Wang 
et al. [40] investigated free vibration and buckling behavior 
of FG-CNT-reinforced plates in the quadrilateral geometri-
cal form by differential quadrature and finite element method 
based on the first-order shear deformation plate theory. Free 
vibration of regular and irregular plates with and without 
the temperature effect are considered for FG-CNT/PMMA 
composite plates and mechanical and thermal buckling con-
sidered for FG-CNT/PmPV composite plates under uniaxial 
and bi-axial in-plane load. Zhang et al. [41] considered free 
vibration of FG-CNT/PmPv composite plates subjected to 
in-plane loads using state-space Levy method based on Red-
dy’s third-order shear deformation theory. Zhang and Selim 
[42] studied vibration analysis of FG-CNT/PmPV laminated 
thick composite plates employing element-free IMLS-Ritz 

method based on Reddy’s higher-order shear deformation 
theory. The effective material properties of CNT-reinforced 
composite are estimated by a detailed and straightforward 
Mori–Tanaka approach.

Selim et al. [43] studied free vibration behavior of CNT-
reinforced plates using element-free kp Ritz method based 
on Reddy’s higher-order shear deformation theory. Para-
metric studies performed for FG-CNT/PmPV composite 
plates to reveal the effects of CNT distribution, boundary 
conditions, side to thickness ratio on natural frequencies and 
performed for FG-CNT/PMMA composite plates to reveal 
the effects of uniform temperature distribution on natu-
ral frequencies. The unified formulation of RMVT-based 
FPMs is extended to the free vibration analysis of FG-CNT-
reinforced composite plates and laminated fiber-reinforced 
composite by Wu and Li [44]. Lei et al. [45] analyzed free 
vibration of FG-CNT-reinforced composite plates using 
element-free kp-Ritz method based on first-order shear 
deformation theory. In this study the effect of the uniform 
temperature distribution for V∗

CNT
 = 0.12 volume fraction on 

UD and FG-V distributed composite on natural frequencies 
are obtained. Effective material properties of the consid-
ered plate are estimated with the Eshelby–Mori–Tanaka 
approach.

As mentioned in the literature, there are many studies 
on the bending, buckling and vibration behavior of CNT-
reinforced plates. However, although the properties of both 
CNT and polymer materials that form the components of 
the CNT-reinforced composite, and thus the properties of 
the composite, vary depending on temperature, there are 
limited studies in which the effect of temperature is taken 
into account. This conclusion has been the inspiration for 
this study. In the present study, vibration analysis of FG-
CNT/PmPV-reinforced composite plates in different ther-
mal environments such as uniform, linear and sinusoidally 
temperature distribution are considered using Ritz method 
based on three-dimensional elasticity. The effective material 
properties of the considered plate are estimated by the rule 
of mixture. Chebyshev polynomials are assumed admissible 
functions in the Ritz method. However, scope of the study 
on cantilever (CFFF) boundary condition, different bound-
ary conditions such as CCCC, SSSS, SCSC and SFSF are 
also examined. Parametric studies are performed for the 
thickness-to-length ratio, aspect ratio, uniform, linear and 
sinusoidally temperature fields and different volume fraction 
distributions.

Problem Formulation

Material properties of considered FG-CNT plate are 
assumed to be temperature dependent and reinforcement in 
thickness direction according to distribution as UD, FG-V, 
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FG-O and FG-X models are examined. And also the rein-
forcement in thickness direction is examined of distribution 
as FG-V model in comparison study. In this study, thermal 
vibration in three different thermal environment with three-
dimensional Ritz solution is performed.

Effective Material Properties of FG‑CNT‑Reinforced 
Composite Plates

The investigated FG-CNT reinforcement composite consists 
of CNT reinforcement phase that four type of distribution 
in the thickness direction and polymer matrix phase. The 

material properties both of two phases are assumed to be 
temperature dependent and reinforcement distribution mod-
els are assumed to be as uniform distribution (UD), V-type 
distribution (FG-V), O-type of distribution (FG-O) and 
X-type distribution (FG-X). The sum of volume fraction of 
reinforcement and matrix phases is

and the CNT volume fraction distributions in the thickness 
direction examined in the study are as follows.

(1)VCNT + Vm = 1

Table 1  Temperature-dependent 
material properties of SWCNT 
at uniform temperature 
distribution in the thickness 
direction

T (K) E
CNT

11
 (TPa) E

CNT

22
 (TPa) G

CNT

12
 (TPa) �

CNT

11
 (×  10−6/K) �

CNT

22
  (×  10−6/K)

300 5.6466 7.0800 1.9445 3.4584 5.1682
500 5.5308 6.9348 1.9643 4.5361 5.0189
700 5.4744 6.8641 1.9644 4.6677 4.8943
1000 5.2814 6.6220 1.9451 4.2800 4.7532

Table 2  Coefficients of the 
temperature-dependent material 
properties of SWCNT

Young modulus P0 P1 P2 P3

E
CNT

11
 (TPa) 5.6466 − 1.5849 ×  10–4 3.539 ×  10–7 − 3.707 ×  10–10

E
CNT

22
 (TPa) 7.0800 − 1.5852 ×  10–4 3.5408 ×  10–7 − 3.709 ×  10–10

G
CNT

12
 (TPa) 1.9445 8.3093 ×  10–5 − 1.7803 ×  10–7 8.5651 ×  10–11

�
CNT

11
 (×  10−6 K) 3.4584 2.5039 ×  10–3 − 5.3839 ×  10–6 3.2738 ×  10–9

�
CNT

22
 (×  10−6 K) 5.1682 − 1.5646 ×  10–4 6.0307 ×  10–8 − 9.4442 ×  10–13

�
CNT

12
 0.175 0 0 0

ρCNT (kg/m3) 1400 0 0 0

Table 3  Convergence and 
comparison of first six 
frequency parameters of 
SSSS square FG-CNT plates 
(VCNT

* = 0.11, UD, ΔT = 0)

FSDT first-order shear deformation theory

i × j × k Δ1 Δ2 Δ3 Δ4 Δ5 Δ6

(1,1) (1,2) (1,3) (1,4) (2,1) (2,2)

h/b = 0.02
 4 × 4 × 4 19.1592 25.0385 44.3595 85.0997 87.3396 95.9137
 5 × 5 × 5 19.1592 23.2979 44.3245 70.2673 72.3720 83.0262
 6 × 6 × 6 19.1540 23.2937 34.3767 70.2650 72.3698 77.9905
 7 × 7 × 7 19.1540 23.2682 34.3764 53.6102 70.0169 72.1199
 8 × 8 × 8 19.1540 23.2682 34.0363 53.6075 70.0169 72.1199
 FSDT [15] 19.223 23.408 34.669 54.043 70.811 72.900

h/b = 0.1
 4 × 4 × 4 13.5546 19.3452 19.4277 34.5079 34.6183 37.1525
 5 × 5 × 5 13.5541 17.6866 19.4275 19.4275 32.9882 34.1846
 6 × 6 × 6 13.5506 17.6838 19.4275 19.4275 27.4314 32.9215
 7 × 7 × 7 13.5506 17.6582 19.4275 19.4275 27.4268 32.8920
 8 × 8 × 8 13.5506 17.6582 19.4275 19.4275 27.1624 32.8916
 FSDT [15] 13.532 17.700 19.449 19.449 27.569 32.563
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Here, the volume fraction of CNT ( V∗
CNT

 ) in the compos-
ite is defined as follows, based on the mass ratio of CNT.

where wCNT is the mass fraction of the CNT in the FG-CNT 
composite. In the study, the mass fraction of CNT is the 
same in all reinforcement distribution models. The effec-
tive material properties such as Young modulus (Eii), shear 
modulus (Gij) and Poisson ratio (υij) are defined according 
to the mixtures rule are given as follows.

(2)VCNT (z) = V∗
CNT

(UD)

(3)VCNT (z) = V∗
CNT

(
1 + 2

z

h

)
(FG - V)

(4)VCNT (z) = 2V∗
CNT

(
1 − 2

z

h

)
(FG - O)

(5)VCNT (z) = 4V∗
CNT

(|z|
h

)
(FG - X).

