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Abstract
Purpose  The examination of the behavior of wave propagation through different kinds of materials under various math-
ematical models certainly brings out new properties of those materials to the fore. In this contribution, the circular-crested 
Lamb-type waves in an isotropic homogeneous, elasto-thermal plate with voids sandwich-packed by inviscid liquid layers 
have been examined in the context of Lord–Shulman and Green–Lindsay generalizations.
Methods  Helmholtz’s decomposition principle has been used to separate the solenoidal part and the lamellar part of the 
waves. The normal mode analysis technique has been used to obtain solutions to governing equations. With the help of solu-
tions, the obtained partial differential equations have been converted to ordinary differential equations to find the eigenvalues 
of the elasto-porothermal plate bordered with inviscid liquid layers. The problem has also been solved from a numerical 
point of view and the results have been portrayed graphically.
Results  The transverse horizontal wave being unaltered due to voids and temperature gradient gets separated from the cou-
pled system corresponding to elastic waves (compressional and transverse vertical), thermal waves, and wave motion due to 
voids. Apart from that, each layer of liquid possesses one longitudinal wave. The frequency equations have been derived for 
the flexural and longitudinal wave modes by solving the stiffness matrix. The inviscid fluid and voids decrease the magnitude 
of phase velocity and attenuation coefficient. Thermal relaxation times have a small impact on wave propagation.
Conclusions  The problem of circular-crested Lamb-type waves has been solved mathematically which lays a theoretical 
foundation for further study of Lamb-type wave propagation in plates. The present work may find applications in many fields 
such as the petroleum industry, earthquake engineering, soil dynamics, hydrology, as well as biomechanics.
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Introduction

Biot [3] proposed the concept of coupled thermoelasticity 
which though removed the one drawback of classical uncou-
pled thermoelasticity but could not fix the paradox of infi-
nite velocity of thermal waves. Therefore, to eliminate this 
paradox, Lord and Shulman [19], and Green and Lindsay 
[9] proposed the theories of generalized thermoelasticity.

The circular-crested waves emanate from a point source 
which produces waves propagating in a pattern of concen-
tric circles. Lamb waves are guided elastodynamic waves 
propagating in plates which are employed for sensors, 

nondestructive evaluation, and material characterization. 
Knowledge of dispersion characteristics is the basis of these 
applications. The cylindrical panels and plates are frequently 
used as structural components. Therefore, their vibrational 
characteristics are helpful to design such components. Thick 
composite cylindrical plates and shells can be used in appli-
cations concerning offshore, aerospace, submarine struc-
tures, civil engineering structures, pressure vessels, chemical 
pipes as well as automotive suspension components. These 
structures can be easily exposed to various temperature 
fields in different environments.

The theory of multi-modal waves in the solid plate has 
been established by Lamb [16], and in his honor, these 
waves are called, after his name, Lamb waves. Wu and Zhu 
[34] derived the frequency equation for the elastic waves in 
the solid plate framed with the non-viscous layers of liq-
uid. Such type of commonality of the solid–liquid interface 
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while studying wave propagation can also be seen in those 
of Pathania and Dhiman [23, 24], Pathania and Joshi [26], 
as well as Kumar and Kumar [15]. Eisenberger and Jabareen 
[6] found the exact axisymmetric vibration frequencies of 
circular and annular variable thickness plates and employed 
the exact element method to find the solutions. The study of 
generalized elasto-thermal straight/circular-crested waves in 
the isotropic homogeneous solid plate joined by the non-vis-
cous fluid layers has been carried out by Sharma and Patha-
nia [29, 30]. The study about the circular-crested waves can 
also be found in the work of Sharma and Singh [31], Kaur 
[12], Kumar and Kansal [14], Zhou et al. [36], and Pathania 
et al. [22].

Cowin and Nunziato [5] proposed the linear theory of 
elasto-porous materials. Some problems of technological 
interest such as static pure bending of an isotropic, homo-
geneous, poroelastic beam have been studied by Cowin and 
Nunziato [5], in which they proved that the stress distribu-
tion across the beam is not linear as opposed to the classical 
elasticity solution due to the void-volume variation. Ieşan 
[11] carried forward the work of Cowin and Nunziato [5] 
by considering the temperature effect in an isotropic homo-
geneous elasto-porous material. Tomar [33] obtained the 
frequency equation for the flexural and longitudinal modes 
of waves in a micropolar elasto-porous plate. The waves 
in the solid plate have also been studied by Li et al. [18], 
Gilbert et al. [7], Hawwa [10], and Pathania and Dhiman 
[25]. Youssef [35] derived the governing equations describ-
ing the behavior of a thermo-poroelastic medium using the 
generalized thermoelasticity model with one relaxation 
time. Singh and Pal [32] studied the waves in the thermo-
poroelastic semi-infinite material underlying another differ-
ent thermo-poroelastic semi-infinite material using the LS 
generalization.

