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Abstract
Purpose Cellular configurations with ZPR more suitable for cylindrical sandwich shell in which the structure needs undergo 
pure cylindrical bending. To date, research in the vibration response of cylindrical sandwich shell is still a challenging task. 
This article proposes one method for free vibration analysis of sandwich cylindrical shells consisting of elastic-isotropic 
skin and a zero Poisson's ratio cellular core was proposed.
Method The free vibration characteristics of the sandwich cylindrical shells has been studied using classical thin shell 
theory. Theoretical models of the effective mechanical performances of the cellular core are established by homogenization 
methods. The accuracies of theoretical predictions are validated by the finite element method and comparing with others 
from some available literatures.
Results and Conclusions Based on the theoretical predictions, the influences on effective mechanical performances of the 
cellular core and natural frequencies of the sandwich cylindrical shell caused by geometric parameters are evaluated in detail. 
These geometrical parameters provide different contributions to the effective mechanical properties and dynamic response, 
which can lead to separate designs for improving their dynamic characteristics.

Keywords Sandwich cylindrical shells · ZPR · Mechanical performances · Vibrational behaviors · Theoretical prediction

Introduction

As an advanced material and structure, the cellular structure 
has shown great potential for automotive, aerospace, and 
marine applications due to its outstanding properties, includ-
ing high strength-to-weight ratio and specific stiffness, as 
well as good structural stability and energy absorption [1–3]. 
Shell structures are one of the most important structures in 
engineering applications. Sandwich cylindrical shells with 
cellular core not only remain the characteristics of cellular 
structure but also embody the special geometry, resulting in 
sandwich cylindrical shells have been shown great potential 
in a wide range of gas and fluid storage tanks, solar cell 
shells, flexible pipe, etc. [4, 5]. These structures are always 

suffering from dynamic loads at their service. Therefore, 
vibration characteristics analysis of sandwich cylindrical 
shells with cellular core has become extremely important.

Cellular structures are generally considered homogeneous 
orthotropic materials by predicting their equivalent proper-
ties, regardless of the complexity of the internal structures 
[6]. Up to now, researchers have been working extensively 
on the various calculated methods of effective elastic proper-
ties of cellular structures, among the common methods are 
energy [7, 8] and homogenization methods [9, 10]. Gibson 
explores the effective mechanical properties of hexagonal 
honeycomb based on the energy method [11]. However, Gib-
son's model showed some errors in the theoretical results 
due to the neglect of the axial deformation and shear defor-
mation, resulting that some research focusing on the revi-
sion of Gibson's theory [12]. In addition, traditional hex-
agonal honeycombs with positive Poisson's ratio (PPR) can 
no longer keep up with the growing demand for capricious 
practical applications. Numerous novel structures have been 
developed and applied with the characteristic of negative 
Poisson's ratio (NPR) [13, 14], zero Poisson's ratio (ZPR) 
[15, 16], and tailorable Poisson's ratio [17] in recent years. 
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However, when subjected to pure bending, the NPR cellu-
lar structures exhibit a saddle-like curvature, while the PPR 
cellular structures exhibit a dome-like curvature [18], which 
makes the processing of sandwich cylindrical shells with 
cellular core considerably more complicated and precludes 
their application on some special occasions. Zero Poisson's 
ratio (ZPR) feature can preclude a significant increase of 
effective stiffness in the horizontal direction by limiting the 
contraction (or bulging) in the vertical direction [19, 20].

Up to now, there are three typical theories to predict the 
vibrational behavior of composite cylindrical plates/shells: 
(1) the classical laminate plates/shells theory (CLPT/CLST), 
(2) the First-order shear deformation theory (FSDT), and (3) 
the High-order shear deformation theory (HSDT). Reissner 
modified the CLPT and proposed the FSDT by considering 
the effect of shear deformation [21]. Reddy developed an 
HSDT of laminated composite plates [22]. Wang et al. [23] 
derived the nonlinear equations for laminated composite 
structures. Duc et al. [24] discussed the nonlinear response 
of functionally graded (FG) cylindrical shells based on the 
Donnell classical shell theory by applying the Galerkin's 
method. Qin et al. [25] utilized the FSDT to present the 
free vibration of rotating FG carbon nanotube-reinforced 
composite cylindrical shells. Pang et al. [26] extracted the 
displacement functions of combined composite laminated 
cylindrical and spherical shells using the FSDT. Eipakchi 
et al. [27] studied the vibrational behavior of an auxetic com-
posite cylindrical shell based on the CLST and Hamilton's 
principle.

As is reviewed from the published literatures, many 
researchers have been working extensively on the equiva-
lent mechanical performances of cellular core and vibration 
issues of composite structures. However, a limited number of 
research articles are available to study the vibration behavior 
of sandwich cylindrical shells with ZPR honeycomb core. 
No saddle-like or dome-like curvature could be found for 
structure exhibiting ZPR under out-of-plane bending, which 
makes ZPR cellular configurations more suitable for cylin-
drical sandwich shell in which the structure needs undergo 
pure cylindrical bending. Therefore, it is more advantageous 
in terms of structural stability compared to other honeycomb 

structures and is more suitable to be incorporated in the 
design of piping structures.