(6)
V∗
CNT

=
wCNT

wCNT +
(

�
CNT

�
m

)
−
(

�
CNT

�
m

)
wCNT

,

(7)E11 (z, T) = �1VCNT (z)ECNT
11

(T) + Vm (z) Em (T)

where ECNT
ii

 (i, j = 1, 2, 3) are the Young modulus, GCNT
ij

 (i, 
j = 1, 2, 3) are the shear modulus, �CNT

ij
 (i, j = 1, 2, 3) are the 

Poisson ratio of the CNTs in in-plane directions x and y and 
in thickness direction z, respectively. Em is the Young modu-
lus, Gm is the shear modulus, υm is the Poisson ratio of the 
isotropic matrix material. ηi (i = 1, 2, 3) are the size-depend-
ent material properties. ρCNT, ρm and ρ are mass density per 
unit volume of CNT, matrix and FG-CNT composite, 
respectively. υ12 is considered as constant over the thickness 
of plate. The thermal coefficients (αii) (i = 1, 2) of the FG-
CNT reinforcement composite are defined as,

(8)
�2

E22 (z, T)
=

VCNT (z)

ECNT
22

(T)
+

Vm (z)

Em (T)

(9)
�3

G12 (z, T)
=

VCNT (z)

GCNT
12

(T)
+

Vm (z)

Gm (T)

(10)�12 = V∗
CNT

�
CNT
12

+ Vm�
m

(11)�21 = �12

E22 (z, T)

E11 (z, T)

(12)� (z) = VCNT (z)�CNT + Vm (z)�m,

(13)�11 (z, T) = VCNT (z)�CNT
11

(T) + Vm (z)�m (T)

Table 4  Comparison of natural 
frequency parameters of SSSS 
square FG-CNT/PMMA 
plates subjected to uniform 
temperature rise (h/b = 0.1, 
VCNT

* = 0.12)

*T Top surface temperature of the plate, HSDT higher-order shear deformation theory

T* (K) Mode UD FG-V

Present FSDT [45] HSDT [34] Present FSDT [45] HSDT [34]

300 Δ1 12.2614 12.1261 12.2696 11.1577 11.3095 11.3074
Δ2 16.7718 16.5545 16.8071 16.1612 16.2611 16.1790
Δ3 17.0760 16.9835 – 17.1290 17.0406 –
Δ4 17.0760 26.0723 – 17.1290 25.9239 –
Δ5 26.6137 28.3715 29.4399 26.4141 27.8895 28.3821
Δ6 29.2190 30.6458 – 27.3959 29.9585 –

500 Δ1 10.8741 10.9644 11.0402 9.9148 10.2442 10.2068
Δ2 14.4576 14.4941 14.7052 13.9884 14.2264 14.1873
Δ3 14.5431 14.5494 – 14.5032 14.5404 –
Δ4 14.5658 22.4220 – 14.6110 22.2866 –
Δ5 22.7962 25.0803 25.8619 22.5953 24.4494 25.1033
Δ6 25.2857 26.5461 – 23.7878 26.0737 –

700 Δ1 8.9807 9.2518 9.3611 8.2287 8.7751 8.8190
Δ2 11.2497 11.5159 12.0533 11.2631 11.5436 11.6928
Δ3 11.5248 11.8279 – 11.2862 11.5514 –
Δ4 11.7202 17.9433 – 11.5605 17.8435 –
Δ5 18.1173 20.3060 21.3606 17.9344 19.9708 20.9137
Δ6 20.2049 21.3761 – 19.0960 21.1273 –
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where �CNT
ii

 (i, j = 1, 2, 3) and αm are the thermal coefficient 
of the CNTs in x and y directions, and isotropic matrix mate-
rial, respectively. And the other effective material properties 
are assumed as, [13].

(14)

�22 (z, T) = (1 + �CNT12 ) VCNT (z)�CNT
22 (T)

+ (1 + �m) Vm (z)�m (T)
− �12�11 (z, T)

(15)E33 (z, T) = E22 (z, T)

(16)G23 (z, T) = G31 (z, T) = G12 (z, T)

Stress–Strain Relations Based on Three‑Dimensional 
Elasticity

The considered moderately thick FG-CNT reinforcement 
plate in this paper is in the form of rectangular with length a, 

(17)�13 = �12

(18)�31 = �21

(19)�32 = �23 = �21

Table 5  Natural frequency 
parameters of FG-CNT-
reinforced plate with CFFF 
boundary condition (a/b = 1, 
ΔT = 0)

Reinf. type VCNT
* h/b Δ1 Δ2 Δ3 Δ4 Δ5 Δ6

UD 0.11 0.05 6.3224 6.7283 10.1009 18.7523 19.7000 30.4975
0.1 5.4306 5.7142 8.9462 9.3761 17.7965 20.2398
0.2 3.7975 3.9396 4.6881 7.1248 12.0442 12.3033

0.14 0.05 7.0237 7.3909 10.6271 19.1625 20.2171 32.7007
0.1 5.8875 6.1337 9.2735 9.5812 18.1835 21.2420
0.2 3.9851 4.1054 4.7906 7.2872 12.5068 12.7365

0.17 0.05 7.7943 8.3121 12.5727 23.4463 24.6180 37.8128
0.1 6.7205 7.0847 11.1607 11.7231 22.2541 25.1900
0.2 4.7254 4.9087 5.8616 8.9076 15.0169 15.3487

FG-V 0.11 0.05 5.3022 5.8030 9.5999 18.7696 19.5596 26.8520
0.1 4.7023 5.0789 8.6683 9.3850 17.7281 18.5298
0.2 3.4641 3.6776 4.6852 7.0612 11.2510 11.6271

0.14 0.05 5.8976 6.3581 10.0398 19.2197 20.0472 28.9945
0.1 5.1309 5.4669 8.9711 9.6078 18.1331 19.5537
0.2 3.6665 3.8532 4.7965 7.2286 11.7469 12.0911

0.17 0.05 6.5159 7.1617 11.9818 23.5821 24.5275 33.2806
0.1 5.8097 6.2996 10.8496 11.7864 22.2512 23.1244
0.2 4.3177 4.5969 5.8835 8.8608 14.0789 16.5640

FG-O 0.11 0.05 4.6395 5.1883 9.0409 18.7933 18.8490 24.3591
0.1 4.2073 4.6387 8.2808 9.3920 17.1867 17.4031
0.2 3.2272 3.4828 4.6914 6.8613 10.7663 11.1790

0.14 0.05 5.1723 5.6711 9.3734 19.1476 19.2399 26.4916
0.1 4.6192 5.0011 8.5165 9.6154 17.4799 18.4778
0.2 3.4445 3.6633 4.8034 6.9864 11.2911 11.6578

0.17 0.05 5.7029 6.3845 11.1465 23.2552 23.6012 30.2604
0.1 5.2047 5.7452 10.2449 11.7957 21.2869 21.8289
0.2 4.0376 4.3570 5.8928 8.5144 13.5426 14.0424

FG-X 0.11 0.05 7.5058 7.8455 10.9958 18.7932 20.5883 33.7296
0.1 6.1335 6.3509 9.3920 9.4451 18.3750 21.4924
0.2 4.0254 4.1306 4.6914 7.3347 12.5274 12.7416

0.14 0.05 8.2941 8.6036 11.6669 19.2398 21.3512 35.8024
0.1 6.5750 6.7650 9.6154 9.8350 18.9294 22.4335
0.2 4.1842 4.2775 4.8035 7.5445 12.9450 13.1439

0.17 0.05 9.2554 9.7081 13.8463 23.6012 26.2355 41.7020
0.1 7.5781 7.8707 11.7956 11.9242 23.3894 26.6508
0.2 4.9920 5.1389 5.8929 9.2994 15.5803 15.8800
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width b and thickness h. The origin of the coordinate system 
(x, y, z) is placed at the geometric center of the plate and the 
axes are parallel to the edges of the plate and the correspond-
ing displacement components u, v and w along the x, y and z 
directions, respectively. For free vibration problem based on 
three-dimensional elasticity theory the displacement field is 
as follows

(20)u (x, y, z; t) = U (x, y, z) ei�t

(21)v (x, y, z; t) = V (x, y, z) ei�t

where ω corresponds the natural frequency of the plate and 
i =

√
−1 . The strain components εij (i, j = x, y, z) for small 

deformations are given as

(22)w (x, y, z; t) = W (x, y, z) ei�t

(23)�x = u,x

(24)�y = v,y

(25)�z = w,z

Table 6  Natural frequency 
parameters of FG-CNT-
reinforced plate with CFFF 
boundary condition (a/b = 1.5, 
ΔT = 0)

Reinf. type VCNT
* h/b Δ1 Δ2 Δ3 Δ4 Δ5 Δ6

UD 0.11 0.05 6.5401 7.4914 17.4560 27.5552 35.5036 36.4854
0.1 6.0494 6.8125 13.7776 16.4523 26.2420 27.0721
0.2 4.8146 5.2590 6.8888 14.2724 16.4679 17.1396

0.14 0.05 7.3149 8.1934 18.0105 28.2206 38.7399 39.5882
0.1 6.6673 7.3522 14.1103 16.8895 27.8279 28.5841
0.2 5.1472 5.5292 7.0552 14.5670 17.2026 17.8111

0.17 0.05 8.0546 9.2636 21.7955 34.4388 43.8927 45.1515
0.1 7.4670 8.4412 17.2194 20.5579 32.5992 33.6576
0.2 5.9721 6.5435 8.6097 17.8501 20.5122 21.3690

FG-V 0.11 0.05 5.4403 6.5711 17.1913 27.6062 30.4701 31.7287
0.1 5.1234 6.0698 13.7939 16.2960 23.5418 24.6042
0.2 4.2562 4.8633 6.8862 14.2406 15.2335 16.1201

0.14 0.05 6.0811 7.1405 17.6913 28.3239 33.4161 34.5629
0.1 5.6649 6.5340 14.1517 16.7134 25.1360 26.1147
0.2 4.5875 5.1273 7.0640 14.5491 15.9848 16.8128

