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Abstract
Purpose:  For most existing control approaches, the overhead crane systems are usually modeled as the single-pendulum 
model. However, when the hook mass is too large to be ignored and the distance between the payload and the hook cannot 
be neglected, the crane exhibits double-pendulum dynamics. Therefore, the double-pendulum dynamics of the overhead 
crane systems are taken into consideration in this study.
Methods:  A new enhanced anti-swing control strategy is developed for the positioning and swing elimination control of 
overhead crane systems. First, based on the system dynamic equations, an auxiliary control input is introduced. Then, an 
elaborate Lyapunov function is constructed and a nonlinear anti-swing control approach is presented for the overhead crane 
system with double-pendulum dynamics. Finally, rigorous theoretical analysis is given to prove the convergence of the system 
states, that is, positioning and swing elimination control objective is achieved.
Results and Conclusion:  Simulation tests are included to verify the effectiveness and robustness of the devised approach. In 
addition, a comparison study between the proposed method and existing control methods is provided. The obtained simula-
tion results show that the proposed control method possesses superior control performance.

Keywords  Mechanical system · Vibration elimination · Overhead crane · Motion control · Underactuated system

Introduction

Underactuated mechanical systems, which have fewer actua-
tors than degrees of freedom, are extensively applied in vari-
ous industrial fields in recent years [1–11]. The overhead 
crane system, as a typical mechanical underactuated system, 
has been widely used in railway transportation, iron and steel 
chemical industry, port and other places, the main work of 
which is driving the payload smoothly and safely to its des-
tination. Similar to other underactuated mechanical systems, 
the fact that the payload can be only indirectly controlled 

by the motion of the trolley brings a great challenge for the 
control of the overhead crane system.

Recently, a lot of control strategies have been presented 
for overhead crane systems. Specially, to suppress the swing 
of the payload, some energy-based approaches are developed 
for overhead crane systems [12–14]. In fact, the parameters 
of mechanical systems cannot be accurately known and the 
mechanical systems usually suffer from external distur-
bances. For the purpose of addressing the above mentioned 
issues, the adaptive control technology [15–17] and the slid-
ing mode control technology [18, 19] are applied to the con-
trol of overhead crane systems. Moreover, some open-loop 
control strategies, including input shaping methods [20–22] 
and some methods based on trajectory planning [23, 24], are 
also developed to realize the control objectives for overhead 
cranes. Besides the traditional nonlinear approaches, some 
intelligent control algorithms are also presented to address 
the control problems of overhead crane systems in recent 
years [25–28].

It is worthwhile to point out that above-mentioned 
approaches model the overhead crane system as the single-
pendulum model with the assumption that the payload and 
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the hook are regarded as one mass point. For this assump-
tion, the hook mass and the distance between the payload 
and hook are ignored. However, in practical overhead crane 
systems, the payload is usually connected to a hook through 
the steel cable, which means that there is a certain distance 
between the hook and the payload. In addition, the hook 
mass connected to the trolley is usually large, which can-
not be neglected. Therefore, the hook and the payload will 
exhibit different swings and the single-pendulum assumption 
does not hold when the mass of the hook is too large and 
the distance between the payload and hook is not negligi-
ble. Therefore, the overhead crane systems behave double-
pendulum dynamics (as shown in Fig. 1), which greatly 
increases the complexity of the dynamic model for the over-
head crane system and even makes the methods presented 
for single-pendulum cranes invalid. To this end, some results 
have been reported in [29–33] to address the control issue 
of double-pendulum overhead crane systems. Especially, for 
the double-pendulum overhead cranes, Ref. [31] propose a 
new quasi-proportional integral derivative control method. 
For the purpose of improving the performance index, some 
optimal control approaches are also applied to double-pen-
dulum cranes in [34–36].