Summarizing, the originality of the present paper lies in 
exploring the free flexural vibration characteristics of sand-
wich cylindrical shells containing a ZPR cellular core in the 
light of equivalent single-layer theory. The main contents 
are as follows: First, the effective mechanical performances 
of the ZPR cellular core are deduced in detail. Second, the 
Hamilton principle and CLST are utilized to establish the 
governing equations and mathematical model. Thirdly, FEM 
and some available literature results are introduced to prove 
the feasibility and correctness of the current method. Last, 
parametric analysis shows the influences of structural param-
eters on the mechanical performances of the cellular core 
and the free vibrational behavior of sandwich cylindrical 
shells.

Formulations

Figure 1 shows the schematic sketch and the coordinate sys-
tem of the sandwich cylindrical shell containing the ZPR 
cellular core layer, where the radius of middle surface is R, 
the thickness is h, and the length is L. The cylindrical shell 
is composed of three layers, the inner layer and outer layer 
are elastic and isotropic materials with equal thickness, and 
the middle layer is a cellular structure with a thickness of 
h0. In addition, an orthogonal coordinate system (z, x, and 
θ) is fixed at the middle surface. The deformations of the 
point at the shell's middle surface are denoted Ux, Uθ, and 
Uz, in the x, θ, and z directions, respectively. A coordinate 
(zk, k = 1,2,3,4) is defined for each layer as shown in Fig. 1, 
in which Z1 =

h

2
 , Z2 =

h0

2
 , Z3 = −

h0

2
 , and Z4 = −

h

2
.

Effective Mechanical Performances of Cellular Core 
Layer with ZPR

When analyzing the vibrational behavior of the sandwich 
cylindrical shell containing the ZPR cellular core, we first 
need to predict the effective mechanical performances of the 

Fig. 1  Schematic sketch and 
the coordinate system of the 
sandwich cylindrical shell
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ZPR cellular core. There are several assumptions made for 
the theoretical analysis:

(1) The formulation is based on the Euler–Bernoulli beam 
theory;

(2) All the joints of the cellular walls are considered to be 
rigid.

Figure 2 illustrates the schematic diagram of the ZPR 
cellular, where φ is internal angles, l represents the length 
of diagonal walls, 2αl represents the length of vertical 
walls, and t = βl represents the thickness of sloping walls. 
Here, α and β represent the aspect and cell wall thickness 
ratios, respectively.

Unit cell structure is selected and illustrated in Fig. 3(a). 
The first step for the unit cell model is a simplification, as 
shown in Fig. 3(b), which transforms the model into a 
quarter model owing to the biaxial symmetry. After sim-
plification, a fixed boundary is set to the left end of the 
model, while the right is set with a concentrated force F 
and a moment M. On the one hand, the deformation of 
the ZPR cellular structure is driven mainly by the sloping 
walls' bending deformation when honeycombs withstand 
a load along direction-x [28]. On the other hand, the ver-
tical wall length along direction-x is smaller than that of 

the sloping walls. Therefore, the tensile deformation of 
the vertical walls is ignored, only the bending and tensile 
deformation of the sloping walls are considered.

According to the equilibrium equations [29], it can be 
concluded that the vertical force is zero, and the moment 
M is:

The strain energy U of a cantilever beam subjected to bend-
ing moment M(x) and axial load FN(x) can be expressed as:

where E, I, and A are the elastic modulus, inertia moment, 
and cross-sectional area, respectively.

In this paper, it is assumed that the bending moment 
in the anti-clockwise direction is positive. By now, the 
bending moment is:

And the axial load is:

Combining Eqs. (2), (3), and (4), it can be concluded that 
the strain energy U is:

where Ec
s
  is the elastic modulus of raw materials.

According to Castigliano's second theorem [30], when 
the elastic system is enduring static load, the displacement 
δi of the point of force action can be calculated by the 
partial derivative of the strain energy U for any applied 
force Fi:

Combining Eqs. (5) and (6), it can be concluded that 
horizontal displacement of the point of force action is:

According to the homogenization theory [31], the equivalent 
tensile modulus in direction-x can be deduced:

(1)M =
1

2
Fl sin�

(2)U = ∫
l

0

M2(x)

2EI
dx + ∫

l

0

F2

N
(x)

2EA
dx

(3)M(x) =
(
1

2
l − x

)
F sin�

(4)FN(x) = F cos�

(5)U =
F2l3 sin2 �

24Ec
s
I

+
F2l cos2 �

2Ec
s
A

(6)�i =
�U

�Fi

(7)�x =
Fl3 sin2 �

12Ec
s
I

+
Fl cos2 �

Ec
s
A

Fig. 2  Geometrical parameters of the ZPR cellular core

Fig. 3  Schematic illustration of unit cell model used to calculate the 
elastic modulus in direction-x: a tensile stress along direction-x; b 
simplified model
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where �x and �x are the equivalent stress and strain in direc-
tion-x, respectively.

Substituting Eqs. (7), (8) (9) into Eq. (10), it can be 
concluded that the equivalent elastic modulus in direction-
x can be expressed as:

Similarly, Fig. 4 shows the schematic illustration of the 
unit cell model used to calculate the elastic modulus in 
direction-θ.