0.17 0.05 6.6768 8.1269 21.5429 34.6515 37.5949 39.2226
0.1 6.3067 7.5278 17.3136 20.4398 29.2760 30.6468
0.2 5.2771 6.0689 8.6418 17.8765 19.0392 20.1802

FG-O 0.11 0.05 4.7349 5.9431 16.4815 27.1038 27.6154 28.5019
0.1 4.5133 5.5539 13.8018 15.7149 21.6982 22.8783
0.2 3.8676 4.5731 6.8941 13.8425 14.4585 15.4136

0.14 0.05 5.2982 6.4180 16.7965 28.3337 29.8785 31.1347
0.1 5.0087 5.9579 14.1610 15.9805 23.3387 24.4013
0.2 4.2010 4.8230 7.0739 14.0549 15.2332 16.1138

0.17 0.05 5.8113 7.3071 20.3134 33.4755 34.6623 35.2101
0.1 5.5586 6.8556 17.3249 19.4022 27.0787 28.5380
0.2 4.8056 5.6924 8.6551 17.1470 18.1551 19.3329

FG-X 0.11 0.05 7.8749 8.7038 18.4387 27.6154 40.6382 41.3597
0.1 7.0645 7.6889 13.8017 17.1767 28.4159 29.1241
0.2 5.2892 5.6230 6.8940 14.6983 17.3306 17.8978

0.14 0.05 8.7867 9.5600 19.2490 28.3336 43.8610 43.9080
0.1 7.7234 8.2848 14.1609 17.7974 29.8858 30.5500
0.2 5.5885 5.8802 7.0739 15.1218 18.0175 18.5444

0.17 0.05 9.7060 10.8057 23.4624 34.6622 50.1704 51.2348
0.1 8.7163 9.5475 17.3248 21.8603 35.1708 36.1274
0.2 6.5440 6.9962 8.6551 18.7091 21.5175 22.2916
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where ,(x, y, z) =
(

�

�x
,

�

�y
,

�

�z

)
 . The stress–strain relations for 

a linear elastic orthotropic material are given by the general-
ized Hooke’s law as follows

(26)�yz = v,z + w,y

(27)�xz = u,z + w,x

(28)�xy = u,y + v,x

(29)�x = C11�x + C12�y + C13�z

(30)�y = C12�x + C22�y + C23�z

(31)�z = C13�x + C23�y + C33�z

(32)�yz = C44�yz

(33)�xz = C55�xz

where [C] is stiffness matrix and its components are defined 
as follows

(34)�xy = C66�xy

(35)C11 =
1 − �23�32

E2E3Δ

(36)C12 =
�21 + �23�31

E2E3Δ

(37)C13 =
�31 + �21�32

E2E3Δ

(38)C22 =
1 − �13�31

E1E3Δ

(39)C23 =
�32 + �12�31

E1E3Δ

Table 7  Natural frequency parameters of FG-CNT-reinforced plate under different boundary conditions at room temperature (ΔT = 0, h/b = 0.05, 
a/b = 1)

Reinf. type VCNT
* CCCC SSSS SCSC SFSF

0.11 0.14 0.17 0.11 0.14 0.17 0.11 0.14 0.17 0.11 0.14 0.17

UD Δ1 28,5348 30,1369 35,4668 17,3111 18,9049 21,3968 18,3084 19,8508 22,6589 16,6694 18,3194 20,5850
Δ2 33,1181 34,6098 41,2389 21,4050 22,7900 26,5677 25,2017 26,5022 31,3502 16,9983 18,6137 21,0049
Δ3 43,8700 45,2873 54,7449 31,8427 33,0406 39,6955 38,5646 39,5488 48,1310 19,2036 20,6660 23,7988
Δ4 59,6824 62,2830 74,3275 38,8551 39,5488 48,6151 38,8551 39,7696 48,6151 26,3784 27,6132 32,8402
Δ5 60,7829 62,3452 75,9499 38,8551 39,5488 48,6151 52,6038 55,9375 65,3056 37,7006 38,5044 47,1425
Δ6 62,3785 64,9618 77,7215 49,8514 51,0997 62,2785 55,8644 58,6574 69,4235 38,8551 39,5488 48,6151

FG-V Δ1 25,8500 27,4876 32,1687 14,9621 16,3592 18,4680 16,1364 17,4743 19,9655 14,1617 15,6223 17,4457
Δ2 31,0030 32,5016 38,7031 19,7123 20,8971 24,5086 23,8339 24,9533 29,7336 14,5798 16,0030 17,9860
Δ3 42,5219 43,9391 53,2514 30,9358 31,9961 38,6975 37,8925 38,9912 47,4723 17,2571 18,5151 21,3981
Δ4 55,0349 57,8721 68,7329 38,9546 39,7254 48,9617 38,9546 39,7254 48,9617 25,1964 26,2653 31,4617
Δ5 58,1666 60,8975 72,6970 38,9546 39,7254 48,9617 46,9520 50,2814 58,3228 37,7732 38,6471 47,4410
Δ6 60,0651 61,5868 75,3458 46,5097 49,8613 57,7644 50,8492 53,9772 63,2814 38,9546 39,7254 48,9617

FG-O Δ1 23,8983 25,5745 29,7829 13,3747 14,6404 16,4857 14,6005 15,7856 18,0001 12,5079 13,8562 15,4204
Δ2 29,1968 30,6241 36,2853 18,2989 19,2824 22,5572 22,4889 23,3657 27,7479 12,9753 14,2751 15,9991
Δ3 40,7934 41,9780 50,5822 29,5722 30,3270 36,4834 36,5194 37,2684 45,1185 15,7828 16,8749 19,4632
Δ4 51,7642 54,8211 64,9387 38,9547 39,7256 48,9621 38,9547 39,7256 48,9621 23,8555 24,6717 29,4265
Δ5 55,0119 57,8806 68,8969 38,9547 39,7256 48,9621 43,0123 46,3851 53,5459 37,7835 38,6603 47,4562
Δ6 58,2589 59,3814 72,2013 42,5648 45,9669 52,9969 47,1454 50,2237 58,6263 38,9547 39,7256 48,8165

FG-X Δ1 30,6923 32,1025 38,0581 19,9118 21,6014 24,6148 20,8316 22,4968 25,8313 19,3588 21,0861 23,8808
Δ2 35,1517 36,5832 43,9216 23,6836 25,2575 29,5878 27,3358 28,8850 34,3403 19,6290 21,3310 24,2430
Δ3 45,8301 47,4053 57,7800 33,8200 35,3562 42,7617 38,9547 39,7256 48,9621 21,5892 23,1934 26,8425
Δ4 62,7961 64,7082 77,8947 38,9547 39,7256 48,9621 40,4874 42,0895 51,3010 28,4087 29,9093 35,7674
Δ5 62,8198 65,1191 79,5835 38,9547 39,7256 48,9621 57,2872 60,2382 70,8660 37,7833 38,6601 47,4560
Δ6 65,4008 67,7275 81,3363 51,8363 53,6043 65,8947 59,3036 61,1900 74,8449 38,9547 39,7256 48,9621
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where Δ is defined as

Thermal Analysis

In this study, thermal analysis is performed for FG-CNT rein-
forcement composite plates under uniform, linear and sinusoi-
dal temperature rise through the thickness direction.

(40)C33 =
1 − �12�21

E1E2Δ

(41)C44 = G23

(42)C55 = G31

(43)C66 = G12

(44)
Δ =

(
1 − �12�21 − �23�32 − �13�31 − 2�21�32�13

)
∕
(
E1E2E3

)

Uniform Temperature Rise

The temperature field under uniform temperature rise through 
the thickness is given as

where T0 is the temperature of free stress state that 
T0 = 300 K and ΔT denotes the temperature change.

Linear Temperature Rise

The temperature field under linear temperature rise through 
the thickness is given as

where ΔT = Tt − Tb is the temperature gradient, Tb and Tt at 
the bottom and top of the plate, Tb equals the initial tem-
perature 300 K.