Biswas and Sarkar [4] studied plane wave propagation 
in a thermoelastic medium with vacuous cavities in the 
context of the dual-phase-lag model of generalized ther-
moelasticity. The equations of generalized thermoelastic-
ity with voids, gravity, and micro-temperatures have been 
derived by Othman and Abd-Elaziz [21] using the coupled 
and generalized thermoelasticity models. Khan et al. [13] 
studied the magneto-thermoelastic waves in an electrically 
conducting rotating monoclinic system. Lan et  al. [17] 
studied the effects of homojunction on the transmitted and 
reflected waves at the interface between two elasto-thermal 
semiconductor half-spaces. Using a new heat conduction 
model including fractional operators without non-singular 
kernels, Abouelregal [1] carried out a comparative study of 
a thermoelastic problem for an infinite rigid cylinder with 
thermal properties. Using the Generalized Ohm’s law and 
Moore–Gibson–Thompson thermoelastic model, Moaaz 
et al. [20] analyzed the transversely isotropic annular circu-
lar cylinder plunged in the magnetic field. Using the MGT 

thermoelastic model, Abouelregal and Alesemi [2] investi-
gated the mechanical and thermal waves in anisotropic, vis-
coelastic, fiber-reinforced, magnetic solid with temperature-
dependent properties.

The proposed work is the extension of the work due to 
Sharma and Pathania [30] by considering the additional 
influencing factor voids in the solid plate. Void volume frac-
tion has been taken as an independent kinematic variable. 
The inclusion of a new variable requires additional micro-
forces to provide proper equilibrium of the micropore vol-
ume. The voids affect the density of the material and thereby 
the waves propagating through them. Therefore, the results 
are comparatively more accurate by taking into account the 
presence of vacuous cavities rather than neglecting it. In 
order to develop the micro equilibrium of the void-volume, a 
new micromechanics theory involving the balance of equili-
brated force is introduced. It would be inadequate to leave 
out the void-volume fraction field which also contributes to 
the coupled system of waves in the poro-thermoelastic mate-
rial. The literature review indicates that the current model 
has not been discussed so far to the best of the authors’ 
span of knowledge. To fill this research gap, in the present 
paper, crested thermo-poroelastic Lamb-type waves in the 
isotropic homogeneous plate sandwich-packed by the lay-
ers of liquid without viscosity have been investigated using 
the Lord–Shulman (LS) and Green–Lindsay (GL) models. 
The frequency equation and its particular cases have been 
derived along with the amplitude of displacements, volume 
fraction field change, and temperature change. Apart from 
that, some results such as thick plate waves, long-wavelength 
waves, etc. have also been discussed. It has been found that 
there exists a coupled system of three longitudinal, and one 
decoupled shear vertical wave in the solid plate. In addition, 
one dilatational wave in each fluid layer occurs. Computa-
tional work has also been carried out and manifested by plot-
ting the various graphs which prove the theoretical findings.

Mathematical Formulation of the Problem

Physical Model

As shown in Fig. 1, the model under consideration com-
prises a cylindrical layer of inviscid fluid on top and bot-
tom of the thermo-poroelastic isotropic homogeneous 
cylindrical plate. The thickness of the plate and liquid 
layer is 2d and h , respectively. Initially, a uniform tem-
perature T0 has been maintained in the whole system. On 
the middle surface of the plate, the origin O of the cylin-
drical system of coordinates (r, �, z) is situated. The rz− 
plane has been chosen to coincide with the middle surface 
and the z−axis has been taken along the normal direction 
to this plane i.e., along with the thickness. The interfaces 
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z = ±d are subjected to various boundary conditions. The 
plane of incidence has been described by rz− plane and 
the solutions have been assumed explicitly independent 
of �−coordinate.

Governing Differential Equations

The behavior of inviscid fluid layers is governed by the 
Navier–Stokes equation. Governing equations for a 
thermo-poroelastic plate have been modeled by introduc-
ing the Lord–Shulman and Green–Lindsay models.

Inviscid Fluid

Following Sharma and Pathania [30], equations of motion 
for each inviscid layer can be written as

where

Here, 
(
uLq , 0, wLq

)
; q = 1 − 2 is the liquid displace-

ment vector; the superposed dot and subscript “,” are for 

(1)KL

(
uLq,rr +

uLq,r

r
−

uLq

r2
+ wLq,rz

)
= 𝜌LüLq ; q = 1 − 2,

(2)KL

(
uLq,rz +

uLq,z

r
+ wLq,zz

)
= 𝜌LẅLq

; q = 1 − 2.

q =

{
1 ;z ∈ [d, d + h]

2;z ∈ [−d, −d − h]
.

the partial derivative w.r.t. the time and space coordinate, 
respectively. �L is the mass density and KL is the liquid’s 
bulk modulus.

Thermo‑Poroelastic Solid

In the absence of equilibrated forces, external heat sources, 
and body forces, the governing equations, following Sharma 
and Pathania [30] and Pathania and Dhiman [23], for the 
solid thermo-poroelastic plate are

where the vector (u, 0,w) represents the displacement for the 
solid material; T  denotes the change in temperature; � and 
� are Lame’s parameters; K, �, and Ce represent, respec-
tively, the thermal conductivity, mass density, and the spe-
cific heat at constant strain; � is the variation in the field due 
to the void-volume fraction; � = (2� + 3�)�T is the thermal 
coefficient where �T is the thermal expansion coefficient; 
�∗, b, �1 , and �2 are material constants due to the vacuous 
cavities; m∗ is the thermo-porous parameter; � denotes the 
equilibrated inertia; t1 and t2 are the thermal relaxation times.