In this case, the strain energy U is:

Then, displacement in direction-θ of the point of force 
action is:

According to the homogenization theory, the equivalent ten-
sile modulus along direction-x can be deduced:

(8)�x =
F

�lh0

(9)�x =
�x

l cos�

(10)Ex =
�x

�x

(11)Ex = Ec
s

�3 cos�

�(sin2 � + �2 cos2 �)

(12)U =
F2�l

Ec
s
A

(13)�� =
2F�

Ec
s
�h0

where �� and �� are the equivalent stress and strain in 
direction-θ, respectively

Substituting Eqs. (13), (14), (15) into Eq. (16), it can 
be concluded that the equivalent tensile modulus along 
direction-θ can be expressed as:

The rotation of the joints in the structure is assumed to 
be zero owing to the structural symmetry. According to 
the above assumptions, it is considered that the deforma-
tions of sloping walls and vertical walls have relative inde-
pendence, resulting that the strain along direction-x being 
zero when the cellular structure suffers a tensile loading 
along the direction-θ. Likewise, the above consideration 
also applies to the deformation of cellular structure along 
direction-x. Therefore, both values of the Poisson's ratio 
μθx and μxθ are considered to be zero.

The relative density of the ZPR cellular core is

where �c is the density of raw materials.

Vibrational Behavior of the Cylindrical Shell

Governing Equations

The assumptions generally employed in Sect. ''Vibrational 
Behavior of the Cylindrical Shell" are:

(1) The sandwich cylindrical shells are thin shells, and the 
shell thickness is less than 10% of the shell radius.

(2) No external load is borne to the sandwich cylindrical 
shell.

(3) Compared with the radius of the sandwich cylindrical 
shell, its deformations are small. The cross-section of 
the sandwich cylindrical shell remains perpendicular 
to the middle surface after deformation.

(4) Rotary inertia and shear deformation are neglected.

(14)�� =
F

h0l cos�

(15)�� =
��

2�l

(16)E� =
��

��

(17)E� = Ec
s

�

cos�

(18)� = �c
(2 + �)�

2� cos�

Fig. 4  Schematic illustration of unit cell model used to calculate the 
elastic modulus in direction-θ: a tensile stress along direction-θ; b 
simplified model
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(5) The outer and inner layers are bonded perfectly to the 
middle layer.

Duo to axisymmetry, arbitrary particle displacement of 
the cylinder caused by bending, based on the CLST [32] is:

According to the linear kinematic relations [33], 
strain–displacement relations are:

Based on Hooke's law [34], the stress–strain relations of the 
thin sandwich cylindrical shell are as the following:

where Q(k)

ij
(i, j = 1, 2) are elastic constants and given as

(19)

⎧
⎪⎪⎨⎪⎪⎩

Ux(x, z, t) = u(x, t) − z
�w(x, t)

�x

U�(x, z, t) = 0

Uz(x, z, t) = w(x, t)

(20)

⎧
⎪⎨⎪⎩

�x =
�Ux

�x
=

�u

�x
− z

�2w

�x2

�� =
Uz

r
=

w

R + z

(21)

{
�x

��

}
=

(
Q

(k)

11
Q

(k)

12

Q
(k)

21
Q

(k)

22

){
�x

��

}
, k = 1, 2, 3

(22)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Q
(k)

11
= E(k)

x
∕
�
1 − �

(k)

x�
�
(k)

�x

�

Q
(k)

12
= E

(k)

�
�
(k)

x�
∕
�
1 − �

(k)

x�
�
(k)

�x

�

Q
(k)

21
= E(k)

x
�
(k)

�x
∕
�
1 − �

(k)

x�
�
(k)

�x

�

Q
(k)

22
= E

(k)

�
∕
�
1 − �

(k)

x�
�
(k)

�x

�
, k = 1, 2, 3

where E(k)
x

 and E(k)

�
 are effective elastic modulus of the inner, 

outer, and core layer. �(k)

�x
 and �(k)

x�
 are the Poisson's ratios. 

k = 1, 2, and 3 stand for the inner, core, and outer layers, 
respectively.

For simplicity, it is assumed that the inner and outer lay-
ers have the same material performances with elastic modu-
lusE , density �t , and Poisson's ratio� . Therefore, we obtain:

The equivalent material performances of the ZPR cel-
lular, including elastic modulus, density, and Poisson's 
ratios, are obtained in Sect. "Effective Mechanical Per-
formances of Cellular Core Layer with ZPR":

The kinetic energy T, strain energy U and the external 
work W, are given as:

(23)

⎧
⎪⎨⎪⎩

E(1)
x

= E(3)
x

= E
(1)

�
= E

(3)

�
= E

�
(1)

x�
= �

(3)

x�
= �

(1)

�x
= �

(3)

�x
= �

�(1) = �(3) = �t

(24)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

E(2)
x

= Ec
s

�3 cos�

�(sin2 � + �2 cos2 �)

E
(2)

�
= Ec

s

�

2 cos�

�
(2)

x�
= �

(2)

�x
= 0

�(2) = �c
(2 + �)�

2� cos�

(25)⎧⎪⎪⎪⎨⎪⎪⎪⎩

T =
1

2

�
3�

k=1

�
∫

t

0
∫

zk+1

zk
∫

l

0
∫

2�

0

�(k)