(45)T = T0 + ΔT ,

(46)T = Tb + ΔT
(
z

h
+

1

2

)
,

Table 8  Natural frequency 
parameters of FG-CNT-
reinforced plate with CFFF 
boundary condition subjected to 
uniform temperature rise with 
T0 = 300 K, Tt = 500 K (a/b = 1, 
UD)

VCNT
* h/b Temp. distr. Δ1 Δ2 Δ3 Δ4 Δ5 Δ6

0.11 0.05 Uniform 5.4173 5.6292 7.8279 13.9407 14.7192 25.1983
Linearly 5.5882 5.8889 8.7090 16.4522 17.0290 27.7249
Sinusoidally 5.6288 5.9463 8.8699 17.0569 17.4397 28.4020

0.1 Uniform 4.6290 4.7577 6.8916 6.9703 13.3002 16.0404
Linearly 5.0001 5.1960 7.8640 8.2404 15.4813 18.1688
Sinusoidally 5.0963 5.3073 8.0605 8.5509 15.8874 18.7718

0.2 Uniform 3.0038 3.0641 3.4851 5.3328 9.3096 9.4396
Linearly 3.4161 3.5015 4.1290 6.2072 10.7292 10.8841
Sinusoidally 3.5307 3.6222 4.2840 6.3874 11.1221 11.2822

0.14 0.05 Uniform 5.9679 6.1557 8.2552 14.2007 15.1209 26.6458
Linearly 6.1873 6.4569 9.1605 16.7829 17.4685 29.5103
Sinusoidally 6.2403 6.5256 9.3297 17.4091 17.8844 30.3013

0.1 Uniform 4.9427 5.0511 7.1003 7.1330 13.5863 16.7143
Linearly 5.3851 5.5519 8.1469 8.4042 15.8153 18.9946
Sinusoidally 5.5014 5.6815 8.3557 8.7231 16.2323 19.6392

0.2 Uniform 3.1151 3.1657 3.5502 5.4458 9.5997 9.7137
Linearly 3.5642 3.6331 4.2118 6.3437 11.1015 11.2302
Sinusoidally 3.6897 3.7630 4.3709 6.5299 11.5163 11.6488

0.17 0.05 Uniform 6.6970 6.9679 9.7458 17.4395 18.3950 31.3394
Linearly 6.8979 7.2820 10.8444 20.5764 21.2846 34.4162
Sinusoidally 6.9460 7.3514 11.0446 21.3308 21.7989 35.2560

0.1 Uniform 5.7482 5.9137 8.6017 8.7197 16.6334 19.9967
Linearly 6.1975 6.4495 9.8129 10.3065 19.3605 22.6321
Sinusoidally 6.3140 6.5854 10.0570 10.6943 19.8678 23.3796

0.2 Uniform 3.7468 3.8246 4.3598 6.6692 11.6236 11.7900
Linearly 4.2559 4.3667 5.1642 7.7616 13.3869 13.5866
Sinusoidally 4.3974 4.5161 5.3577 7.9865 13.8752 14.0820
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Sinusoidally Temperature Rise

The temperature field under sinusoidally temperature rise 
through the thickness is given as

where ΔT =  Tt −  Tb is the temperature gradient, Tb and Tt 
at the bottom and top of the plate, Tb equals the initial tem-
perature 300 K.

Thermal Stresses Based on Three‑Dimensional 
Elasticity

The plate is initially stress free at temperature T0 and thermal 
stresses occur in the plate with temperature change. The ini-
tial stresses due to a temperature change of ΔT(z) are defined 
for an orthotropic plate as:

(47)T = Tb + ΔT
(
1 − cos

(
�

2

(
z

h
+

1

2

)))
,

Three‑Dimensional Ritz Solution in Thermal 
Environment

The linear elastic strain potential energy Us of the plate can 
be given as,

The strain energy UT from the initial stresses due to tem-
perature rise can be given as,

(48)�
T
x
= −

(
C11�1(z, T) + C12�2(z, T)

)
ΔT (z)

(49)�
T
y
= −

(
C12�1(z, T) + C22�2(z, T)

)
ΔT (z).

(50)

Us =
1

2 ∫V

[
�x�x + �y�x + �z�x + �yz�yz + �xz�xz + �xy�xy

]
dV .

(51)UT =
1

2 ∫V

[
�
T
x
dxx + 2�T

xy
dxy + �

T
y
dyy

]
dV

Table 9  Natural frequency 
parameters of FG-CNT-
reinforced plate with CFFF 
boundary condition subjected to 
uniform temperature rise with 
T0 = 300 K, Tt = 500 K (a/b = 1, 
FG-V)

VCNT
* h/b Temp. distr. Δ1 Δ2 Δ3 Δ4 Δ5 Δ6

0.11 0.05 Uniform 4.3303 4.6223 7.2294 13.9489 14.5084 22.3303
Linearly 4.4520 4.8512 8.1668 16.3105 16.9458 24.0623
Sinusoidally 4.4822 4.9012 8.3297 16.8778 17.3942 24.6052

0.1 Uniform 4.0326 4.2198 6.6215 6.9764 13.2292 14.7527
Linearly 4.2762 4.5454 7.5733 8.1971 15.4273 16.3661
Sinusoidally 4.3484 4.6359 7.7608 8.5078 15.8295 16.8949

0.2 Uniform 2.7782 2.8788 3.4834 5.2791 8.7538 8.9590
Linearly 3.0790 3.2207 4.1021 6.1399 9.8733 10.1335
Sinusoidally 3.1754 3.3258 4.2577 6.3143 10.2300 10.4975

0.14 0.05 Uniform 4.7871 5.0524 7.5706 14.2416 14.8716 23.7911
Linearly 4.9306 5.2972 8.5204 16.6517 17.3427 25.7656
Sinusoidally 4.9685 5.3538 8.6887 17.2459 17.7897 26.3971

0.1 Uniform 4.3451 4.5084 6.8530 7.1204 13.5231 15.4545
Linearly 4.6324 4.8702 7.8310 8.3589 15.7746 17.1838
Sinusoidally 4.7197 4.9741 8.0275 8.6780 16.1858 17.7543

0.2 Uniform 2.9055 2.9929 3.5556 5.3987 9.0817 9.2676
Linearly 3.2354 3.3595 4.1816 6.2824 10.2635 10.5030
Sinusoidally 3.3425 3.4735 4.3413 6.4621 10.6416 10.8868

0.17 0.05 Uniform 5.3436 5.7207 9.0288 17.5390 18.1957 27.8420
Linearly 5.4734 5.9914 10.2033 20.4456 21.2439 29.8997
Sinusoidally 5.5070 6.0506 10.4051 21.1712 21.7865 30.5515

0.1 Uniform 5.0123 5.2562 8.2951 8.7676 16.6108 18.4760
Linearly 5.2954 5.6483 9.4881 10.2577 19.3817 20.4411
Sinusoidally 5.3804 5.7571 9.7203 10.6460 19.8837 21.0939

0.2 Uniform 3.4802 3.6106 4.3777 6.6285 10.9846 11.2479
Linearly 3.8442 4.0337 5.1291 7.7150 12.3517 12.7021
Sinusoidally 3.9622 4.1632 5.3235 7.9324 12.7940 13.1541
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The kinetic energy Tp of the plate can be given as:

According to thermal vibration problem the maximum 
energy functional Π of the elastic plate is defined as:

where Usmax is the nondimensionalized maximum of linear 
elastic strain potential energy, UTmax is the nondimensional-
ized maximum of thermal strain potential energy and Tmax 
is the nondimensionalized maximum of kinetic energy. The 
nondimensionalization process is performed using the fol-
lowing nondimensionalized parameters:

(52)dij = u,iu,j + v,iv,j + w,iw,j (i, j = x, y).

(53)Tp =
1

2 ∫V

� (z, T)

[(
�u

�t

)2

+
(
�v

�t

)2

+
(
�w

�t

)2
]
dV .

(54)Π =
(
Usmax + UTmax

)
− Tmax,

(55)X = 2x∕a

(56)Y = 2y∕b

Thus, the nondimensionalized maximum values of the 
energy equations are written as follows.

(57)Z = 2z∕h

(58)

Usmax =
h
4�

1

∫
−1

1

∫
−1

1

∫
−1

[

C11�
2
x + C22�

2
y + C33�

2
z

+2
(

C12�x�y + C13�x�z + C23�y�z
)

+C44�
2
yz + C55�

2
xz + C66�

2
xy

]

dZ dY dX

(59)

UTmax =
h
4�

1

∫
−1

1

∫
−1

1

∫
−1

−
[

(

C11�1 + C12�2
)

ΔT
{

( �U
�X

)2
+
( �V
�X

)2
+
( �W
�X

)2}

+
(

C12�1 + C22�2
)

�2ΔT
{

( �U
�X

)2
+
( �V
�X

)2
+
( �W
�X

)2}]

dZ dY dX

(60)Tmax =
abh

16
��

2

1

∫
−1

1

∫
−1

1

∫
−1

[
U2 + V2 +W2

]
dZ dY dX

Table 10  Natural frequency 
parameters of FG-CNT-
reinforced plate with CFFF 
boundary condition subjected to 
uniform temperature rise with 
T0 = 300 K, Tt = 500 K (a/b = 1, 
FG-O)

VCNT
* h/b Temp. distr. Δ1 Δ2 Δ3 Δ4 Δ5 Δ6

0.11 0.05 Uniform 3.5845 3.9354 6.6807 13.9184 13.9714 20.3874
Linearly 3.6772 4.1538 7.5811 16.1468 16.5528 22.0662
Sinusoidally 3.6980 4.1973 7.7388 16.5516 17.1803 22.5261

0.1 Uniform 3.6214 3.8476 6.3051 6.9819 12.8418 13.9327
Linearly 3.8394 4.1657 7.2277 8.2540 14.9671 15.6636
Sinusoidally 3.8958 4.2436 7.4072 8.5754 15.3648 16.1779

