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Abstract
Purpose The present paper proposes to explore the fundamental natural frequencies of a porous functionally graded material 
(FGM) plates. The effect of porosity in an FGM structure is studied in an uncertain quantification domain.
Method A finite element model is developed considering isoperimetric quadratic element and evaluating the first three natural 
frequencies for the porous FGM plate. Hereafter, a stochastic approach is explored by incorporating Monte Carlo simulation 
(MCS) and application of machine learning (ML) models. A detailed comparison is conducted to evaluate the predictive 
efficiency of five machine learning models viz., radial basis function (RBF), linear regression (LR), Gaussian progression 
regression (GPR), artificial neural network (ANN), and support vector machining (SVM).
Results and Conclusion The authenticity of the models is evaluated based on the mean and standard deviation error analysis. 
The error analysis provides adequate confidence on the authenticity of the ML models. The predicted results are depicted in 
the form a three-dimensional probability density function and scatter plots. The effective results and discussion portray an 
efficient stochastic model to quantify the uncertainty in the porous FGM structure.

Keywords Functionally graded plates · Porosity · Machine learning models · Monte Carlo simulation (MCS)

Introduction

Capturing the effects of mechanical characteristics of a 
porous functionally graded material (FGM) is a challenging 
yet highly intriguing topic. Functionally graded (FG) materi-
als are constructed in two phases [1–3], metal and ceramic 
are often chosen as the base materials. They are formed 
by gradually changing the proportion at each phase in the 
thickness direction of the material. FG materials first came 
into picture during the 1980s. It was invented by a Japanese 
scientist to form a thermal barrier for a thrust chamber in 

an aerospace project [4] where the outside temperature was 
1500 K and inside was 300 K. The thickness of the FGM 
was 10 mm and it was made of copper (Cu) as the metal 
and the ceramic was TiB2 . During the construction phase of 
these materials other than the considered materials, there is 
an inherent anomaly in the structure. This is due to the pres-
ence of voids formed during the construction phase. In mate-
rial modeling, this characteristically vary the performance 
of the structure [5–9]. The formation of voids in a FGM 
induces the property of porosity in the structure. Porosity 
may be formed in two categories, viz., even porosity and 
uneven porosity. Even porosity in an FG material is formed 
when the pores/voids are synchronized and evenly distrib-
uted throughout the material. Similarly, uneven porosity is 
caused due to uneven distribution of voids/pores in the struc-
ture. In this paper, we are considering even porosity distribu-
tion for an FGM plate. Free vibration or natural frequency 
analysis of a material is a concerned topic for the research-
ers. Free vibration refers to a type of force in which an object 
or a component of it is permitted to vibrate at its natural fre-
quency without any support from an external medium. Liu 
et al. [10] analyzed the fundamental frequencies for in-plane 
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inhomogeneity in the material of an FGM plate. To ana-
lyze the free vibration of an FGM plate, a semi-analytical 
plate formulation based on isogeometric analysis and scaled 
boundary element approach is conducted. It is revealed that 
the stiffness of FGM plates is significantly influenced by the 
power index and width-to-thickness ratio [11]. Similarly, the 
natural frequencies of a sigmoid functionally graded mate-
rial plate placed on the Winkler–Pasternak elastic foundation 
has been calculated using the dynamic stiffness method [12]. 
Although a lot of work is done and is still going on the deter-
ministic area to evaluate the free vibration of FG materials, 
it is equally important to dive deep in probabilistic region 
to gather the information due to uncertainty in the material 
characteristics (Fig. 1).