For double-pendulum overhead cranes, the fact that three 
degrees of freedom need to be controlled by one control 
input makes the control problem for the overhead crane sys-
tems extremely challenging. Although some excellent and 
constructive works have been reported in the literature, some 
issues need to be solved. In particular, the interconnection 
and damping assignment passivity-based control (IDA-PBC) 
technique is used to the control of underactuated systems, 
where control methods are designed by solving a series of 

partial differential equations [14]. The passivity-based con-
trol is usually used to construct a suitable Lyapunov func-
tion for the double-pendulum overhead cranes, however, the 
energy damping rate only depends on the trolley [37]. To 
enhance the coupling behavior among the trolley movement, 
the hook swing, and the payload swing, a novel energy-cou-
pling-based control method is introduced in [38], where the 
system dynamic model of the overhead crane needs to be 
linearized when making control design and stability analy-
sis. With the motivation to address these problems, a new 
enhanced anti-swing control law is developed with the con-
sideration of double-pendulum dynamics. More precisely, 
firstly, we implement some basic transformations on the 
system dynamics and the acceleration variable is regarded 
as the auxiliary control input to be designed. Next, both an 
elaborate Lyapunov function and a corresponding auxiliary 
control input are introduced. Subsequently, the final control 
strategy is developed for the double-pendulum overhead 
crane system. After that, the stability of the closed-loop 
system and the convergence of the system states are strictly 
analyzed using Lyapunov theory and LaSalle’s invariance 
theorem. At last, the developed method is tested in Matlab/
Simulink to demonstrate its effectiveness and robustness.

The rest sections of this paper are outlined as follows. In 
Sect. 2, the dynamic model of the overhead crane system is 
provided. In Sect. 3, controller design and corresponding 
stability analysis are given. Simulation tests are included in 
Sect. 4. Finally, some conclusions are made in Sect. 5.

Dynamic Model of the Overhead Crane 
System

In this paper, we consider the double-pendulum over-
head crane system as shown in Fig. 1. By employing the 
Euler–Lagrange approach, the double-pendulum overhead 
crane system can be described with the following dynamics 
[31]

where x(t), �1(t) , �2(t) represent the trolley displacement, 
hook swing angle and payload swing angle, respectively; 
the acceleration constant of the gravity is expressed by g; 

(1)
m1ẍ + m2𝜃̈1 cos 𝜃1 − m2𝜃̇

2
1
sin 𝜃1

+ m3𝜃̈2 cos 𝜃2 − m3𝜃̇
2
2
sin 𝜃2 = F

(2)
m2ẍ cos 𝜃1 + m2l1𝜃̈1 + m4𝜃̈2 cos(𝜃1 − 𝜃2)

+ m4𝜃̇
2
2
sin(𝜃1 − 𝜃2) + m2g sin 𝜃1 = 0

(3)
m3ẍ cos 𝜃2 + m4𝜃̈1 cos(𝜃1 − 𝜃2) + m3l2𝜃̈2

− m4𝜃̇
2
1
sin(𝜃1 − 𝜃2) + m3g sin 𝜃2 = 0

Fig. 1   Structure of the double-pendulum overhead crane system
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the driving force is represented by F(t); m1,m2,m3,m4 are 
system parameters, the explicit expressions of which are 
described as follows

where mc , mh , mp represent the mass of the trolley, hook and 
payload, respectively; l1 is the length of the rope; l2 denotes 
the distance between the hook center and the payload center.

In this paper, the following auxiliary variables are intro-
duced for the simplicity of the subsequent analysis process

Then, the equations of the dynamic (1)-(3) can be rewritten 
into a compact form as follows

where

The main objectives of the double-pendulum overhead crane 
are driving the payload smoothly and safely to its destination 
and ensuring no residual swing of the payload and hook. To 
realize the objectives of the system, we will design a non-
linear control strategy to position the trolley to the specified 
location and suppress the swing of the hook and payload, 
which means

where xd ∈ ℝ is the specified location of the trolley.
For practical cranes, the following assumption is reason-

ably made [29, 31].

Assumption 1  The swing of the hook and payload is within 
−

�

2
≤ �1, �2 ≤

�

2
.

Main Results

In this section, a nonlinear control strategy will be developed 
to realize the control objectives of the double-pendulum 
overhead crane system. Moreover, rigorous stability analysis 

m1 = (mc + mh + mp),m2 = (mh + mp)l1

m3 = mpl2,m4 = mpl1l2

S1 = sin �1, S2 = sin �2, S12 = sin(�1 − �2)

C1 = cos �1, C2 = cos �2, C12 = cos(�1 − �2)

(4)M11ẍ +M12𝜃̈ + V1 = F

(5)M21ẍ +M22𝜃̈ + V2 = 0

𝜃 = [𝜃1 𝜃2]
T, M11 = m1

M12 = MT
21

= [m2C1 m3C2], V1 = −m2𝜃̇
2
1
S1 − m3𝜃̇

2
2
S2

M22 =

[

m2l1 m4C12

m4C12 m2l2

]

, V2 =

[

m2gS1 + m4𝜃̇
2
2
S12

m3gS2 − m4𝜃̇
2
1
S12

]

(6)lim
t→∞

[

x 𝜃1 𝜃2 ẋ 𝜃̇1 𝜃̇2

]T
=
[

xd 0 0 0 0 0
]T

of the closed-loop system will be given to demonstrate the 
feasibility of the presented control method.