0.2 Uniform 2.6221 2.7449 3.4876 5.1324 8.4116 8.6413
Linearly 2.9306 3.1083 4.1291 5.9767 9.6253 9.9213
Sinusoidally 3.0189 3.2088 4.2899 6.1492 9.9839 10.2889

0.14 0.05 Uniform 3.9756 4.2918 6.9245 14.1340 14.2594 21.8864
Linearly 4.0883 4.5215 7.8299 16.3951 16.9045 23.8463
Sinusoidally 4.1146 4.5692 7.9915 16.8034 17.5611 24.3923

0.1 Uniform 3.9332 4.1289 6.4936 7.1261 13.0336 14.6713
Linearly 4.1962 4.4822 7.4358 8.4341 15.1984 16.5554
Sinusoidally 4.2655 4.5712 7.6231 8.7678 15.6041 17.1185

0.2 Uniform 2.7640 2.8675 3.5599 5.2232 8.7669 8.9679
Linearly 3.1098 3.2593 4.2196 6.0853 10.0619 10.3198
Sinusoidally 3.2099 3.3694 4.3865 6.2637 10.4449 10.7101

0.17 0.05 Uniform 4.4258 4.8591 8.2448 17.1763 17.5576 25.5253
Linearly 4.5245 5.1144 9.3491 19.9502 20.7739 27.5124
Sinusoidally 4.5472 5.1655 9.5438 20.4432 21.5876 28.0558

0.1 Uniform 4.5125 4.7947 7.8185 8.7748 15.8978 17.5528
Linearly 4.7640 5.1726 8.9525 10.3705 18.5353 19.6935
Sinusoidally 4.8292 5.2651 9.1742 10.7814 19.0296 20.3307

0.2 Uniform 3.3017 3.4519 4.3837 6.3769 10.6104 10.8840
Linearly 3.6779 3.8989 5.1880 7.4242 12.1248 12.4819
Sinusoidally 3.7854 4.0225 5.3936 7.6396 12.5756 12.9442
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The above parameters are defined as follows:

and in here:

(61)�X =
�U

�X

(62)�y = �

�V

�Y

(63)�z =
�

�

�W

�Z

(64)�xy = �

�U

�Y
+

�V

�X

(65)�yz =
�

�

�V

�Z
+ �

�W

�Y

(66)�zx =
�

�

�U

�Z
+

�W

�X

(67)� = a∕b

In this thermal vibration problem of FG-CNT reinforce-
ment plates, the Chebyshev polynomials are preferred which 
are the orthogonal polynomials reduced the computational 
effort [46]. In accordance with the Ritz method, each of the 
displacement amplitude functions is written as a triple series 
of Chebyshev polynomials, the displacement component of 
which is multiplied by a boundary function that satisfies the 
geometric boundary conditions of the plate. The displace-
ment components are written in terms of nondimensional-
ized coordinates

(68)� = h∕b.

(69)

U (X, Y , Z) = Fu (X, Y)

∞∑
i=1

∞∑
j=1

∞∑
k=1

AijkPi (X) Pj (Y) Pk (Z)

(70)

V (X, Y , Z) = Fv (X, Y)

∞∑
l=1

∞∑
m=1

∞∑
n=1

Blmn Pl (X) Pm (Y) Pn (Z)

(71)

W (X, Y , Z) = Fw (X, Y)

∞∑
p=1

∞∑
q=1

∞∑
r=1

CpqrPp (X) Pq (Y) Pr (Z)

Table 11  Natural frequency 
parameters of FG-CNT-
reinforced plate with CFFF 
boundary condition subjected to 
uniform temperature rise with 
T0 = 300 K, Tt = 500 K (a/b = 1, 
FG-X)

VCNT
* h/b Temp. distr. Δ1 Δ2 Δ3 Δ4 Δ5 Δ6

0.11 0.05 Uniform 6.5457 6.7067 8.6918 13.9714 15.4815 27.4527
Linearly 6.8143 7.0490 9.6129 16.5031 17.8339 30.5130
Sinusoidally 6.8791 7.1282 9.7861 17.1034 18.2382 31.3558

0.1 Uniform 5.1245 5.2158 6.9819 7.2694 13.7350 16.9167
Linearly 5.6204 5.7623 8.2543 8.3081 15.9794 19.2388
Sinusoidally 5.7508 5.9041 8.5220 8.5548 16.3955 19.8853

0.2 Uniform 3.1308 3.1748 3.4877 5.4796 9.6027 9.7084
Linearly 3.5939 3.6507 4.1338 6.3809 11.1183 11.2289
Sinusoidally 3.7220 3.7819 4.2832 6.5656 11.5293 11.6427

0.14 0.05 Uniform 7.1497 7.2925 9.2211 14.2594 16.0661 28.7747
Linearly 7.4945 7.7057 10.1969 16.8644 18.4901 32.1778
Sinusoidally 7.5790 7.8037 10.3848 17.4760 18.9075 33.1212

0.1 Uniform 5.4049 5.4830 7.1261 7.5407 14.1394 17.5418
Linearly 5.9807 6.1019 8.4348 8.6360 16.4524 20.0116
Sinusoidally 6.1341 6.2652 8.7406 8.8649 16.8815 20.6956

0.2 Uniform 3.2228 3.2625 3.5601 5.6267 9.8582 9.9573
Linearly 3.7172 3.7645 4.2257 6.5558 11.4492 11.5437
Sinusoidally 3.8540 3.9033 4.3777 6.7460 11.8789 11.9746

0.17 0.05 Uniform 8.0836 8.3005 10.9190 17.5575 19.7096 34.0051
Linearly 8.4094 8.7243 12.0966 20.7351 22.7137 37.7587
Sinusoidally 8.4886 8.8224 12.3149 21.4720 23.2217 38.7980

0.1 Uniform 6.3436 6.4685 8.7748 9.1653 17.4774 21.0130
Linearly 6.9505 7.1427 10.3714 10.4792 20.3292 23.8746
Sinusoidally 7.1107 7.3179 10.7399 10.7463 20.8525 24.6723

0.2 Uniform 3.8909 3.9547 4.3839 6.9478 11.9619 12.1142
Linearly 4.4613 4.5433 5.1950 8.0861 13.8375 14.0009
Sinusoidally 4.6191 4.7054 5.3783 8.3167 14.3445 14.5117
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where Ps (�) = cos[(s − 1) arccos(�)] (s = 1,  2,  3,…; 
ζ = X, Y, Z) is the sth order one-dimensional Chebyshev 
polynomial and F

�
(X, Y) = f 1

�
(X, Y)f 2

�
(X, Y)  (α = U, V, W) 

is the boundary function satisfying the geometric bound-
ary conditions, are as follows in terms of nondimensional-
ized coordinates and Chebyshev polynomials. The bound-
ary functions used for boundary condition in this study 
that CC (fu

1(X) = 1 − X2, fv
1(X) = 1 − X2, fw

1(X) = 1 − X2, 
fu

2(Y) = 1 − Y2, fv
2(Y) = 1 − Y2, fw

2(Y) = 1 − Y2); SS(fu
1(X) = 1, 

fv
1(X) = 1 − X2, fw

1(X) = 1 − X2; fu
2(Y) = 1 − Y2, fv

2(Y) = 1, 
fw

2(Y) = 1 − Y2); CF (fu
1(X) = 1 + X, fv

1(X) = 1 + X, 
fw

1(X) = 1 + X; fu
2(Y) = 1 + Y, fv

2(Y) = 1 + Y, fw
2(Y) = 1 + Y) 

and FF (fu1(X) = 1, fv1(X) = 1, fw1(X) = 1; fu2(Y) = 1, fv2(Y) = 1, 
fw

2(Y) = 1).
In accordance with the Ritz method, by substituting the 

displacement components given by Eq. (72) at the maximum 
energy values given by Eq. (59) and substituting the maxi-
mum energy values in the maximum energy functional given 
by Eq. (55), the energy functional Π is obtained in terms of 

Chebyshev polynomials. Then the energy functional Π is 
minimized according to the unknown coefficients Aijk, Blmn 
and Cpqr.

As a result of the Ritz procedure, the eigenvalue prob-
lem given below is obtained, and the solution of the sys-
tem of equations gives the natural frequencies of the free 
vibration problem occurring in the thermal environment 
under the influence of temperature.