In this light, Monte Carlo simulation (MCS) plays an 
important role to identify the the degree of uncertainty 
in the system. Ravi et al. [13] explored the uncertainty in 
the material parameters and found the stochastic natural 
frequencies of a FGM plate by incorporating MCS-based 
approach. MCS-based approach is employed to evaluate the 
responses in various domains and provides effective results 
to quantify the uncertainty in the system [14–22]. Although 
the efficiency of MCS-based approach is high, it also has 
some drawbacks. MCS-based approach is a time-consum-
ing process. This limitation can be mitigated by applying 
machine learning (ML) models. ML utilizes the pattern of 

the input–output data’s by analyzing the stochastic system 
and provides architecture to frame a model which can rep-
licate the MCS-based model. ML is extensively utilized in 
various domains to predict the responses efficiently with 
negligible errors. In this light, Vaishali et al. [3] explored 
the support vector machine (SVM) ML model to evaluate 
the natural frequencies of different FG shell structures in 
conjunction to MCS. Similarly, Kritesh et al. [23] utilized a 
hybrid ML model combining polynomial chaos expansion 
and Kriging ML model. The output quantity of interest is 
to predict the dependency of fracture toughness and cohe-
sive energy in the input parameters via molecular dynam-
ics simulations of graphene. Ravi et al. [21] utilized Radial 
Basis function (RBF) ML model in conjunction with MCS to 
predict the natural frequencies of a skewed sandwich plate. 
A novel isogeometric approach is utilized to predict the dam-
age assessment of FGM plate incorporating an improved 
artificial neural network model [24]. Based on the thorough 
literature study, it is found that a comparative analysis of 
the ML models in porous FGM plate is not carried out. The 
novelty of the present analysis is to compare the ML models 
that can predict the free vibration of a porous FGM plate. 
On this regard, five ML models viz., radial basis function 
(RBF), linear regression (LR), Gaussian progression regres-
sion (GPR), artificial neural network (ANN), and support 
vector machine (SVM) are considered based on the model 
fitment analysis.

Fig. 1  Structure of the analysis performed on porous functionally graded material
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Theoretical Formulation

The geometry of a porous FG plate and porosity distribu-
tions are depicted in Fig. 2. Consider a porous square FGM 
plate with length L, width b, and thickness t. The porosity 
distributions occur in both x and y directions. There are two 
varieties of porosity distributions such as even and uneven 
as defined by Wang and Zu [25]. We used porous FGM plate 
in this investigation, which is composed of stainless steel 
(SUS304) as the metal and silicon nitride as the ceramic 
material. The top surface (z = t/2) of plate is considered as 
ceramic rich and it varies continuously to the bottom surface 
(z =  − t/2) of plate, which is metal rich, by following the 
power law index. In this study, the porous plate is considered 
in which the porosities are spreading within the plate cross-
section due to defects generated during manufacturing. To 
obtain the material properties at different sections of the 
even porous FG material, power law is employed [30]. It is 
expressed as,

where α represents porosity index, qm is material property 
of metal, qc is the material property of ceramic, t represents 
the thickness of plate, and p is the power law index. Similar 
to Eq. (1), material properties of even porous FGM plate can 
be determined as following:

(1)q(t) = qm + (qc − qm)
[
z

t
+

1

2

]p
− (qc + qm)

�

2

where E, G, μ, and ρ represent Young’s modulus, shear 
modulus, Poisson’s ratio, and mass density of FGM plate, 
respectively. Considering uneven distribution of porosity, the 
material properties in Eqs. (2–5) can be replaced by

Also, the material properties depend on the operating 
temperature, which can be comprehended by the Toulouk-
ian model [26] as

where q0, q−1, q1, q2, q3 are the temperature-dependent coef-
ficients, and T represents the temperature in Kelvin.

Governing Equations

For an orthogonal co-ordinate system, considered (x, y) as 
the mid-plane of the reference plane as shown in Fig. 1. 
According to the FSDT, Eqs. (11), (12), and (13) are uti-
lized to depict the displacement field relations in the three 
axis of the system
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(10)q = q0 + q−1T
−1 + 1 + q1T + q2T

2 + q3T
3

(11)a(x, y, z) = a0(x, y) − za(x, y)Rx(x, y)

(12)b(x, y, z) = b0(x, y) − zb(x, y)Ry(x, y)

(13)c(x, y, z) = c(x, y) = c0(x, y)