Controller Design

First, a partial feedback linearizing control law is derived as 
follows based on (4) and (5)

where v(t) = ẍ(t) is an auxiliary signal which should be 
designed. Thus, we could design a suitable acceleration 
signal ẍ(t) to obtain the desired controller.

For the double-pendulum overhead crane system, the total 
mechanical energy of which is

Then, the derivative of Ehp(t) can be obtained as follows

Meanwhile, inserting (2) and (3) into Ėhp(t) leads to

Based on v(t) and Ėhp(t) , the following Lyapunov function 
candidate is introduced

where kp, kv ∈ ℝ
+ are constants and ex(t) is the positioning 

error, that is

Next, taking the derivative of V(t) along the closed-loop sys-
tem (1)-(3) and making some algebraic manipulations yields

wherein the conclusion of (10) is used.
Based on (13), the following auxiliary input signal is 

designed

where kd ∈ ℝ
+ is a constant. By inserting the above control 

scheme (14) into (7), one can get the controller as follows

(7)F = (M11 −M12M
−1
22
M21)� + V1 −M12M

−1
22
V2

(8)

Ehp =
1

2
m2l1𝜃̇

2
1
+

1

2
m3l2𝜃̇

2
2
+ m4𝜃̇1𝜃̇2C12

+ m2g(1 − C1) + m3g(1 − C2)

(9)

Ėhp = m2l1𝜃̇1𝜃̈1 + m3l2𝜃̇2𝜃̈2 + m4𝜃̈1𝜃̇2C12

+ m4𝜃̇1𝜃̈2C12 − m4𝜃̇
2
1
𝜃̇2S12 + m4𝜃̇1𝜃̇

2
2
S12

+ m2g𝜃̇1S1 + m3g𝜃̇2S2

(10)Ėhp = −(m2𝜃̇1C1 + m3𝜃̇2C2) ⋅ 𝜐

(11)V(t) =
1

2
kp(ex − kvm2S1 − kvm3S2)

2 +
1

2
ẋ2 + kvEhp

(12)ex = x − xd

(13)
V̇(t) = (ẋ − kvm2𝜃̇1C1 − kvm3𝜃̇2C2)(𝜐

+kp(ex − kvm2S1 − kvm3S2)
)

(14)
𝜐 = − kp(ex − kvm2S1 − kvm3S2) − kd(ẋ

− kvm2𝜃̇1C1 − kvm3𝜃̇2C2)
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Stability Analysis

In this section, to prove the stability of the closed-loop system 
and the convergence of the states, the following theorem is 
introduced.

Theorem 1  The developed nonlinear control method ensures 
the control objectives of the double-pendulum overhead 
crane system are achieved, that is

Proof  First, the following Lyapunov function candidate 
given in (11) is introduced

Taking the time derivative of V(t), applying the conclusion 
of (10), and substituting the devised control law (15) into the 
resulting equation lead to

which means that V(t) ∈ L∞ and the closed-loop system is 
stable in the Lyapunov sense. Furthermore, the following 
conclusion can be derived

To demonstrate that the origin is the only equilibrium point, 
the following invariant set is introduced based on LaSalle’s 
invariance principle

According to (19), one can obtain the following conclusion

it is clear from (20) that

where �1 ∈ ℝ is a constant. Thus, one can derive from (14), 
(20) and (21) that

Then, we assume that �(t) ≠ 0 and it can be concluded that

(15)

F = (M11 −M12M
−1
22
M21)(−kp(ex − kvm2S1 − kvm3S2)