(72)
�Π

�Aijk

= 0

(73)
�Π

�Blmn

= 0

(74)
�Π

�Cpqr

= 0

Table 12  Natural frequency 
parameters of FG-CNT-
reinforced plate with CFFF 
boundary condition subjected 
to uniform temperature rise 
with T0 = 300 K, Tt = 500 K 
(a/b = 1.5, UD)

VCNT
* h/b Temp. distr. Δ1 Δ2 Δ3 Δ4 Δ5 Δ6

0.11 0.05 Uniform 4.9216 5.4635 12.7116 20.5929 30.1993 30.2005
Linearly 5.0087 5.7417 14.6061 24.2652 32.2951 32.9926
Sinusoidally 5.0277 5.7909 14.9182 25.1608 32.8367 33.5766

0.1 Uniform 5.2731 5.6542 10.2965 12.3577 21.2200 21.6733
Linearly 5.5261 6.0783 12.1365 14.2675 23.7066 24.3214
Sinusoidally 5.5883 6.1759 12.5842 14.6091 24.4047 25.0475

0.2 Uniform 3.9786 4.1734 5.1482 10.6412 12.9210 13.2768
Linearly 4.3992 4.6931 6.0789 12.3969 14.7394 15.2023
Sinusoidally 4.5122 4.8297 6.3023 12.7303 15.2496 15.7322

0.14 0.05 Uniform 5.4763 5.9715 13.1083 21.0097 30.9577 32.4587
Linearly 5.5904 6.2662 15.0318 24.7945 34.9890 35.4492
Sinusoidally 5.6163 6.3209 15.3508 25.7184 35.6530 36.1714

0.1 Uniform 5.7438 6.0757 10.5048 12.6954 22.2630 22.6765
Linearly 6.0613 6.5492 12.4013 14.6470 24.9967 25.5552
Sinusoidally 6.1406 6.6619 12.8631 14.9995 25.7687 26.3515

0.2 Uniform 4.1893 4.3526 5.2524 10.8556 13.4078 13.7247
Linearly 4.6706 4.9166 6.2121 12.6495 15.3443 15.7527
Sinusoidally 4.8013 5.0671 6.4425 12.9916 15.8855 16.3112

0.17 0.05 Uniform 6.0759 6.7662 15.8796 25.7549 37.4652 37.6814
Linearly 6.1755 7.1088 18.2500 30.3394 39.9934 40.8958
Sinusoidally 6.1979 7.1694 18.6403 31.4569 40.6469 41.6032

0.1 Uniform 6.5292 7.0171 12.8774 15.4428 26.4250 27.0018
Linearly 6.8306 7.5368 15.1746 17.8299 29.4869 30.2705
Sinusoidally 6.9050 7.6563 15.7332 18.2564 30.3466 31.1663

0.2 Uniform 4.9509 5.2019 6.4387 13.3103 16.1177 16.5717
Linearly 5.4651 5.8440 7.6006 15.5056 18.3728 18.9648
Sinusoidally 5.6031 6.0125 7.8794 15.9222 19.0064 19.6236
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where [Kij] and [Mij] (i, j = u, v, w) are the stiffness matrix 
and diagonal mass matrix, respectively. The dimensionless 
coefficients {Aijk}, {Blmn} and {Cpqr} corresponding to the 
eigenvectors in the eigenvalue problem, represent the ampli-
tude. Also, Ω is the non-dimensional frequency parameter 
and obtained as:

Here ω is the natural frequency and ρm0 and Em0 are mass 
density per unit volume and Young modulus of matrix mate-
rial at room temperature (T0 = 300 K).

(75)
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(76)Ω = � (a2∕h)
√
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Numerical Results

In this study, a polymer matrix composite as defined Poly-
co-vinylene (PmPV) reinforced by CNT in the thickness 
direction in three type of different form that UD, FG-V, 
FG-O and FG-X are examined. The mechanical properties 
of the matrix material PmPV, some of which are temperature 
dependent, are as follows [27]:

(77)Em = (3.51 − 0.0047 T) GPa

(78)�
m = 0.34

(79)�
m = 1150 kg/m3

(80)�
m = 45(1 + 0.0005ΔT) × 10−6/K

(81)Gm =
Em

2(1 + �
m)

GPa

Table 13  Natural frequency 
parameters of FG-CNT-
reinforced plate with CFFF 
boundary condition subjected 
to uniform temperature rise 
with T0 = 300 K, Tt = 500 K 
(a/b = 1.5, FG-V)

VCNT
* h/b Temp. distr. Δ1 Δ2 Δ3 Δ4 Δ5 Δ6

0.11 0.05 Uniform 3.3732 4.1849 12.3359 20.6300 25.7707 26.4552
Linearly 3.4601 4.5135 14.3414 24.1645 27.1558 28.1128
Sinusoidally 3.4768 4.5665 14.6582 25.0606 27.5616 28.5676

0.1 Uniform 4.3942 4.9139 10.3073 12.1585 19.1717 19.7687
Linearly 4.5607 5.2769 12.0804 14.1117 20.9619 21.7639
Sinusoidally 4.6061 5.3625 12.5289 14.4504 21.5406 22.3780

0.2 Uniform 3.5632 3.8576 5.1457 10.6060 11.9975 12.5027
Linearly 3.8495 4.2676 6.0461 12.3775 13.4102 14.0582
Sinusoidally 3.9380 4.3853 6.2708 12.7063 13.8675 14.5389

0.14 0.05 Uniform 3.7452 4.5088 12.6537 21.0873 27.8999 28.5052
Linearly 3.8425 4.8437 14.7023 24.6890 29.5426 30.4123
Sinusoidally 3.8635 4.9002 15.0264 25.6135 30.0387 30.9530

0.1 Uniform 4.8166 5.2837 10.5355 12.4766 20.2426 20.7940
Linearly 5.0163 5.6689 12.3411 14.4702 22.2201 22.9620
Sinusoidally 5.0729 5.7639 12.8038 14.8177 22.8685 23.6416

0.2 Uniform 3.7880 4.0444 5.2594 10.8298 12.5178 12.9818
Linearly 4.1162 4.4847 6.1738 12.6456 14.0151 14.6189
Sinusoidally 4.2196 4.6137 6.4055 12.9819 14.5026 15.1272

0.17 0.05 Uniform 4.1455 5.1886 15.4721 25.9179 31.9896 32.8761
Linearly 4.2298 5.5920 18.0013 30.2313 33.5851 34.8284
Sinusoidally 4.2474 5.6563 18.3963 31.3499 34.0603 35.3670

0.1 Uniform 5.4366 6.1093 12.9489 15.2539 23.9625 24.7291
Linearly 5.6222 6.5525 15.1107 17.7173 26.1208 27.1611
Sinusoidally 5.6741 6.6561 15.6706 18.1392 26.8260 27.9125

0.2 Uniform 4.4447 4.8286 6.4636 13.3181 15.0378 15.6873
Linearly 4.7844 5.3365 7.5565 15.5599 16.7627 17.6166
Sinusoidally 4.8905 5.4808 7.8370 15.9703 17.3292 18.2134
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The efficiency parameters of FG-CNT-reinforced 
composite are considered η1 = 0.149 and η2 = η3 = 0.934 
for VCNT* = 0.11; η1 = 0.150 and η2 = η3 = 0.941 for 
VCNT* = 0.14; η1 = 0.149 and η2 = η3 = 1.381 for 
VCNT* = 0.17. The temperature-dependent mechanical 
properties of the reinforcement material SWCNT which the 
type of armchair (10,10) are tabulated in Table 1 [27].

Using the data given in Table 1, the material properties of 
SWCNTs whose material properties depend on temperature 
were defined as a third-order polynomial as follows, thus 
provided the estimation of material properties at tempera-
tures other than these:

where P0 is the material property of CNT at temperature 
T0. P0 and the coefficients of material properties depending 
on temperature, Pi (i = 0, 1, 2, 3) are given in Table 2 [27].

The material properties of the CNT reinforcement poly-
mer matrix composite plate examined in the study are tem-
perature dependent, and it has been reinforced in four dif-
ferent forms as UD, FG-V, FG-O and FG-X in the thickness 

(82)P (T) = P0

(
1 + P1ΔT + P2ΔT

2 + P3ΔT
3
)

direction. The investigated problem is the thermal vibration 
problem and three different thermal environments are taken 
into account.

Convergence and Accuracy Studies

In this study, the natural frequencies are obtained by Ritz 
method and the Chebyshev polynomials which defined 
between the interval [− 1, 1] and also by a set of separable 
orthogonal polynomial functions are used as admissible 
functions. This ensures more rapid convergence and bet-
ter stability in the numerical computation can be accom-
plished compared with other polynomial series [46]. As 
it is known, the natural frequencies obtained by the Ritz 
method converge to the exact values from the upper bound 
and more accurate results can be obtained by increasing 
the number of terms of the admissible functions. In the 
current study, 3D solutions are obtained using Chebyshev 
polynomials with 8 × 8 × 8 terms. The convergence study 
of SSSS square FG-CNT/PmPV composite with UD rein-
forcement in the stress-free temperature environment is 
performed for first six frequency parameters.