Dimensionless Basic Equations

The basic governing Eqs. (1)–(6) for the liquid and solid 
mediums, using non-dimensional quantities

(3)
(� + 2�)

(

u,rr +
u,r
r

− u
r2
)

+ �u,zz + (� + �)w,rz

+ b�,r − �
(

T + t2�2kṪ
)

,r = �ü,

(4)

(𝜆 + 𝜇)
(
u,rz +

u,z

r

)
+ 𝜇

(
w,rr +

w,r

r

)
+ (𝜆 + 2𝜇)w,zz

+ b𝜙,z − 𝛽
(
T + t2𝛿2kṪ

)
,z
= 𝜌ẅ,

(5)

− b

(
u,r +

u

r
+ w,z

)
+ 𝛼∗

(
𝜙,rr +

𝜙,r

r
+ 𝜙,zz

)

− 𝜉1𝜙 − 𝜉2𝜙̇ + m
∗
T = 𝜌𝜒

..

𝜙,

(6)

− T0
[

�
{(

u̇,r +
u̇
r
+ ẇ,z

)

+ t1�1k
(

ü,r +
ü
r
+ ẅ,z

)}

+ m∗(�̇ + t1�1k�̈
)

]

+ K
(

T,rr +
T,r
r

+ T,zz

)

= �Ce
(

Ṫ + t1T̈
)

,

t = �∗t, t1 = �∗t1, t2 = �∗t2, T =
T

T0
, c =

c

c∗
1

,

uLq =
��∗c∗

1
uLq

�T0
, wLq

=
��∗c∗

1
wLq

�T0
; q = 1 − 2,

Fig. 1   Cylindrical coordinates on a liquid-loaded plate of thickness 
2d extended infinitely in the radial direction
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after omitting bars, have been obtained as

where

Here, �∗ denotes the characteristic frequency of the solid 
plate; c∗

1
 , c∗

2
 and c∗

3
 are the velocities of the dilatational wave, 

(7)

u =
��∗c∗

1
u

�T0
, w =

��∗c∗
1
w

�T0
, r =

�∗r

c∗
1

, z =
�∗z

c∗
1

,

� =
�

�∗
, � =

�c∗
1

�∗
, � =

�∗2��

c∗2
1

,

(8)uLq,rr +
uLq,r

r
−

uLq

r2
+ wLq,rz

=
1

𝛿2
L

üLq ; q = 1 − 2,

(9)uLq,rz +
uLq,z

r
+ wLq,zz

=
1

𝛿2
L

ẅLq
; q = 1 − 2,

(10)

(
u,rr +

u,r

r
−

u

r2

)
+
(
1 − 𝛿2

)
w,rz + 𝛿2u,zz + a1𝜙,r

−
(
T + t2𝛿2kṪ

)
,r
= ü,

(11)

(
1 − 𝛿2

)(
u,rz +

u,z

r

)
+ 𝛿2

(
w,rr +

w,r

r

)
+ w,zz

+ a1𝜙,z −
(
T + t2𝛿2kṪ

)
,z
= ẅ,

(12)

−a2

(
u,r +

u

r
+ w,z

)
+ 𝜙,rr +

𝜙,r

r
+ 𝜙,zz − a3

(
𝜙 + 𝜉∗𝜙̇

)
+ a4T =

𝜙̈

𝛿2
1

,

(13)

− 𝜀T

(
u̇,r +

u̇

r
+ ẇ,z + t1𝛿1k

(
ü,r +

ü

r
+ ẅ,z

))
− a5

( .

𝜙+t1𝛿1k𝜙̈
)

+ T,rr +
T,r

r
+ T,zz =

.

T +t1T̈ ,

a1 =
bc∗2

1

�T0��
∗2
, a2 =

b��T0

�∗�c∗2
1

, a3 =
�1c

∗2
1

�∗�∗2
,

a4 =
m∗T0�

�∗
, a5 =

m∗c∗4
1

K��∗3
,

� =
c∗
2

c∗
1

, �1 =
c∗
3

c∗
1

, �L =
c∗
L

c∗
1

, c
∗
1
=

√
� + 2�

�
,

c
∗
2
=

√
�

�
, c

∗
3
=

√
�∗

��
, c

∗
L
=

√
KL

�L
,

(14)�∗ =
�2�

∗

�1
, �∗ =

Ce(� + 2�)

K
, �T =

�2T0
�Ce(� + 2�)

.

shear wave, and the wave due to void-volume fractional field 
variation, respectively, in the thermo-poroelastic solid plate. c∗

L
 

and �T are, respectively, the velocity of the dilational wave in 
the fluid and the thermomechanical coupling constant for the 
solid medium. aq; q = 1 − 5 and �∗ are the poro-thermoelastic 
coupling parameters that are obtained after the non-dimension-
alization of Eqs. (3)–(6). � , �1 and �L are the velocity ratios of 
c∗
2
 , c∗

3
 and c∗

L
 to c∗

1
.

Helmholtz Decomposition Principle

Using the Helmholtz decomposition principle, the solid and 
liquid displacements can be decomposed as

where � is the negative of the �−component of the vector 
potential 𝜓⃗ = (0, −𝜓 , 0) , similarly, GLq

 and G are the scalar 
potentials. Since inviscid fluid does not support the transver-
sal motion, therefore, vector potentials have not been con-
sidered in Eq. (15).

Using Eqs. (15) and (16), Eqs. (8)–(13) can be written as

where ∇2 =
�2

�r2
+

�

r�r
+

�2

�z2
 is the Laplacian operator in rz−

plane.