��
�Ux

�t

�2

+

�
�Uz

�t

�2
�
(R + z)d�dxdzdt

��

U =
1

2

�
3�

k=1

�
∫

t

0
∫

zk+1

zk
∫

l

0
∫

2�

0

�
�(k)

x
�(k)
x

+ �
(k)

�
�
(k)

�

�
(R + z)d�dxdzdt

��

W = 0

The governing equations of the sandwich cylindrical shell 
containing the ZPR cellular core are based on deduction 
from Hamilton's principle [35]:

where

(26)

⎧⎪⎨⎪⎩

R
�Nx

�x
− C2

�2u

�t2
−

C3

2

�3w

�x�t2
= 0

C1

�4w

�x2�t2
− C2

�2w

�t2
+

C3

2

�3u

�x�t2
+ R

�2Mx

�x2
− N� = 0
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Table 1  Value of αi, η and �m for different boundary conditions [37]

Boundary 
conditions

�i η �m

SS-SS �1 = 0, �2 = 0,
�3 = 0, �4 = -1,

mπ 1

F-SS �1 = 1, �2 = 1,
�3 = 1, �4 = 1,

tan � = tanh � cosh �−cos �

sinh �−sin �

C-SS �1 = 1, �2 = -1,
�3 = 1, �4 = -1,

tan � = tanh � cosh �−cos �

sinh �−sin �

Fig. 5  The 2D geometric model for the simulation of the mechanical 
properties of cellular core

Table 2  Boundary conditions on FE models to calculate the mechani-
cal properties of cellular core

Moduli along direction-x Moduli along direction-θ

Boundary A ux = u� = uz free
Boundary B ux = imposed, u� = uz = 0 free
Node C Free ux = u� = uz

Node D Free ux = u� = uz

Node E Free u� = imposed, ux = uz = 0

Node F Free u� = imposed, ux = uz = 0

Table 3  Material performances of cellular core in FEM

Properties (unit) Quantity

Material performances of cellular core α 2
β 0.1
Ec

s
(GPa) 200

Poisson's ratio 0.3
ρc (kg/m3) 7800

(a) (b)

Fig. 6  Theoretical and simulation results of effective mechanical properties of cellular core: a effective elastic modulus in direction-x, b effective 
elastic modulus in direction-θ 
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Then, the governing equations rewrite as follows:

where

According to Hamilton's principle, the boundary conditions 
are also given as:

(27)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nx =

3�
k=1

∫
zk+1

zk

�(k)
x

R + z

R
dz

Mx =

3�
k=1

∫
zk+1

zk

�(k)
x

R + z

R
zdz

N� =

3�
k=1

∫
zk

zk−1

�
(k)

�
dz

C1 =
1

12
�tR(h3 − h

3

0
) +

1

12
�(2)Rh3

0

C2 =
�
�t(h − h0) + �(2)h0

�
R

C3 = −
1

6
�(2)h3

0
−

1

6
�t
�
h
3 − h

3

0

�

(28)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

A11
�3w
�x3

− A12
�2u
�x2

− A13
�w
�x

−
C3

2
�3w
�x�t2

− C2
�2u
�t2

= 0

C1
�4w
�x2�t2

+A21
�4w
�x4

− C2
�2w
�t2

+
C3

2
�3u
�x�t2

−A22
�3u
�x3

+ A23
�u
�x

+ A24w = 0

(29)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

A11 = A22 =
E
(

h3 − h30
)

12
(

�2 − 1
) −

E(2)
x h30
12

A12 =
ER(h − h0)
�2 − 1

− E(2)
x Rh0

A13 = A23 =
E�

(

�2 − 1
)

(

h − h0
)

A21 =
ER(h3 − h30)

12
(

�2 − 1
) −

E(2)
x Rh30
12

A24 =
1
12

E
�2 − 1

(

h3 − h30
) 1
R3 − 1

12
E(2)
� h30

1
R3

+ E
�2 − 1

(

h − h0
) 1
R
− E(2)

� h0
1
R

Boundary conditions may be written as:

simply supported boundary (SS)

clamped supported boundary (C)

free boundary (F)

Natural Frequency

For a cylindrical shell with different boundaries, as shown 
in Fig. 1, one can assume the solution forms of the field of 
spatial displacement as [36]:

where A and B are two unknown coefficients, and ω denotes 
the angular frequency.

By substituting Eqs. (32) into Eqs. (31a, 31b, 31c), 
boundary conditions then become:

The axial modal function �(x) is defined as [37]:

(30)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

−2R
�
Nx�u

����
x=L

x=0
= 0 ⇒ Nx = 0ORu = 0 at x = 0, L

�
−2C1

�3w

�x�t2
− C3

�2u

�t2
− 2R

�Mx

�x

�
�w

�����

x=L

x=0

= 0 ⇒ −2C1

�3w

�x�t2
− C3

�2u

�t2
− 2R

�Mx

�x
= 0ORw = 0 at x = 0,L

�
2RMx�

�
�w

�x

������
x=L

x=0

= 0 ⇒ Mx = 0OR
�w

�x
= 0 at x = 0, L

(31a)w = Nx = Mx = 0

(31b)u = w =
�w

�x
= 0

(31c)Nx = Mx = −2C1

�3w

�x�t2
− C3

�2u

�t2
− 2R

�Mx

�x
= 0

(32)

⎧⎪⎨⎪⎩

u = A
��(x)

�x
sin (�t)

w = B�(x) sin (�t)

(33)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�(x) =
�2�(x)

�x2
= 0, (SS)

�(x) =
��(x)

�x
= 0, (C)

�2�(x)

�x2
=

�3�(x)

�x3
= 0, (F)
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where �i (i = 1,2,3,4) values 0 or ± 1 are determined for each 
boundary condition. η is a natural number of axial waves. �m 
is a coefficient dependent on η. Table 1 shows the value of 
�i , η and �m for different boundary conditions.