Fig. 2  a Isometric view of a porous FGM plate b even and uneven 
porosity of FGM plate
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where the displacements in x, y, and z directions are repre-
sented by a, b, and c, respectively, and the displacements at 
mid-plane are represented by a0 , b0 , and c0 , respectively. The 
rotation in the direction of x and y is represented by Rx and 
Ry . The dynamic equilibrium equation excluding damping 
is expressed as

where{ẍ}is a global acceleration vector,{x} represents the 
global displacement vector,[m(�)] represents the random 
global mass matrix, [k(�)] is the random stiffness matrix, 
and {f } is an externally applied force vector. For the free 
vibration problem, there will be no external force; hence, 
Eq. (14) is depicted as,

The static and dynamic components are considered for the 
present analysis. From Eq. (15), [{x} = {xs} + {xp}, where {xp} 
is a time reliant perturbation about {xs}, and {xs} is the static 
displaced position]. The equation of motion is stated as

For natural frequency analysis, the equation of motion is 
stated as

In Eq. (17), the displacement {xp} depends upon time and 
space. In natural frequency analysis, the time and space coordi-
nates of displacement space and time coordinated are stated as

(14)[m(𝜛)]{ẍ} + [k(𝜛)]{x} = {f }

(15)[m(𝜛)]{ẍ} + [k(𝜛)]{x} = 0

(16)[m(𝜛)]
{
ẍp
}
+
{
[k(𝜛)] + [kp](𝜛)

}{
xp + xs

}
= 0

(17)[m(𝜛)]
{
ẍp
}
+
{
[k(𝜛)] + [kp](𝜛)

}{
xp
}
= 0

(18)
{
xp
}
= A�ei�t{�}

(19)
{
ẍp
}
= −A�𝜔2ei𝜔t{𝜃}

where i = 1,2,3,….,n
Substituting the values from Eqs. (18) and (19), the modi-

fied equation of motion is

As A′ei�t ≠ 0

here �(natural frequency) is the output quantity of interest 
for the present analysis. Now, Eq. (21) is further transformed 
utilizing QR iteration algorithm as

Finite Element (FE) Formulation

The FE formulation of the porous FGM cantilever plate is 
designed considering a quadratic element with eight nodal 
structures as depicted in Fig. 3. There are three translational 
and two rotational degrees of freedom in the nodal points. 
The interpolation polynomial function for the present model 
is expressed as

where F0,F1, .........F7 are the degrees of freedom.
In FE formulation, the shape functions (Sj) are the func-

tion of local natural coordinates of the element (1, v). Here 
η = − 1 for nodes 1, 4, 8; η =  + 1 for nodes 2, 3, 6; and 

(20)A�ei�t(−�2[m]{�} + ([k] + [k�]){�}) = 0

(21)�2[m]{�} = ([k] + [k�]){�}

(22)[A]{�} = �{�}

[A] =
(
[k] +

[
k�
])−1

[m]

(23)and � = 1∕�2

(24)
a(�, �) = F0 + F1� + F2� + F3�

2 + F4�� + F5�
2 + F6�

2� + F7��
2

Fig. 3  Matrix, elemental, and nodal level co-ordinate system constructed by finite element method
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ζ = − 1 for nodes 1, 2, 5; and ζ =  + 1 for nodes 3, 4, 7 as 
shown in Fig. 3. The shape functions Si can be depicted as:

The shape functions accuracy is evaluated by

The bending formulation for the coordinates (x, y) is 
stated as

The displacement at any nodes can be expressed as

where 

(25)

Si = 0.25
(
1 + ��i

)(
1 + ��i

)(
��i + ��i − 1

)
⋯ i = 1, 2, 3, 4

Si = 0.5
(
1 + ��i

)(
1 − �2

)
⋯ i = 5, 7

Si = 0.5
(
1 + ��i

)(
1 − �2

)
⋯ i = 6, 8

(26)
8∑

i=1

Si = 1,

8∑

i=1

�Si

��
= 0 and

8∑

i=1

�Si

��
= 0

(27)x =

8∑

i=1

Si xi and y =

8∑

i=1

Si yi

(28)

a =
8
∑

i=1
Si ai, b =

8
∑

i=1
Si bi, c =

8
∑

i=1
Si ci,

�x =
8
∑

i=1
Si �xi, �y =

8
∑

i=1
Si �yi

(29)