Solution of the Problem

Normal mode analysis has become one of the standard tech-
niques to obtain solutions to governing equations for wave 
propagation. This method provides the solutions accurately 

(15)uLq = GLq,r
, wLq

= GLq,z
; q = 1 − 2 ,

(16)u = G,r + �,z, w = G,z − �,r −
�

r
,

(17)∇2GLq
−

1

𝛿2
L

G̈Lq
= 0; q = 1 − 2,

(18)∇2𝜓 −
𝜓

r2
−

𝜓̈

𝛿2
= 0,

(19)∇2G − G̈ + a1𝜙 − T − t2𝛿2kṪ = 0 ,

(20)−a2∇
2G + ∇2𝜙 − a3

(
𝜙 + 𝜉∗𝜙̇

)
−

𝜙̈

𝛿2
1

+ a4T = 0,

(21)
−𝜀T∇

2
(
Ġ + t1𝛿1kG̈

)
− a5

(
𝜙̇ + t1𝛿1k𝜙̈

)
+ ∇2

T − Ṫ − t1T̈ = 0 ,
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without any assumed restrictions on displacements, void-
volume fraction field variation, temperature change, and 
stress distributions. In order to study the characteristics of 
waves, following Sharma and Pathania [30], the solutions 
have been chosen as

where GLq
(z); q = 1 − 2 , G(z), �(z), T(z), �(z) represent the 

waves’ amplitudes and � = �c is the non-dimensional angu-
lar frequency with � and c as the non-dimensional wavenum-
ber and phase velocity, J0(�r) and J1(�r) are the Bessel func-
tions of order zero and one, respectively. Solving the partial 
differential equations [Eqs. (17)–(21)] using the assumed 
solutions (22) and (23) for GLq

(z); q = 1 − 2 , G, �, T  and 
� gives

which represent the standing wave solutions for the bottom 
and upper layers, respectively:

where the unknowns Aq; q = 1 − 6 and Bq; q = 1 − 4 
represent the amplitudes of waves. Wq; q = 1 − 3 and 
Sq; q = 1 − 3 are the amplitude ratios.

Characteristic Equation and Its Solution

Here, m2
q
; q = 1 − 5 are the roots of the equation

(22)

{
GLq

, G, �, T
}
=
{
GLq

(z), G(z),�(z),T(z)
}
J0(�r)e

−��t,

(23)� = �(z)J1(�r)e
−��t,

(24)
GL1

= A5 sinm5[z − d − h]J0(�r)e
−��t for z ∈ [d, d + h],

(25)
GL2

= A6 sinm5[z + d + h]J0(�r)e
−��t for z ∈ [−d − h, −d],

(26)

G =
3
∑

q=1

(

Aq sinmqz + Bq cosmqz
)

J0(�r)e−��t

� =
3
∑

q=1
Wq

(

Aq sinmqz + Bq cosmqz
)

J0(�r)e−��t

T =
3
∑

q=1
Sq
(

Aq sinmqz + Bq cosmqz
)

J0(�r)e−��t

� =
(

A4 sinm4z + B4 cosm4z
)

J1(�r)e−��t

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

for z ∈ [−d, d],

(27)
5∏

q=1

m2 − m2

q
= 0,

which signifies the characteristic equation, the roots can be 
organized as

Equations (24)–(26) indicate that the characteristic roots 
m2

q
; q = 1 − 3 are coupled which corresponds to the coupled 

system of waves comprised of thermal waves, elastic waves, 
and volume fraction field waves while the characteristic 
roots m2

4, 5
 are uncoupled roots representing three decoupled 

mechanical waves, one in solid and one in each liquid layer, 
these uncoupled roots m2

4, 5
 can be obtained by introducing

in Eq. (28) for the appropriate values of q.
In addition, the unknowns �2

q
; q = 1 − 3 are the roots of 

the equation

with

where

Here, �� is the porothermal coupling parameter while �b 
denotes the poroelastic coupling parameter. �1 , �′1 and �2 are 
the time parameters. �0 , � and � are coupling parameters.

(28)m2

q
= �2

(
1 − �2

q
c2
)
; q = 1 − 5.

(29)�2
4
=

1

�2
, �2

5
=

1

�2
L

,

(30)�3 − L�2 +M� − N = 0,

L = � + � +
a3

�2

���
2

b

�T
,

M = �1 + �� −
a3��

�2

[
��
1

{
1 − �b

(
1 − ���2

)}
−

�1�
2

b

�T

]
,

(31)N = �1

(
� −

a3��

�2

)
,

�� =
a4a5

a3
, �b =

a2

a4
, �T =

a2a5

a1a4
, �0 = 1 − ���∗,

�1 = t1 + �, ��
1
= t1�1k + �, �2 = t2�2k + �; � = ��−1

,

� = 1 + �1 − ����
1
�2�T , � =

1

�2
1

−
a3�0

�2
.
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Amplitude Ratios

The amplitude ratios explore the effect of various interacting 
fields on the waves and are obtained as

Special Cases of the Roots and Amplitude Ratios

( i )  In  t he  case  o f  e l a s t i c i ty  wi t h  vo ids , 
m∗ = 0 = � ⇒ �T = 0 = �� , therefore, Eqs. (31) and (32) 
give

(ii) In the absence of voids, m∗ = 0 = b so that 
�� = 0 = �b , therefore, from (31) and (32), one gets

( i i i )  F u r t h e r ,  f o r  t h e  e l a s t i c  c a s e , 
m∗ = 0 = � = b ⇒ �T = 0 = �� = �b , Eqs. (35) and (36) 
reduce to

Wq =
a4

[
�2
q

(
1 + ���2�b

)
− 1

]

���2

(
�2
q
− �

)
+

a3

�2

���b

�T

,

(32)Sq = ��−1�−1
2

[
a1Wq + �2

(
1 − �2

q

)]
; q = 1 − 3.