Substituting Eqs. (32), (33), and (34) into (28) results in a 
set of governing eigenvalue equations:

where

To obtain the angular frequencies of the sandwich cylindri-
cal shell, we solve the equation |||Lij

||| = 0 . Then the following 
polynomial can be factorized into:

where, λi (i = 1, 2, 3) are constants. By solving Eq. (37), one 
can obtain two angular frequencies in the axial and radial 
directions. This investigation considers only the smallest 
angular frequency.

(34)
�(x) =�1 cosh

(
�x

L

)
+ �2 cos

(
�x

L

)

− �m

(
�3 sinh

(
�x

L

)
+ �4 sin

(
�x

L

))

(35)
(
L11 L12
L21 L22

)(
A

B

)
=

(
0

0

)

(36)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

L11 = C2

��

�x
�2 − A12

�3�

�x3

L12 = A11

�3�

�x3
− A13

��

�x
+

C3

2

��

�x
�2
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Numerical Simulation

In order to verify the calculation results in the above theo-
ries, numerical simulation with a commercial FE software 
ABAQUS (version 6.14) is carried out. Unit cell with a 
2-node linear element B21 is used to analyze the effective 
mechanical performances of the ZPR cellular core, as shown 

in Fig. 5. The tensile of the honeycomb under a linear static 
loading was developed by imposing concentrated force P 
along direction-x and direction-θ. The boundary conditions 
are listed in Table 2. The effective stress �FEM is calculated 
by �FEM =

P

�lh0
 , The effective strain �FEM is calculated by 

�FEM =
P

�lh0
 and �FEM =

Ui

2l cos�
(i = 1, 2) , where U1 and U2 are 

the displacement along direction-x and direction-θ, respec-
tively. The modulus along direction-x and direction-θ were 
then obtained as the ratios between the effective stresses and 
strains. Table 3 itemizes the corresponding material perfor-
mances of the cellular core in FEM. The relative percentage 
error is given as:

 where �theoretical and �FEM are the theoretical and simulation 
results, respectively.

Figure 6 shows the theoretical and FE results of equiva-
lent mechanical performances of the cellular core under 
different internal angles. One can see that the theoretical 
predictions of the elastic modulus of the cellular core are 
consistent with the simulation results both in direction-x 
and direction-θ. The mean relative percentage error of the 
elastic modulus in direction-x is 1.98%, while in direction-θ 
is 0.01%. The main reason is that the deformations of the 
vertical cellular walls are ignored in predicting the elastic 
moduli in direction-x. The simulation results, it should be 
noted, are somewhat below the theoretical ones, contrib-
uting to the difference between the simulation model and 
the theoretical model [38]. In fact, the beam model applied 
to the Finite element simulation is the Timoshenko beam, 
while to theoretical analysis is the Euler–Bernoulli beam. In 
addition, with the increase of the internal angle, the elastic 
moduli in direction-x decrease, while the elastic moduli in 
direction-θ grow.

To evaluate the accuracy of natural frequencies in the 
current method, Table 4 lists the natural frequencies of the 
isotropic elastic cylindrical shell under the SS-SS boundary 
calculated by the current method, FEM, experiment [39], 
and four shell theories [40]: (1) Soedel (SST), (2) Flügge 
(FST), (3) Morley-Koiter (MKST) and (4) Donnell (DST), 
where Exact and APP. denote exact and approximate solu-
tions, respectively. If we chose h0 = 0, the vibration charac-
teristics of the sandwich cylindrical shell would turn into the 

(38)Error(%) =
||�theoretical − �FEM

||
�theoretical

× 100%

Table 5  Boundary conditions on FE models to calculate the natural frequencies

SS-SS SS-F SS-C

A u� = uz = 0,UR� = URz = 0 u� = uz = 0,UR� = URz = 0 u� = uz = 0,UR� = URz = 0

B u� = uz = 0,UR� = URz = 0 free ux = u� = uz = 0,URx = UR� = URz = 0

Fig. 8  Error for the natural frequencies of the SS-SS shell

Table 6  Geometry dimensions and material properties of sandwich 
cylindrical shells

Properties (unit) Quantity

Geometric dimension of the shell L (m) 1
R (m) 0.2
h (mm) 10
h0 (mm) 8

Material properties of cellular core α 2
β 0.1
φ (degree) 30
Ec

s
(GPa) 200

Poisson's ratio 0.3
Mass density (kg/m3) 7800

Material properties of inner/outer 
layer

E (GPa) 0.008
μ 0.3
ρt (kg/m3) 0.93
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vibration characteristics of an isotropic cylindrical shell. In 
this case, the geometry dimensions and material properties 
are chosen as E = 68.2GPa, ρ = 2700 kg/m3, and v = 0.33. 
L = 1.7272 m, R = 0.0762 m, and h = 0.00147 m. In addi-
tion, unlike FEM analysis of effective mechanical properties, 
a 3D model with 8-node linear brick C3D8R is employed 
to calculate the natural frequencies of the elastic and iso-
tropic cylindrical shell, as shown in Fig. 7. The boundary 
conditions are listed in Table 5, where ui and URi are dis-
placements in x, θ, and z directions and related rotations, 
respectively.