[
Ni,x

Ni,y

]
= [J]−1

[
Ni,�

Ni,�

]
and [J] =

[
X� Y�
X� Y�

]

MCS‑Based Random Free Vibration Analysis

In the present study, uncertain material properties, struc-
tural, and environmental parameters such as thickness, tem-
perature, porosity index are taken as input parameters, and 
first three natural frequencies are considered as responses. 
The individual and combined variation in material properties 
and other parameters are considered as follows:

1. The impact of individual variations in material 
properties:

(a) Young’s modulus:Iv
1
(�) = Ψ[Ez(�)]

(b) Shear modulus:Iv
2
(�) = Ψ[Gz(�)]

(c) Material density:Iv
3
(�) = Ψ[�z(�)]

(d) Poisson’s ratio:Iv
4
(�) = Ψ[�z(�)]

2. The impact of combined variations in material 
properties:

whereω represents the randomness in parameters, and ψ 
is a symbolic operator of the MCS. In the FGM plate, the 
constitute materials distributed cross the thickness (t) and 
randomness is introduced in the material properties with 
certain limits to capture the randomness caused due to una-
voidable reasons. The randomness in material mainly occurs 
during the manufacturing of the FGM plates. The random 
input variables follow the uniform distribution (as shown in 
Fig. 4) with bound limits of ± P % with respect to determin-
istic value of material properties. In the random analysis, the 
degree of randomness is considered as 10%. In this analy-
sis, a random natural frequency analysis of porous FGM 
plates is carried out by coupling the FE code with Monte 
Carlo simulation as shown in Fig. 4. In general, for porous 

(30)Ccombined

o
= Ψ[{Ez(�)}, {Gz(�)}, {�z(�)}, {�z(�)}]

Fig. 4  Flowchart for stochastic 
analysis of the porous function-
ally graded material
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FGM, the output of free vibration analysis is not available 
as an explicit function of the input parameters. The random 
analysis of complex porous FGM plates can only be carried 
out numerically by the finite element method coupled with 
MCS considering 10,000 number of iterations.

Machine Learning (ML) Models

ML models are generally utilized to predict the response of 
a particular analysis based on the interaction between the 
input and output parameters. The models are categorized 
mainly into two categories, supervised and unsupervised ML 
models [28]. A function that converts an input to an output is 
learned under supervision using sample input–output pairs. 
Unlike supervised learning, unsupervised learning is used 
to draw inferences and find patterns from input data without 
references to labeled outcomes [29]. The present analysis 
involves supervised learning of the ML models from a finite 
element analysis to obtain the free vibration of a porous 
FGM plate. The details of the utilized ML models are men-
tioned in the Supplementary file (1–5).

Results and Discussion

A thorough description of the observations derived from 
the stochastic FE-based dynamic analysis of the FG cantile-
ver plates is portrayed in this section. We first validated the 
results of the FE technique using the published literature 
before carrying out the stochastic analysis. In this regard, at 
room temperature (T = 300 K), the dynamic response (natu-
ral frequency) of a rectangular FGM plate made of structural 
steel (SUS304) and silicon nitride  (Si3N4) with dimensions 
of 0.2 m × 0.2 m × 0.025 m (L × b × t) and 0.28 Poisson's ratio 
is recorded. Silicon nitride is a very effective ceramic with 
great thermal shock and impact resistance. It possesses bet-
ter combinations of creep and oxidation resistance, outper-
forming the high temperature capabilities of most metals. 
Structural steel (SUS304) has an excellent corrosion resist-
ance to numerous chemical corrodents and industrial atmos-
pheres. It is also a heat resistance grade. The combination of 
these two materials is utilized to evaluate the fundamental 
natural frequency of the designed FG material. The valida-
tion results are summarized in Table 1, which shows that the 
chosen FE approach has some promise for providing reliable 
results. We continued to do the FE analysis for the FGM 
taken into consideration in the current investigation because 
we had adequate confidence in the chosen FE approach. The 
FGM cantilever plate that was the subject of the current 
investigation is made of metal aluminium and ceramic zir-
conia. Table 2 lists the specific material characteristics of the 
FGM ingredients. Unless otherwise specified, the thickness 

(t) of a plate is assumed to be 2 mm, while the dimensions 
(l, w) are assumed to be 1 m. 