− kd(ẋ − kvm2𝜃̇1C1 − kvm3𝜃̇2C2)) + V1 −M12M
−1
22
V2

(16)lim
t→∞

[

ex 𝜃1 𝜃2 ẋ 𝜃̇1 𝜃̇2

]T
= [0 0 0 0 0 0]T

V(t) =
1

2
kp
(

ex − kvm2S1 − kvm3S2
)2

+
1

2
ẋ2 + kvEhp

(17)V̇(t) = −kd
(

ẋ − kvm2𝜃̇1C1 − kvm3𝜃̇2C2

)2
≤ 0

(18)x, ẋ, 𝜃1, 𝜃̇1, 𝜃2, 𝜃̇2 ∈ L∞

(19)S =
{

(x, ẋ, 𝜃1, 𝜃̇1, 𝜃2, 𝜃̇2) ∣ V̇(t) = 0
}

(20)ẋ − kvm2𝜃̇1C1 − kvm3𝜃̇2C2 = 0

(21)ex − kvm2S1 − kvm3S2 = �1

(22)ẍ = 𝜐 = −kp(ex − kvm2S1 − kvm3S2) = −kp𝛼1

The conclusion of (23) means that x(t) will go infinity when t 
goes infinity, which contradicts the result of (18). Therefore, 
the supposition of �(t) ≠ 0 is invalid, which further makes 
the following equality hold

Analogously, one can get the following conclusion from (24)

where �2 ∈ ℝ is a constant. It is derived from (25) that

where �3 ∈ ℝ is a constant. To guarantee �3 = 0 , the sum of 
(2) and (3) is written as

Integrating both sides of (27) yields

where �4 ∈ ℝ is a constant. It can be derived that �3 = 0 
from the conclusion of (18). Therefore, the following equali-
ties hold

According to the triangular transformation formula, one can 
rewrite the item (𝜃̇1 + 𝜃̇2)C12 of (30) as follows

which further implies from (26) and (30) that

Substituting the resulting expression of (32) into (30) for 
(𝜃̇1 + 𝜃̇2)C12 and utilizing the expressions of m2,m3,m4 lead 
to

(23)ẋ(t) →

{

−∞ 𝜐(t) < 0,

+∞ 𝜐(t) > 0,
as t → ∞

(24)ẍ = 𝜐 = −kp(ex − kvm2S1 − kvm3S2) = 0

(25)
ẋ = 𝛼2

ex = kvm2S1 + kvm3S2

}

⟹ ẋ = 0

(26)m2S1 + m3S2 = 𝛼3 ⟹ m2𝜃̇1C1 + m3𝜃̇2C2 = 0

(27)

d

dt

[

m2l1𝜃̇1 + m3l2𝜃̇2 + m4(𝜃̇1 + 𝜃̇2)C12

]

= −m2gS1 − m3gS2

(28)m2l1𝜃̇1 + m3l2𝜃̇2 + m4(𝜃̇1 + 𝜃̇2)C12 = −𝛼3gt + 𝛼4

(29)m2S1 + m3S2 = 0

(30)m2l1𝜃̇1 + m3l2𝜃̇2 + m4(𝜃̇1 + 𝜃̇2)C12 = 𝛼4

(31)

(𝜃̇1 + 𝜃̇2)C12 = (𝜃̇1 + 𝜃̇2)(C1C2 + S1S2)

= (𝜃̇1C1C2 + 𝜃̇2S1S2) + (𝜃̇1S1S2 + 𝜃̇2C1C2)

(32)

(𝜃̇1 + 𝜃̇2)C12 = −
m3

m2

(𝜃̇2C
2
2
+ 𝜃̇2S

2
2
) −

m2

m3

(𝜃̇1S
2
1
+ 𝜃̇1C

2
1
)

= −
m3

m2

𝜃̇2 −
m2

m3

𝜃̇1
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Analogously, it is clear that

which, along with (29) and (30), further indicates that

Based on (2), (3) and the conclusions that

Then, based on Assumption 1, one can obtain that

By summarizing the results in (37), (21), (22) and (24), we 
can draw the conclusion that

Hence, the conclusion of the theorem is proven.

Simulation Results

In this section, a series of digital simulation tests are 
included using Matlab/Simulink to demonstrate the control 
performance of the developed control law. Specially, three 
groups of simulation tests will be carried out. For the first 
group, the LQR method and an existing nonlinear control 
method designed in [31] are selected for a comparison study. 
For the second group, the control performance of the pro-
posed method with different system parameters and desired 
positions will be examined. For the third group, the robust-
ness of the proposed method with respect to different exter-
nal disturbances will be examined.