Table 14  Natural frequency 
parameters of FG-CNT-
reinforced plate with CFFF 
boundary condition subjected 
to uniform temperature rise 
with T0 = 300 K, Tt = 500 K 
(a/b = 1.5, FG-O)

VCNT
* h/b Temp. distr. Δ1 Δ2 Δ3 Δ4 Δ5 Δ6

0.11 0.05 Uniform 2.0788 3.2303 11.6907 20.6387 22.7610 23.5577
Linearly 2.1471 3.5917 13.6098 23.9924 24.3182 25.0981
Sinusoidally 2.1587 3.6461 13.9237 24.3072 25.2411 25.4724

0.1 Uniform 3.7984 4.4089 10.3142 11.6872 17.8142 18.4828
Linearly 3.9343 4.7718 12.1577 13.5679 19.6471 20.5526
Sinusoidally 3.9672 4.8493 12.6210 13.9010 20.1716 21.1200

0.2 Uniform 3.2738 3.6318 5.1518 10.3177 11.4198 11.9821
Linearly 3.5464 4.0634 6.0810 12.0340 12.9526 13.6828
Sinusoidally 3.6203 4.1736 6.3129 12.3603 13.4080 14.1654

0.14 0.05 Uniform 2.2922 3.3837 11.8394 21.0963 24.8090 25.5134
Linearly 2.3752 3.7530 13.7852 24.8955 26.3031 27.2920
Sinusoidally 2.3910 3.8105 14.1062 25.8607 26.6928 27.7339

0.1 Uniform 4.1862 4.7327 10.5431 11.8910 18.9367 19.5389
Linearly 4.3531 5.1126 12.4461 13.7941 21.0057 21.8204
Sinusoidally 4.3944 5.1966 12.9293 14.1351 21.6056 22.4579

0.2 Uniform 3.5107 3.8182 5.2665 10.4636 11.9693 12.4736
Linearly 3.8307 4.2801 6.2256 12.2091 13.6114 14.2704
Sinusoidally 3.9188 4.4008 6.4674 12.5427 14.1019 14.7847

0.17 0.05 Uniform 2.5466 3.9605 14.4005 25.9276 28.3232 29.3043
Linearly 2.6131 4.3940 16.7686 29.7290 30.5382 31.0986
Sinusoidally 2.6249 4.4593 17.1582 30.0894 31.5230 31.7282

0.1 Uniform 4.7052 5.4637 12.9584 14.4385 22.3836 23.2003
Linearly 4.8557 5.8980 15.2687 16.7609 24.6021 25.7177
Sinusoidally 4.8925 5.9907 15.8600 17.1752 25.2357 26.4068

0.2 Uniform 4.0987 4.5448 6.4735 12.7800 14.3941 15.0742
Linearly 4.4214 5.0707 7.6374 14.9103 16.3005 17.1928
Sinusoidally 4.5087 5.2047 7.9334 15.3168 16.8708 17.7976
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Throughout the study, including the convergence and 
comparison studies, the non-dimensional frequency 
parameter Ω is taken as given in Eq.  (26). As can be 
seen in Table 3, where the convergence rate of the first 
six frequency parameters is given, the convergence rate is 
good for each h/b ratio examined, and the variation of the 
frequency parameters decreases as the number of terms 
increases, and the frequency parameters approach a defi-
nite value.

The material examined in this study is FG-CNT/PmPV. 
However, FG-CNT/PMMA was taken into account in the 
comparison of the accuracy of the results obtained from 
the thermal vibration problem as it is available in the lit-
erature. The results given in Table 4 for SSSS square FG-
CNT/PMMA composite are compared at uniform tempera-
ture rise. For this case, the assumed efficiency parameters 
dependent on SWCNT volume fraction for PMMA/CNT 
composite are taken from Wang and Shen [34] and, hence, 
for VCNT

* = 0.12 are η1 = 0.137, η2 = 1.022 and η3 = 0.715, 
VCNT

* = 0.17 are η1 = 0.142, η2 = 1.626 and η3 = 1.138 and 
VCNT

* = 0.28 are η1 = 0.141, η2 = 1.585 and η3 = 1.109. 
From the comparison results given in Tables 3 and 4, it is 

seen that the results obtained in this study are consistent 
and stable.

Parametric Studies

In the study is focused on to investigation effect of the 
temperature on frequency parameters in different thermal 
environment of Poly-co-vinylene (PmPV) matrix composite 
that reinforced by CNT in the thickness direction. The first 
six free vibration frequencies of the composite are obtained 
for the plate having CFFF, CCCC, SSSS, SCSC and SFSF 
boundary conditions at room temperature. The results are 
given in Tables 5, 6, 7. The first six free vibration frequen-
cies of the composite are obtained for uniform temperature 
increase, linear temperature increase and sinusoidal tem-
perature increase in the thickness direction when the lower 
surface of the plate at Tb = T0 = 300 K and the upper surface 
of the plate at Tt = 500 K. The reinforcement modeling UD, 
FG-V, FG-O and FG-X of PmPV/FG-CNT plate at two side/
side ratios 1 and 1.5, three different thickness/side ratios 
0.05, 0.1 and 0.2 which corresponding, respectively, thin 
moderately thick and thick plates are considered for CFFF 

Table 15  Natural frequency 
parameters of FG-CNT-
reinforced plate with CFFF 
boundary condition subjected 
to uniform temperature rise 
with T0 = 300 K, Tt = 500 K 
(a/b = 1.5, FG-X)

VCNT
* h/b Temp. distr. Δ1 Δ2 Δ3 Δ4 Δ5 Δ6

0.11 0.05 Uniform 6.4790 6.8860 13.6653 20.6387 31.5482 34.1815
Linearly 6.6203 7.1854 15.5781 24.3188 36.6014 37.0326
Sinusoidally 6.6527 7.2435 15.8921 25.1873 37.4309 37.7816

0.1 Uniform 6.1298 6.4138 10.3142 12.9500 22.7223 23.1051
Linearly 6.5064 6.9316 12.1576 14.9224 25.5588 26.0752
Sinusoidally 6.6005 7.0558 12.5910 15.2754 26.3540 26.8921

0.2 Uniform 4.2755 4.4134 5.1519 10.9544 13.5028 13.7920
Linearly 4.7938 5.0000 6.0849 12.7564 15.4680 15.8343
Sinusoidally 4.9342 5.1566 6.3002 13.0965 16.0074 16.3894

0.14 0.05 Uniform 7.1787 7.5526 14.2823 21.0963 32.5591 36.3413
Linearly 7.3670 7.8918 16.2505 24.8955 37.8256 39.6987
Sinusoidally 7.4112 7.9610 16.5745 25.7835 38.6904 40.5959

0.1 Uniform 6.6026 6.8497 10.5432 13.4142 23.6909 24.0496
Linearly 7.0686 7.4436 12.4464 15.4559 26.7519 27.2335
Sinusoidally 7.1869 7.5895 12.8895 15.8235 27.6119 28.1128

0.2 Uniform 4.4535 4.5728 5.2667 11.2614 13.9432 14.2098
Linearly 5.0306 5.2051 6.2310 13.1154 16.0257 16.3542
Sinusoidally 5.1884 5.3759 6.4512 13.4649 16.5942 16.9359

0.17 0.05 Uniform 7.9974 8.5463 17.3852 25.9276 40.3344 42.2705
Linearly 8.1672 8.9267 19.8380 30.5401 45.7595 46.2719
Sinusoidally 8.2068 9.0005 20.2344 31.6039 46.6810 47.2479

0.1 Uniform 7.5755 7.9582 12.9584 16.4633 28.1757 28.6947
Linearly 8.0344 8.6038 15.2693 18.9780 31.6636 32.3606
Sinusoidally 8.1497 8.7584 15.8002 19.4216 32.6447 33.3702

0.2 Uniform 5.3009 5.4926 6.4736 13.9416 16.7927 17.1945
Linearly 5.9368 6.2197 7.6442 16.2279 19.2188 19.7259
Sinusoidally 6.1095 6.4137 7.9080 16.6548 19.8843 20.4117
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boundary condition and at side/side ratios 1, thickness/side 
ratios 0.05 are considered for CCC, SSSS, SCSC and SFSF 
boundary conditions. The results obtained for these condi-
tions are given in Tables 8, 9, 10, 11, 12, 13, 14, 15, 16.

It is seen that the frequency values for the FG-X model 
are greater than the other models and the frequency values 
for the FG-O model are smaller than in all boundary condi-
tions and the frequency values obtained at a/b = 1.5 ratio are 
greater than a/b = 1 ratio. However, the frequency values 
increase as the volume ratio increases and decrease as the 
thickness increases at the same volume ratio. At the same 
volume ratio and thickness values, with the increase of the 
a/b ratio, the amount of increase in the second and higher 
frequencies is greater than the amount of increase in the 
fundamental frequencies. For all reference parameters, the 
highest frequency values were obtained in the thermal envi-
ronment where the temperature increased sinusoidally, and 
the lowest frequency values were obtained in the uniform 
temperature increase. The frequency values obtained in lin-
ear temperature variation were always obtained between the 
frequency values obtained from the uniform and sinusoidal 
temperature change.

When it is investigated according to boundary conditions, 
it is seen that the frequency values increase with increasing 
constraints on boundaries. And accordingly, the frequencies 
for each volume ratio are sorted from the highest to the low-
est value according to boundary conditions CCCC, SCSC, 
SSSS, SFSF and CFFF, respectively.