In the current investigation, the FGM constructions are 
specified with two types of porosity (even and uneven) with 
a porosity index (α) of 0.1 unless otherwise stated (see 
Fig. 1b). The stochastic analysis is carried out considering 
10,000 samples (N) to conduct the MCS-based analysis. The 
results of the first three natural frequencies from MCS pro-
vide as the benchmark for the succeeding machine learning 
model analysis. A comparative analysis is carried out for the 
machine learning models in the form of mean error analysis, 
standard deviation error analysis, and first three natural fre-
quency distribution in the form of probability density func-
tion analysis. Five machine learning models are considered 
for the present analysis based on the performance of each 
model.

The ML models considered are radial basis function 
(RBF), linear regression (LR), Gaussian progression regres-
sion (GPR), artificial neural network (ANN), and support 
vector machine (SVM). The mean error analysis is portrayed 
in Fig. 5 for the first three natural frequencies. The mean 
error analysis is conducted to check the applicability of the 
ML models for different sample sizes.

The relation of the mean error is established by compar-
ing the mean data of each sample sizes with the mean results 
of MCS. In this case, four different sample sizes (256, 512, 
1024, and 2048) are considered for the study. The error is 
calculated as 

[
|DirectMCSresult−MLbasedresult

DirectMCSresult
| × 100

]
 . The error 

plots are presented in three-dimensional histogram form. 
The mean and standard deviation percentage errors are cal-
culated by comparing the stochastic data of machine learn-
ing models with the MCS model for each failure theory's 
first-ply failure data. It is found that as the sample sizes are 

Table 1  Comparison of frequency parameter for a stationary 
SUS304/Si3N4 FGM plate

Power law index 
(p)

Present study Wang and Zu 
[25]

Alijani et al. [27]

Ceramic 13.156 13.175 13.173
0.5 9.013 9.111 9.111
1 7.867 7.985 7.985
Metal 5.584 5.699 5.699

Table 2  Material properties of constitutes for the FGM plate at 300 K 
[31]

Constitutes E (Pa) υ ρ (kg/m3)

Metal 70 × 109 0.25 2707
Ceramic 151 × 109 0.3 3000
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increased from smaller number to higher, the mean error is 
reduced. It can be noticed from Fig. 5a–c that for the first, 
second, and third natural frequencies, N = 2048 provides a 
minimal mean error. Thus, it is safe and efficient to proceed 
with this sample size for further study. The standard devia-
tion error analysis is also conducted to check the applicabil-
ity of the ML models for different sample sizes. By contrast-
ing the standard deviation data from each sample size with 
the MCS results, the relationship between the standard 
deviation error and sample size is established. Like the mean 
error analysis, four different sample sizes (256, 512, 1024 
and 2048) are considered for the study. It is found that the 
standard deviation error is reduced as the sample size is 
increased. It can be noticed from Fig. 6a–c that for the first, 
second, and third natural frequencies, N = 2048 provides a 
minimal standard deviation error. Thus, it is safe and effi-
cient to proceed with this sample size for further study. It is 

also to be noticed that from the mean and standard deviation 
error analysis, the sample sizes can be increased further but 
as it is well established that the ML models are able to pre-
dict the output efficiently (less than 1% error in all cases). 
Also, it is computationally time consuming and inefficient 
to increase the sample sizes. The probability density func-
tion is plotted for the five machine learning models viz., 
radial basis function (RBF), linear regression (LR), Gauss-
ian progression regression (GPR), artificial neural network 
(ANN), and support vector machine (SVM) in Fig. 7. The 
PDF plots for the ML models are plotted in curved lines. For 
the authentication of the prediction by the ML models for 
each fundamental natural frequencies, the MCS data are 
plotted in dotted curved lines along with the ML models. 
From Fig. 7, a clear inference can be drawn that the ML 
models perform efficiently to predict the first three funda-
mental natural frequencies. The peak point of the 