Figure 8 shows the errors for natural frequencies of the 
SS-SS shell obtained by experiment, Soedel, Flügge, Mor-
ley-Koiter, Donnell, and FEM relative to those obtained by 
the current method. It can be seen that some discrepancies 

are made between the natural frequencies obtained by the 
present method and DST (Exact). Except for DST (Exact) 
and MKST (Exact), the error values of the natural frequen-
cies of the SS-SS shell are less than 5%. Uncertainties affect-
ing the results among those theories are due to the various 
assumptions made about the form of small terms and the 
order of terms that are retained in the analysis [41, 42]. Gen-
erally, the DST is the simplest of these theories. The FST 
is felt to be the most accurate. The various shell theories 
sometimes predict significantly different results [43]. How-
ever, over broad ranges of parameters of engineering impor-
tance, these theories yield similar results [44]. In addition, as 
shown in Table 4, the theoretical result of natural frequency 
in the current method is higher than the FEM and FST owing 
to the neglect of rotary inertia and shear deformation.

(a) (b)

Fig. 9  Effect of a α and b β on the relative density of cellular core versus internal angle φ 

(a) (b)

Fig. 10  Effect of a α and b β on the elastic modulus in direction-x of cellular core versus φ 
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Results and Discussion

The structural parameter analysis is evaluated in this section. 
Since the validity of theoretical predictions is confirmed in 
FEM and some available literature results in Sect. "Numeri-
cal simulation", all the results are theoretical values accord-
ing to Table 6 except those mentioned in this section.

Effective Mechanical Properties of ZPR Cellular Core 
Layer

Figure 9 describes the effects of α and β on the relative den-
sity of cellular core versus internal angle φ. The plot illus-
trates that an increased internal angle φ leads to an increase 
in the relative density of the cellular core when other param-
eters are given fixed values. In addition, geometric param-
eters, including α and β, provide opposite contributions to 
the relative density. In other words, a decrease of α and/
or an increase of β will increase the cellular core's relative 
density when φ keeps constant. Indeed, the increase of φ can 
decrease the equivalent area of the cellular core, resulting in 
an increase in the relative density. While the equivalent area 
increases with decrease of α.

Figure 10 illustrates the effects of α and β on the elastic 
modulus along direction-x of cellular core versus φ. It is 
clear that the elastic modulus in direction-x decreases with 
increasing φ value for fixed α and β values, which is similar 
to Fig. 6(a). An increase of φ value leads to the increase of 
the bending of the cell wall along direction-x. Consequently, 
φ value is increased, resulting in a decreased elastic modulus 
in direction-x. From Fig. 10(a), it can be seen that the elastic 
modulus in direction-x decreases with the increase of α values 
when other parameters are given fixed values owing to the 
increased cross-sectional area induced by the parameters α. In 

addition, Fig. 10(b) indicates that β increases, the elastic modu-
lus in direction-x increases when other parameters are given 
fixed values. In the unit cell, increasing value of φ and decreas-
ing value of β tend to increase the bending deformation along 
the direction-x, resulting in larger effective strains and lower 
equivalent elastic modulus. The decreasing value of α leads 
to smaller sectional area normal to loading direction, leading 
to large equivalent stress and elastic modulus in direction-x.

Figure 11 illustrates the effects of α and β on the elastic 
modulus along the direction-θ of the cellular core versus 
φ. The elastic modulus in direction-θ increases with the 
increase of φ value for fixed α and β values, which is simi-
lar to Fig. 6(b). An increasing internal angle φ decreases a 
cross-section perpendicular to the loading direction, leading 
to larger equivalent stress and elastic modulus. As shown 
in Fig. 11(a), the α value variations do not affect the elas-
tic modulus in direction-θ when other parameters remain 
constant. According to the above analysis in Sect. 2.1, the 
deformations of diagonal and vertical walls have relative 
independence. No deformation occurs in sloping walls 
when the cellular structure suffers a tensile loading along 
the direction-θ. Therefore, the variations of α value are 
irrelevant to the elastic modulus in direction-θ. In addition, 
Fig. 11(b) indicates that an increase of β value leads to an 
increasing elastic modulus in direction-θ when other param-
eters remain constant owing to the increasing cross-section 
of vertical walls.