(33)�2
1
+ �2

2
= 1 + � +

a3

�2

���
2

b

�T
, �2

1
�2
2
= � and �2

3
= �1,

(34)

Wq =

⎧⎪⎨⎪⎩

�2

�
�2
q
− 1

�

a1
; q = 1 − 2

0 ; q = 3

, Sq =

�
0; q = 1 − 2

1; q = 3
.

(35)�2
1
+ �2

3
= �, �2

1
�2
3
= �1 and �

2

2
= � ,

(36)

Wq =

�
0 ; q = 1, 3

1 ; q = 2
, Sq =

⎧⎪⎨⎪⎩

���−1
2

�
1 − �2

q

�
; q = 1, 3

0 ; q = 2

.

(37)�2
1
= 1 and �2

2
= � , �2

3
= �1,

(38)Wq =

{
0 ; q = 1, 3

1 ; q = 2
, Sq =

{
0 ; q = 1, 2

1; q = 3
.

Interface Conditions

The boundary conditions for the current problem at each 
solid–liquid smooth interface z = ±d of the thermo-poroe-
lastic solid plate and inviscid liquid layers have been con-
sidered as

Normal Stress‑Free Condition

The equilibrium of the total normal stress at the liquid–solid 
interface is given by (cf. Sharma and Pathania [30]

Shear Stress‑Free Condition

The equilibrium of the shear stress at the liquid–solid 
interface is given by (cf. Sharma and Pathania [30]

No‑Slip Condition

Here, the liquid is inviscid which becomes the cause of 
slippage between the thermo-poroelastic solid and the fluid 
medium. Therefore, to maintain the no slippage condition 
intact at the liquid–solid junction z = ±d , the z−compo-
nent of displacement of the liquid and solid is equal (cf. 
Qiu et al. [27]), i.e.,

Equilibrated Stress‑Free Condition

The boundary condition due to voids resembles that of 
classical elasticity. The boundary condition on the self-
equilibrated stress vector is taken to have a vanishing nor-
mal component (cf. Sadd [28]), which results in

(39)

G̈ − 2𝛿2
(
G,rr + 𝜓,rz +

G,r + 𝜓,z

r

)
=

𝜌L
𝜌
G̈Lq

; q = 1 − 2.

(40)2G,rz + �,zz − �,rr −
�,r

r
+

�

r2
= 0.

(41)G,z − �,r −
�

r
= GLq,z

; q = 1 − 2.

(42)�,z = 0.
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Adiabatic and Isothermal Interface Condition

The solid–liquid interface z = ±d has been assumed adi-
abatic and isothermal (cf. Sharma and Pathania [30], i.e.,

Here, H is the coefficient of heat transfer which represents 
the isothermal and adiabatic solid–liquid interface when 
H → ∞ and H → 0 , respectively.

Frequency Equation

Using the solutions (24)–(26) in the boundary conditions 
(39)–(43), the system of ten linear homogeneous equations 
in ten unknowns Aq; q = 1 − 6 and Bq; q = 1 − 4 have been 
obtained in stiffness matrix form as

where “tr” represents the transpose of the row vector. The 
determinant of the coefficient matrix of these equations is 
zero to obtain the non-zero solution for Aq; q = 1 − 6 and Bq; 
q = 1 − 4. Mathematically,

Equation (45) is the frequency equation for waves in 
the thermo-poroelastic isotropic homogeneous solid plate 
sandwich-packed by layers of non-viscous liquid. It is also 
known as the secular equation because it reveals complete 
information regarding the waves’ characteristics. After doing 
a rigorous mathematical workout, Eq. (45) becomes

(43)T,z + HT = 0.

(44)M
[
A1 B1 A2 B2 A3 B3 A4 B4 A5 A6

]tr
= 0,

(45)|M| = 0.

(46)

[
T1

T4

]±1
+

m1

m2

(
W3S1 −W1S3

W2S3 −W3S2

)[
T2

T4

]±1
+

m1

m3

(
W1S2 −W2S1

W2S3 −W3S2

)[
T3

T4

]±1
+

(
�L�

2
(
m2

4
+ �2

)
m1

�m5�
2
(
m2

4
− �2

)2
T5[
T4
]±1

+
4�2m1m4(
m2

4
− �2

)2
)(

1 +
W3S1 −W1S3

W2S3 −W3S2
+

W1S2 −W2S1

W2S3 −W3S2

)
+

4�2m4S1
(
W3 −W2

)
H
[
T4
]±1

(
m2

4
− �2

)2(
W2S3 −W3S2

)
[ (

m2

4
− �2

)2
W3

(
S1 − S2

)