Comparative Simulation

F i r s t ,  w e  s e t  t h e  i n i t i a l  c o n d i t i o n  a s 
[x(0) �1(0) �2(0)]

T = [0 0 0]T . The parameters of the system 
are adopted as

(33)

m2l1𝜃̇1 + m3l2𝜃̇2 + m4(𝜃̇1 + 𝜃̇2)C12

= m2l1𝜃̇1 + m3l2𝜃̇2 − m4

(

m3

m2

𝜃̇2 +
m2

m3

𝜃̇1

)

=

(

m3l2 −
m4m3

m2

)

𝜃̇2 = 𝛼4

(34)𝛼4 = 0, 𝜃̇2 = 0

(35)𝜃̇1 = 0

(36)ẍ = 0, 𝜃̇1 = 0, 𝜃̇2 = 0, 𝜃̈1 = 0, 𝜃̈2 = 0

(37)S1 = 0, S2 = 0 ⟹ �1 = 0, �2 = 0

(38)ex = 0 ⟹ x = xd

l1 = 0.8m, l2 = 0.2m, mc = 10 kg,

mh = 0.2 kg,mp = 3 kg, g = 9.8 kg∕s2

and the desired position is set as xd = 2.4m . The control 
gains of the presented approach are adopted as

For simplicity, the expressions of the LQR method and the 
existing nonlinear control method are not given here. The 
simulation results of the three methods are displayed in 
Fig. 2.

It can be observed from Fig. 2 that the LQR method, the 
existing nonlinear control method and the developed method 
can make the trolley reach the specified position rapidly. 
However, we can also observe the fact that both the LQR 
method and the existing nonlinear control method need more 
time to eliminate the hook swing and even can not eliminate 
the payload swing, which affects work efficiency and some-
times causes payload damages in some cases. The compara-
tive simulation results of this group show that the proposed 
control method possesses superior control performance.

kp = 1, kd = 2, kv = 0.6
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LQR Existing Nonlinear Method Proposed Method

Fig. 2   Simulation results for the LQR method, the existing nonlinear 
method, and the presented approach
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Stabilization of Different Conditions

For the second simulation test, we will evaluate the control 
performance of the developed control law with different con-
ditions. Specially, we will examine the performance of the 
devised control law with the following cases.

Case 1  The desired position is changed from xd = 2.4m to 
xd = 1.8m . The initial condition is zero. The system param-
eters and control gains are selected as the same as those in 
the comparative simulation part.

Case 2  The system parameters are changed to mc = 7 kg

,   mh = 0.1 kg ,   mp = 1 kg ,   l1 = 0.4m ,   l2 = 0.1m

, g = 9.8 kg∕s2 . The initial condition is zero. The desired 
position and control gains are chosen as the same as those 
in the comparative simulation part.

The simulation results of this group are displayed in 

Figs. 3 and 4, respectively. We can observe from Figs. 3 

and 4 that the swing of the hook and payload is successfully 
suppressed and eliminated with different conditions. The 
simulation results show that the proposed method has good 
performance regardless of whether the desired position or 
system parameters are changed.

Robustness Examination

To examine the robustness of the proposed control method 
with respect to different external disturbances, we add three 
kinds of disturbances to the payload. Specifically, random dis-
turbances are imposed on the payload between 10 and 15 s , 
sinusoid disturbances are imposed on the payload between 
22 and 24 s , and impulsive disturbances are imposed on the 
payload between 30 and 30.1 s , all with the amplitude of 2◦ . 
All of other conditions are chosen as the same as those in the 
comparative simulation part.

The simulation results of this group are shown in Fig. 5. 
From the obtained simulation results, one can find that three 
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Fig. 3   Simulation results for the presented approach (15) with respect 
to Case 1
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Fig. 4   Simulation results for the presented approach (15) with respect 
to Case 2
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types of external disturbances are all eliminated by the pro-
posed control method, which indicates satisfactory robustness 
with respect to uncertain disturbances.

Conclusions

In this study, a new enhanced anti-swing control strategy 
is developed for overhead crane systems with double-pen-
dulum dynamics. The presented control algorithm has both 
the theoretical and practical significance. On the one hand, 
the double pendulum-dynamics of the overhead crane sys-
tem is taken into consideration to improve the applicability 
in practical engineering. On the other hand, a novel control 
strategy is presented to suppress the payload swing and 
hook swing. Compared with existing approaches for the 
double-pendulum overhead crane control, digital simula-
tion results have shown that the presented approach has 
excellent performance.
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