Natural Frequencies of Sandwich Cylindrical Shell

Figure 12 shows the effects of α on natural frequencies of 
the shell containing ZPR cellular core versus φ under differ-
ent boundaries, where β = 0.1, R = 0.2 m, h0/h = 0.8, L/R = 5, 
R/h = 20. The detailed values of natural frequency in Fig. 12 

(a) (b)

Fig. 11  Effect of a α and b β on the elastic modulus along direction-θ of cellular core versus φ 
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(a) (b)

(c)

Fig. 12  Natural frequencies of the shell versus internal angles φ, for different α (β = 0.1, R = 0.2 m, h0/h = 0.8, L/R = 5, R/h = 20)

Table 7  Effects of α on 
natural frequencies of the 
shell containing ZPR cellular 
core versus φ under different 
boundaries (β = 0.1, R = 0.2 m, 
h0/h = 0.8, L/R = 5, R/h = 20)

φ (degress) SS-SS (rad/s) SS-F (rad/s) SS-C (rad/s)

α = 1.5 α = 2.0 α = 2.5 α = 1.5 α = 2.0 α = 2.5 α = 1.5 α = 2.0 α = 2.5

10 596.3 555.1 523.4 762.6 713.4 672.7 721.2 674.7 636.2
20 318.9 298.4 281.4 409.9 385.5 361.7 387.6 362.7 342.1
30 205.7 192.6 181.7 264.4 247.5 233.5 250.0 234.1 220.9
40 142.9 133.9 126.4 183.7 172.1 162.5 173.7 162.8 153.7
50 101.3 95.0 89.8 130.2 122.1 115.4 123.1 115.5 109.1
60 70.2 65.9 62.4 90.2 84.7 80.2 85.3 80.1 75.8
70 44.7 42.1 39.9 57.4 54.1 51.3 54.3 51.1 48.5
80 22.2 21.0 20.1 28.5 27.0 25.8 26.9 25.5 24.4
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(a) (b)

(c)

Fig. 13  Natural frequencies of the shell versus internal angles φ, for different β (α = 2, R = 0.2 m, h0/h = 0.8, L/R = 5, R/h = 20)

Table 8  Effects of β on 
natural frequencies of the 
shell containing ZPR cellular 
core versus φ under different 
boundaries (α = 2, R = 0.2 m, 
h0/h = 0.8, L/R = 5, R/h = 20)

φ (degress) SS-SS (rad/s) SS-F (rad/s) SS-C (rad/s)

β = 0.10 β = 0.15 β = 0.20 β = 0.10 β = 0.15 β = 0.20 β = 0.10 β = 0.15 β = 0.20

10 555.1 728.9 843.8 713.4 936.8 1084.5 674.7 886.0 1025.6
20 298.4 428.8 541.8 385.5 551.1 696.3 362.7 521.2 658.6
30 192.6 283.1 368.3 247.5 363.9 473.4 234.1 344.1 447.7
40 133.9 198.3 261.0 172.1 254.8 335.4 162.8 241.0 317.2
50 95.0 140.9 186.4 122.1 181.1 239.6 115.5 171.3 226.6
60 65.9 97.5 129.3 84.7 125.3 166.2 80.1 118.5 157.2
70 42.1 61.8 82.0 54.1 79.5 105.3 51.1 75.2 99.6
80 21.0 30.3 39.9 27.0 38.9 51.3 25.5 36.8 48.6
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(a) (b)

(c)

Fig. 14  Natural frequencies of the shell versus h0/h for different R/h (α = 2, β = 0.1, φ = 30°, h = 0.01 m, L/R = 5)

Table 9  Effects of R/h on 
natural frequencies of the shell 
containing ZPR cellular core 
versus h0/h under different 
boundaries (α = 2, β = 0.1, 
φ = 30°, h = 0.01 m, L/R = 5)

h0/h SS-SS (rad/s) SS-F (rad/s) SS-C (rad/s)

R/h = 20 R/h = 30 R/h = 40 R/h = 20 R/h = 30 R/h = 40 R/h = 20 R/h = 30 R/h = 40

0.1 212.4 141.6 106.2 272.9 182.0 136.5 258.1 172.1 129.1
0.2 201.3 134.2 100.7 258.8 172.5 129.6 244.7 163.2 122.4
0.3 197.5 131.7 98.8 253.8 169.2 126.9 240.1 160.0 120.0
0.4 195.6 130.4 97.8 251.3 167.6 125.7 237.7 158.5 118.8
0.5 194.4 129.6 97.2 249.8 166.5 124.9 236.3 157.5 118.1
0.6 193.6 129.0 96.8 248.8 165.9 124.4 235.3 156.9 117.6
0.7 193.0 128.7 96.5 248.1 165.4 124.0 234.6 156.4 117.3
0.8 192.6 128.4 96.3 247.5 165.0 123.8 234.1 156.1 117.0
0.9 192.2 128.2 96.1 247.1 164.7 125.5 233.7 155.8 116.8



1617Journal of Vibration Engineering & Technologies (2024) 12:1603–1620 

1 3

(a) (b)

(c)

Fig.15  Natural frequencies of the shell versus R/h for different L/R (α = 2, β = 0.1, φ = 30°, h = 0.01 m, h0/h = 0.8)

Table 10  Effects of L/R on natural frequencies of the shell containing ZPR cellular core versus R/h under different boundaries (α = 2, β = 0.1, 
φ = 30°, h = 0.01 m, h0/h = 0.8)

R/h SS-SS (rad/s) SS-F (rad/s) SS-C (rad/s)