The variation of the fundamental frequency parameters 
with temperature was investigated graphically for the 0.11, 
0.14 and 0.17 values of the VCNT

* while h/b = 0.1 and a/b = 1 
in considered three thermal environments. Graphs are given 
in Fig. 1a–d for the reinforcement type that UD, FG-V, 
FG-O and FG-X, respectively. The curves show the effect 
of three different temperature distributions on the funda-
mental frequency parameters at each volume ratio. The fun-
damental frequency values for each volume ratio are higher 
for the reinforcement type that FG-X and the fundamental 
frequency values for each volume ratio are smaller for the 
reinforcement type that FG-O. The fundamental frequency 
values decrease as the temperature increases and show the 
greatest change in the uniform temperature distribution. In 
general, it is seen that the behavior of the material is more 

Table 16  Natural frequency parameters of FG-CNT-reinforced plate under different boundary conditions with T0 = 300  K, Tt = 500  K 
(VCNT

* = 0.11, h/b = 0.05, a/b = 1)

UD FG-V FG-O FG-X

Uniform Linear Sinusoidal Uniform Linear Sinusoidal Uniform Linear Sinusoidal Uniform Linear Sinusoidal

CCCC Δ1 22,9446 25,8019 26,5777 21,0110 23,1132 23,7513 19,6416 21,7502 22,3192 24,2294 27,5350 28,4400
Δ2 26,0246 29,5840 30,4509 24,4436 27,4300 28,1813 23,1405 26,1118 26,8062 27,2858 31,2394 32,2180
Δ3 33,5694 38,6731 39,7704 32,5037 37,2722 38,2860 31,2263 35,9221 36,8934 34,8618 40,2964 41,4801
Δ4 45,7720 53,1878 54,6862 43,4769 48,5128 50,1493 41,2830 46,6401 48,2076 47,1855 54,8964 56,4624
Δ5 46,7503 53,4060 55,2953 45,1566 51,1375 52,8362 43,3910 49,2825 50,9176 48,6438 55,8909 57,9310
Δ6 48,5376 55,6104 57,5471 45,5340 52,4210 53,8632 43,8076 50,9310 52,3394 50,4013 58,0342 60,1131

SSSS Δ1 15,0536 15,9920 16,2212 12,9233 13,6218 13,8030 11,4905 12,1298 12,2771 17,1322 18,3980 18,7165
Δ2 17,6044 19,2964 19,6492 15,9429 17,5523 17,8770 14,6606 16,2052 16,5046 19,4779 21,4214 21,8454
Δ3 24,7019 28,0595 28,6897 23,7027 27,1117 27,7289 22,5263 25,8202 26,4191 26,3367 29,8825 30,5616
Δ4 28,6118 34,0047 35,3356 28,6864 33,8870 35,2177 28,6865 34,0931 35,4681 28,6865 34,0927 35,3849
Δ5 28,8726 34,2242 35,5469 28,9465 34,1075 35,4298 28,9466 34,3121 35,6786 28,9466 34,3117 35,5960
Δ6 37,5994 43,5114 44,5980 37,1233 41,8895 42,9617 35,7039 39,0579 39,9924 39,1894 45,2882 46,4118

SCSC Δ1 15,6829 16,8051 17,0636 13,6704 14,6036 14,8210 12,2767 13,1500 13,3364 17,7171 19,1456 19,4883
Δ2 20,1739 22,4884 22,9469 18,7757 21,0655 21,5039 17,5664 19,7869 20,2050 21,9452 24,4771 24,9961
Δ3 28,8726 33,8453 34,6610 28,7240 33,1360 33,9427 27,5636 31,8461 32,6363 28,9466 34,3117 35,5960
Δ4 29,5099 34,2242 35,5469 28,9465 34,1075 35,4298 28,9466 34,3121 35,6786 31,0895 35,6031 36,4616
Δ5 43,0136 47,8951 49,2490 38,8349 42,2692 43,3537 35,9887 39,4243 40,3705 44,6559 51,7073 53,1290
Δ6 43,0784 50,0171 51,3271 41,2661 45,4560 46,6492 38,5499 42,7412 43,8088 45,8871 51,7822 53,3419

SFSF Δ1 14,6989 15,5042 15,7097 12,4666 12,9951 13,1477 10,9875 11,4465 11,5620 16,8306 17,9833 18,2822
Δ2 14,8599 15,7354 15,9545 12,6834 13,2959 13,4644 11,2382 11,7953 11,9290 16,9564 18,1667 18,4769
Δ3 16,1396 17,4499 17,7431 14,2845 15,4565 15,7152 12,9450 14,0529 14,2812 18,0832 19,6730 20,0453
Δ4 20,8346 23,3634 23,8565 19,5905 22,1234 22,5994 18,4051 20,8529 21,3070 22,5214 25,2511 25,8015
Δ5 27,9967 33,1154 34,3695 28,0464 32,9841 34,2395 28,0573 33,1876 34,4844 28,0571 33,1882 34,4043
Δ6 28,8726 34,2242 35,5469 28,9465 34,1075 35,4298 28,9466 34,3121 35,1944 28,9466 34,3117 35,5960
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stable in the sinusoidal temperature distribution compared 
to other temperature distributions.

The greatest decrease in frequency values is observed in 
the uniform temperature distribution and the least decrease 
in the sinusoidal temperature distribution. When compared 
in terms of volume ratios, the rate of decrease in frequency 
value is higher at VCNT

* = 0.11 for all boundary conditions. 
When compared in terms of fundamental frequency and 
high frequencies, the frequency that is least affected by 
temperature changes in all volume ratios is the fundamental 
frequency.

Figures 2, 3, 4, 5 show the mode shapes for the first 6 
frequencies of the FG-CNT plate with CFFF boundary con-
dition for all reinforcement models, at room temperature and 
uniform, linear and sinusoidal temperature increase. The 
mode shapes describe the deformation of the vertical com-
ponent (W) of the FG-CNT composite plate when vibrating 
at natural frequency at room temperature and at different 
thermal environments. In the uniform temperature condition, 
fluctuations are observed in the nodal lines starting from 
the fourth frequency. In linear and sinusoidal temperature 
distribution, there is a tendency to increase in the number 
of waves starting from the fourth frequency.

Conclusions

The free vibration of FG-CNT/PmPV composite plate con-
structed by embedding a single wall carbon nanotube with 
chiral index (10,10) in different volume fractions into PmPV 
polymer matrices is investigated using Ritz method based 
on three-dimensional elasticity for three different thermal 
condition. Assumed thermal conditions are uniform, linear 
and sinusoidal temperature distribution in the study. The 
following conclusions can be carried out from the obtained 
results for the considered problem.

• The Chebyshev polynomials chosen as admissible func-
tions in Ritz method provide high accuracy, consistent in 
the computation and rapid convergence.

• An increase in the volume ratio of CNT results in an 
increase in the natural frequency, and an increase in 
thickness at the same volume ratio results in a decrease 
in the natural frequency.

• The greatest and smallest frequency values for the rein-
forcement models were obtained for the FG-X model and 
for the FG-O model, respectively.

• The frequencies for each volume ratio are sorted from the 
highest to the lowest value according to boundary condi-
tions CCCC, SCSC, SSSS, SFSF and CFFF, respectively.

• An increase in temperature causes the natural frequency 
to decrease.

Fig. 1  The fundamental fre-
quency parameters of FG-CNT-
reinforced plate with CFFF 
boundary condition (h/b = 0.1)
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Fig. 2  First six mode shapes of square FG-CNT-reinforced plate with CFFF boundary condition (UD, VCNT
* = 0.14, h/b = 0.05, Tb = 300  K, 

Tt = 500 K)
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Fig. 3  First six mode shapes of square FG-CNT-reinforced plate with CFFF boundary condition (FG-V, VCNT
* = 0.14, h/b = 0.05, Tb = 300 K, 

Tt = 500 K)
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Fig. 4  First six mode shapes of square FG-CNT-reinforced plate with CFFF boundary condition (FG-O, VCNT
* = 0.14, h/b = 0.05, Tb = 300 K, 

Tt = 500 K)
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Fig. 5  First six mode shapes of square FG-CNT-reinforced plate with CFFF boundary condition (FG-X, VCNT
* = 0.14, h/b = 0.05, Tb = 300 K, 

Tt = 500 K)
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• The greatest and smallest frequency values for the three 
thermal conditions examined were obtained in sinusoidal 
and uniform temperature distribution, respectively.

• It is observed that in the uniform temperature distribu-
tion, frequencies sharply decrease and in the sinusoidal 
temperature distribution, frequencies monotonically 
decrease.

• The frequencies obtained in the linear temperature dis-
tribution were greater than the values obtained in the 
uniform temperature distribution and smaller than the 
values obtained in the sinusoidal temperature distribution 
for each condition. However, the variation of frequencies 
are more similar to the behavior in the sinusoidal tem-
perature condition.

• As the temperature increases, the frequency decreases, 
and decrease ratio of frequency always higher at the low-
est volume ratio of the CNT.

• For given boundary condition and at a certain tempera-
ture, in the change of temperature distributions, changes 
are also observed in the order of the mode shapes.

• Mode shapes are not greatly affected by the reinforce-
ment model and temperature, but the greatest irregular-
ity is seen in the FG-X model and uniform temperature 
distribution.
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