Fig. 5  Mean error distribution of the porous FGM plate for a first natural frequency (FNF) b second natural frequency (SNF) c third natural fre-
quency (TNF)
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bell-shaped curve represents the mean data for the funda-
mental natural frequency. The deviation from the mean value 
on both sides of the curve represents the standard deviation 
due to the stochastic effect on the input material properties. 
Normal distribution of data is chosen for plotting the PDF 
for machine learning models and MCS-based model. The 
MCS plot and ML model plot for each model display a good 
agreement in the PDF plot.

The scatter plot depiction is utilized to display the rela-
tion for the actual response of the original finite element 
model in conjunction with the machine learning-based 
model's predicted response. The response observed in 
Fig. 8 displays a high positive correlation between the 
true and predicted response. From error analysis, it can 
be confirmed that the machine learning models converge 
efficiently with the MCS-based model for sample size 
2048. The predicted response of the model is plotted for 
sample size (Ns = 2048). This sample size is found to be 

displaying the most negligible error for all the machine 
learning models. This indicates that the machine learning-
based model can replace the time-consuming conventional 
finite element model concerning 161 material input param-
eters for subsequent analyses. It leads to a significant 
reduction in time without compromising the accuracy of 
the model. Figure 8 displays the scatter plot for first three 
fundamental natural frequencies. The six machine learning 
models (RBF, LR, GPR, ANN, and SVM) are depicted in 
scatter plots. The scattering of data is observed compara-
tively less in all the machine learning models except for 
a few cases like FNF prediction through SVM and ANN, 
SNF prediction through ANN. This is due to the presence 
of noise in the prediction of ML models. From Fig. 8, 
it can be predicted that among all, the machine learning 
model performs efficiently, due to less mean and standard 
deviation error. It is also observed that the scattering of 
data is least in the case of GPR, LR, and RBF.

Fig. 6  Standard deviation error distribution of the porous FGM plate for a first natural frequency b second natural frequency, c third natural fre-
quency
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Fig. 7  Probability distribution 
function (PDF) plots of the 
porous FGM plate for a first 
natural frequency,, b second 
natural frequency, c third natu-
ral frequency for respective ML 
models
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Conclusion

The present paper presents a comparison of different ML 
models and their prediction capability for first three fun-
damental natural frequencies in a porous FGM plate. The 
FGM plate is designed of stainless steel (SUS304) as the 
first material and silicon nitride  (Si3N4), a ceramic as the 
second material with dimensions of 0.2 m × 0.2 m × 0.025 m 
(L × b × t). Elastic and shear moduli (along and across the 
direction of the fibers), Poisson’s ratio, mass density, and 
thickness are among the input factors whose variability is 
taken into account. To examine the stochastic natural fre-
quency, 10% combined stochasticity is provided on the 
input parameters. The output quantity of interest is first 
evaluated by Monte Carlo simulation. Since, this method 

is a time-consuming process, machine learning models 
are utilized to mitigate the issue. The effectiveness of the 
machine learning models viz., radial basis function, linear 
regression, Gaussian progression regression, artificial neu-
ral network, and support vector machining is compared in 
a brief examination. The results are presented in the form 
of mean error analysis, standard deviation error analysis, 
probability density function plot, and scatter plots. The com-
parison analysis of the ML models is predicted in the form 
of first three fundamental natural frequencies. It is found 
that the predictive output of ANN in the form of scatter 
plot depicts the presence of noise in the datasets for all the 
three responses. SVM model also depicted the presence of 
scattering of datasets for first natural frequency. The other 
three ML model’s prediction is found to be satisfactory of 

Fig. 8  Scatter plots of the porous FGM plate for first three natural frequencies and their respective ML models
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the present stochastic model. The machine learning models 
performed efficiently in the probability density function plot 
when compared with the Monte Carlo simulation model.

The results presented in the paper will help the designers 
in building an efficient and robust model for various other 
porous FGM structures in future due to the uncertainty in 
the system.
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