L/R = 2 L/R = 3 L/R = 4 L/R = 5 L/R = 2 L/R = 3 L/R = 4 L/R = 5 L/R = 2 L/R = 3 L/R = 4 L/R = 5

10 962.9 641.9 481.4 385.2 1237.5 825.0 618.8 495.0 1170.4 780.3 585.2 468.2
20 201.3 321.0 240.7 192.6 618.8 412.5 309.4 247.5 580.2 390.1 292.6 234.1
30 197.5 214.0 160.5 128.4 412.5 275.0 206.3 165.0 390.1 260.1 195.1 156.1
40 195.6 160.5 120.4 96.3 309.4 206.3 154.7 123.8 292.6 195.1 146.3 117.0
50 194.4 128.4 96.3 77.0 247.5 165.0 123.8 99.0 234.1 156.1 117.0 93.6
60 193.6 107.0 80.2 64.2 206.3 137.5 103.1 82.5 195.1 130.0 97.5 78.0
70 193.0 91.7 68.8 55.0 176.8 117.9 88.4 70.7 167.2 111.5 83.6 66.9
80 192.6 80.2 60.2 48.1 154.7 103.1 77.3 61.9 146.3 97.5 73.1 58.5
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are listed in Table 7. It can be concluded that the natural fre-
quencies of this system decrease with the increase of φ value 
for SS-SS, SS-F, and SS-C boundary conditions. In addition, 
an increase of α results in decline in natural frequencies.

Figure 13 exhibits the effects of β on natural frequencies 
of the shell containing ZPR cellular core versus φ under 
different boundaries, where α = 2, R = 0.2 m, h0/h = 0.8, 
L/R = 5, R/h = 20. Natural frequencies of this system 
increase with the increase of β value. The detailed values 
of natural frequency in Fig. 13 are listed in Table 8. From 
the mechanical properties of the cellular core obtained in 
Sect. "Effective Mechanical properties of ZPR Cellular 
Core Layer", we can conclude that an increasing inter-
nal angle φ leads to an increase in the relative density, 
resulting in lower natural frequencies. Likewise, the intri-
cate trend of natural frequencies induced by α and β can 
be expounded by the mechanical properties of the cel-
lular core. As shown in Fig. 9, an increase of α and/or a 
decrease of β will increase the overall mass, resulting in 
the natural frequencies decreasing.

Figure 14 shows the effects of radius-to-thickness ratio 
R/h on natural frequencies of the shell versus containing 
ZPR cellular core core-thickness ratio h0/h under differ-
ent boundaries, where α = 2, β = 0.1, φ = 30°, h = 0.01 m, 
L/R = 5. The detailed values of natural frequency in Fig. 14 
are listed in Table 9. Results show that as R/h increases, the 
natural frequencies decrease. Moreover, the natural frequen-
cies decrease with the increase of h0/h. That is, the density 
of elastic and isotropic materials is less than that of this 
system's cellular core. When the shell thickness h is given a 
definite value, an increase in core thickness h0 leads to the 
reduction of the inner and outer layer thickness. In other 
words, the increased h0 will increase the shell's overall mass, 
resulting in the natural frequencies decreasing. In addition, 
the increased h0 can weaken the core layer's enhancement 
effect on the sandwich shell's global bending rigidity, lead-
ing to the decline of the global bending rigidity of the sand-
wich shell. At this point, the enhancement effect of the core 
layer as the upper and lower panel spacing on the overall 
bending stiffness of the sandwich shell is weakened, result-
ing in the reduction of the overall bending stiffness of the 
sandwich shell.

Figure 15 shows the influences of length-to-radius 
ratio L/R on natural frequencies of the shell containing 
ZPR cellular core versus R/h under different boundary 
conditions, where α = 2, β = 0.1, φ = 30°, h = 0.01  m, 
h0/h = 0.8. The detailed values of natural frequency in 
Fig. 15 are listed in Table 10. Those diagrams illustrate 
the natural frequencies decrease with the increase of the 
L/R, which is very similar to what was reported by Li 
et al. [45]. This intuitively correct because the stiffness 
decreases with the increases in length.

Conclusions

This work investigates the effective mechanical proper-
ties of a ZPR cellular core and the vibrational behavior 
of sandwich cylindrical shells with the ZPR cellular core. 
Homogenization methods are used to analyze the effec-
tive mechanical properties of the cellular core. The CLST 
and Hamilton principles are employed to form the equi-
librium equations to determine the vibrational behavior of 
the sandwich cylindrical shells. The small discrepancies 
between the theoretical predictions and the FEM results 
prove the analytical models are accurate for engineers to 
quickly select geometric parameters in designing a desired 
structure. The following conclusions are drawn from this 
study:

(1) These structural geometric parameters contribute to 
the effective mechanical performances of the ZPR 
cellular core, including the relative density and the 
effective modulus. For example, an increased α and/
or a decreased β will lead to the relative density of 
the cellular core increasing, and the elastic modulus 
in direction-x of the cellular core decreases with the 
increase of α while increases with the increase of β.

(2) The effective mechanical performances of the cellular 
core and geometric parameters of the shell can influ-
ence the natural frequencies of the sandwich cylindri-
cal shell under different boundaries driven by chang-
ing overall mass and bending rigidity of the sandwich 
shell. For example, an increase of α and/or a decrease 
in β leads to an increase in relative density, resulting in 
larger natural frequencies. The increase of core thick-
ness h0 leads to the natural frequencies decrease owing 
to the weakened overall bending rigidity of the sand-
wich shell.
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