4�2m2m4

[
T4
]±1

S1
(
W3 −W2

)
([

T1T2

T4

]±1
+

m1W1

(
S2 − S3

)

m3W3

(
S1 − S2

)
[
T2T3

T4

]±1
+

m2W2

(
S3 − S1

)

m3W3

(
S1 − S2

)
[
T1T3

T4

]±1)

+

(
1 +

(
m2

4
+ �2

)
�2�L

4�2��2m4m5

T5[
T4
]±1

)([
T1

T4

]±1
+

m1

(
W1 −W3

)
S2

m2

(
W3 −W2

)
S1

[
T2

T4

]±1
+

m1

(
W2 −W1

)
S3

m3

(
W3 −W2

)
S1

[
T3

T4

]±1)]
= 0,

where  Tq = tanmqd ; q = 1 − 4  and  T5 = tanm5h. 
Equation (46) satisfies the condition m5 ≠ 0 and 
m5h ≠ (2n − 1)�∕2 , n ∈ N  , set of natural numbers. Here, 
the superscript +1 and −1 represent flexural and longitudinal 
modes, respectively. The frequency Eq. (46) for the Ray-
leigh–Lamb-type equation resembles the same obtained by 
Pathania and Dhiman [23] for the longitudinal and flexural 
modes of thermo-poroelastic waves in the infinite rectan-
gular plate sandwich-packed by non-viscous liquid layers. 
Therefore, it proves that the Rayleigh–Lamb-type frequency 
equation also governs circularly crested thermo-poroelastic 
waves in the cylindrical isotropic homogeneous plate sand-
wich-packed by layers of non-viscous liquid layers. Though 
the relationship between frequency and wavenumber holds 
good whether the system chosen would be rectangular or 
cylindrical. In the case of circularly crested waves, the dis-
placements and stresses vary according to Bessel functions 
rather than trigonometric functions. For very large values 
of r,

Therefore, the motion becomes periodic at a compara-
tively larger distance from the origin which comes within 
four to five zeros of the Bessel function. The circularly 
crested waves approach straight crested waves for the large 
values of r . This result agrees with Sharma and Singh [31] 
and Graff [8]. As, for the large value of the radius, the curved 
periphery of the circle looks as if it is flat if its small portion 
is taken into consideration as Earth seems flat from the Earth 
itself although it is spherical when seen from space.

J0(Ξ) →
sin (Ξ) + cos (Ξ)√

�Ξ
,

J1(Ξ) →
sin (Ξ) − cos (Ξ)√

�Ξ
; Ξ = �r.
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Special Cases

Upon varying some of the functional parameters of the fre-
quency equation such as the width of the layer, voids, and 
temperature, we infer its various forms which have been 
discussed below.

Leaky Waves

The propagation of leaky Lamb waves has been used as an 
effective tool for nondestructive evaluation (NDE) of the 

structure of the solid body. Owing to the characteristics 
such as long-range inspection, multimode, and dispersion, 
Leaky Lamb waves can provide ample information about the 
defects or material properties as compared to the conven-
tional bulk wave methods. These have aroused extensive the-
oretical and experimental studies of Leaky Lamb waves in 
the past decades. If the width of the liquid layer approaches 
infinity i.e., if h → ∞, then some part of the energy in the 
plate leaks into the semi-infinite liquid. These waves are 
termed leaky Lamb waves. In this case, T5 → −� , therefore, 
Eq. (46) becomes

Isothermal Case

For the isothermal case (H → ∞) , Eq. (46) becomes

Adiabatic Case

For thermally shielded case (H → 0) , Eq. (46) reduces to

(47)

[
T1

T4

]±1
+

m1

m2

(
W3S1 −W1S3

W2S3 −W3S2

)[
T2

T4

]±1
+

m1

m3

(
W1S2 −W2S1

W2S3 −W3S2

)[
T3

T4

]±1
−

(
��L�

2
(
m2

4
+ �2

)
m1

�m5�
2
(
m2

4
− �2

)2[
T4
]±1

−
4�2m1m4(
m2

4
− �2

)2
)(

1 +
W3S1 −W1S3

W2S3 −W3S2
+

W1S2 −W2S1

W2S3 −W3S2

)
+

4�2m4S1
(
W3 −W2

)
H
[
T4
]±1

(
m2

4
− �2

)2(
W2S3 −W3S2

)
[ (

m2

4
− �2

)2
W3

(
S1 − S2

)

4�2m2m4

[
T4
]±1

S1
(
W3 −W2

)
([

T1T2

T4

]±1
+

m1W1

(
S2 − S3

)

m3W3

(
S1 − S2

)
[
T2T3

T4

]±1
+

m2W2

(
S3 − S1

)

m3W3

(
S1 − S2

)
[
T1T3

T4

]±1)

+

(
1 −

�
(
m2

4
+ �2

)
�2�L

4�2��2m4m5

[
T4
]±1

)([
T1

T4

]±1
+

m1

(
W1 −W3

)
S2

m2

(
W3 −W2

)
S1

[
T2

T4

]±1
+

m1

(
W2 −W1

)
S3

m3

(
W3 −W2

)
S1

[
T3

T4

]±1)]
= 0.

(48)

�
T1

T4

�±1
+

�
m3W3S1

�
T1
�±1

− m1W1S3
�
T3
�±1

m2W2S3
�
T3
�±1

− m3W3S2
�
T2
�±1

��
T2

T4

�±1
+

�
m1W1S2

�
T2
�±1

− m2W2S1
�
T1
�±1

m2W2S3
�
T3
�±1

− m3W3S2
�
T2
�±1

��
T3

T4

�±1

+

��
m2

4
+ �2

�
�2�Lm1

��2m5

�
m2

4
− �2

�2
T5�
T4
�±1 +

4�2m1m4�
m2

4
− �2

�2
�⎛⎜⎜⎜⎝

1 +
m2

�
m3W3S1

�
T1
�±1

− m1W1S3
�
T3
�±1�

m1

�
m2W2S3

�
T3
�±1

− m3W3S2
�
T2
�±1�

+
m3

�
m1W1S2

�
T2
�±1

− m2W2S1
�
T1
�±1�

m1

�
m2W2S3

�
T3
�±1

− m3W3S2
�
T2
�±1�

⎞
⎟⎟⎟⎠
= 0.

ξ

Region III 

Region I 

Region II 

ω

Fig. 2   Division of � − � plane into three regions



961Journal of Vibration Engineering & Technologies (2024) 12:953–969	

1 3

Different Regions of the Secular Equation

It is quite obvious that the secular Eq. (46) is the function 
of its characteristic roots mq; q = 1 − 4 , therefore, secular 
equation changes as and when characteristic roots alter.

Equation (46) can be represented in the plane (�, �) 
which defines a curve known as a dispersion curve. The 
nature of mq ; q = 1 − 4 decides that the curve can be sepa-
rated into three regions (cf. Figure 2) which are described 
below.

Region I

The secular Eq. (46) falls in the region I if the roots 
mq; q = 1 − 4 are replaced with �m′

q
;

q = 1 − 4 in the secular Eq. (46).

Region II

The secular Eq. (46) lies in region II if the roots 
mq; q = 1 − 3 are replaced with �m�

q
; q = 1 − 3 , leaving m4 

unchanged, in the secular Eq. (46).

Region III

Equation (46) represents the frequency equation for region 
III in the case of the thermally shielded and isothermal 
surface.

Thin Plate Waves

As the title implies, in this case 2d ≪ 𝜉−1 , i.e., the thickness 
of the plate is very small as compared with the wavelength 
of the thermo-poroelastic waves in the solid plate cladded 
with non-viscous liquid layers. For this region, these are also 
termed waves of long wavelengths. In this section, thin plate 
results have been discussed for regions I and II.

Thin Plate Waves for the Region I

Here, the thermally insulated case of the secular equation 
for the region I has been considered for the flexural mode 
of waves. In the secular equation for region I, hyperbolic 

(49)

[
T1

T4

]±1
+

m1

m2

(
W3S1 −W1S3

W2S3 −W3S2

)[
T2

T4

]±1
+

m1

m3

(
W1S2 −W2S1

W2S3 −W3S2

)[
T3

T4

]±1
+

(
�L�

2
(
m2

4
+ �2

)
m1

�m5�
2
(
m2

4
− �2

)2
T5[
T4
]±1

+
4�2m1m4(
m2

4
− �2

)2
)(

1 +
W3S1 −W1S3

W2S3 −W3S2
+

W1S2 −W2S1

W2S3 −W3S2

)
= 0.

tangent functions have been expanded up to the first two 
terms of the series and one obtains

where

In the absence of voids, Eq. (50), using relations (35) and 
(36), becomes

which is analogous to that of Sharma and Pathania [30] and 
Pathania and Dhiman [23].

Upon neglecting the effect of liquid 
(
�L → 0

)
 , Eq. (51) 

shrinks to

which matches that of Kaur [12] and Pathania and Dhi-
man [23].

Thin Plate Waves for Region II

The secular equation for region II has been considered for 
the insulated and longitudinal wave mode case and the tan-
gent hyperbolic and circular tangent functions except T5 have 
been expanded up to only the first order, therefore, the result-
ing frequency equation is

(50)

(
m

�2
4
− �2

)2
+

4

3
d
2�2m�2

4
−

1

3
d
2
(
m

�2
4
+ �2

)2 P
F

−
�L�

2
(
m�2

4
− �2

)
T5

�m5�
2d

= 0,

F = S�
1

(
W �

3
−W �

2

)
+ S�

2

(
W �

1
−W �

3

)
+ S�

3

(
W �

2
−W �

1

)
,

P =S�
1

(
m

�2
2
W

�
3
− m

�2
3
W

�
2

)
+ S

�
2

(
m

�2
3
W

�
1
− m

�2
1
W

�
3

)

+ S
�
3

(
m

�2
1
W

�
2
− m

�2
2
W

�
1

)
.

(51)

(
m

�2
4
− �2

)2
+

4

3
d
2�2m�2

4
−

1

3
d
2�2

(
m

�2
4
+ �2

)2

−
�L�

2
(
m�2

4
− �2

)
T5

�m5�
2d

= 0,

(52)
(
m�2

4
− �2

)2
+

4

3
d2�2m�2

4
−

1

3
d2�2

(
m�2

4
+ �2

)2
= 0,
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In the absence of voids i.e., for the elasto-thermal plate 
with liquid, using relations (35) and (36), Eq. (53) reduces to

which matches with Sharma and Pathania [30].
Neglecting the inviscid fluid, i.e., only for the elasto-

thermal plate, Eq. (54) reduces to

Equation (55) matches with Sharma and Pathania [30] 
and Kaur [12].

Thick Plate Waves

If the wavelength of waves approaches to zero i.e., if 
�−1 → 0, then the information regarding the asymptotic 
behavior of the solution can be achievable. In this case, 
the region I contains the characteristic roots of the secu-
lar equation. Hence, the secular equation for region I has 
been considered for a thermally insulated case. For � → ∞,

tanhm�
q
d → 1; q = 1 − 4 and tanm5h → −� . Hence, the 

secular equation for region I for the asymptotic behavior 
reduces to

where

For the elasto-thermal plate with voids, ignoring the 
inviscid fluid, Eq. (56) reduces to

which agrees with that of Kaur [12].

(53)

m
�2
1
S
�
1

(
m

�2
3
W

�
3
− m

�2
2
W

�
2

)
+ m

�2
2
S
�
2

(
m

�2
1
W

�
1
− m

�2
3
W

�
3

)
+ m

�2
3
S
�
3

(
m

�2
2
W

�
2
− m

�2
1
W

�
1

)

−

(
4 +

�Lc
2d
(
m2

4
+ �2

)
T5

�m5�
2

)
�2m�2

1
m�2

2
m�2

3(
m2

4
− �2

)2 F = 0.

(54)
m′2
1 + m′2

3 −
⎡

⎢

⎢

⎣

�2 +

(

4 +
�Lc2d

(

m2
4 + �2

)

T5
�m5�2

)

�2m′2
1 m

′2
3

(

m2
4 − �2

)2

⎤

⎥

⎥

⎦

= 0,

(55)m�2
1
+ m�2

3
−

(
�2 +

4�2m�2
1
m�2

3(
m2

4
− �2

)2
)

= 0.

(56)

(
�2

4
+ 1

)2[
S�
1
��
1

(
W �

3
��
3
−W �

2
��
2

)
+ S�

2
��
2

(
W �

1
��
1
−W �

3
��
3

)
+ S�

3
��
3

(
W �

2
��
2
−W �

1
��
1

)]

=

(
4��

4
±

��Lc
4

�5��
4

)
��
1
��
2
��
3
F,

��
q
=
√

�2
q
c2 − 1; j = 1 − 4, �q =

√
1 − �2

q
c2; q = 4 − 5.

(57)
(
�2

4
+ 1

)2[
S�
1
��
1

(
W �

3
��
3
−W �

2
��
2

)
+ S�

2
��
2

(
W �

1
��
1
−W �

3
��
3

)
+ S�

3
��
3

(
W �

2
��
2
−W �

1
��
1

)]
= 4��

1
��
2
��
3
��
4
F,

For the elasto-thermal plate with liquid, ignoring the 
voids, using relations (35) and (36), Eq. (56) becomes

where ��2
0
= 1 − c2.

Furthermore, for the elasto-thermal plate, ignoring both 
liquid and voids, Eq. (56) cuts down to

Equations (58) and (59) are also discussed by Sharma and 
Pathania [30] and Pathania and Dhiman [23].

Derivation of Amplitudes of Displacements, 
Temperature, and Volume Fraction Field 
Variation

In thin-walled structures such as plates and shells, upper 
and bottom surfaces guide the wave propagation producing 
transverse horizontal (TH) waves in the r�−plane and Lamb 
waves in the rz−plane. The displacement pattern of Lamb-
type waves can be seen in two forms named symmetric (lon-
gitudinal) and antisymmetric (flexural) modes (cf. Figure 3).

(58)

(

�24 + 1
)2[�′20 + �′21 + �′3

(

�′1 + �′3
)]

=
(

4�′4 ±
��Lc4

��4�5

)

�′1�
′
3
(

�′1 + �′3
)

,

(59)

(
�2

4
+ 1

)2[
��2
0
+ ��2

1
+ ��

3

(
��
1
+ ��

3

)]
= 4

(
��
1
+ ��

3

)
��
1
��
3
��
4
.

With the aid of Eqs. (16) and (26), one gets the ampli-
tudes of the r− and z−components of the change in the posi-
tion, void-volume fractional field, and the temperature as

(60)
usy =

[
��
(
cosm1z + L1 cosm2z +M1 cosm3z

)

+N1m4 cosm4z
]
B1J0(�r)e

−��t,
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Similarly, using Eqs. (15) and (24), amplitudes of displace-
ments for the bottom liquid layer are given by

(61)
wasy = −

[
m1 sinm1z + L1m2 sinm2z +M1m3 sinm3z

+��N1 sinm4z
]
B1J0(�r)e

−��t,

(62)
�sy =

[
W1 cosm1z + L1W2 cosm2z +M1W3 cosm3z

]
B1J0(�r)e

−��t,

(63)
Tsy =

[
S1 cosm1z + L1S2 cosm2z +M1S3 cosm3z

]
B1J0(�r)e

−��t,

(64)
uasy =

[
��
(
sinm1z + L∗

1
sinm2z +M∗

1
sinm3z

)

−N∗
1
m4 sinm4z

]
A1J1(�r)e

−��t,

(65)

wsy =
[
m1 cosm1z + L∗

1
m2 cosm2z +M∗

1
m3 cosm3z

−��N∗
1
cosm4z

]
A1J1(�r)e

−��t,

(66)
�asy =

[
W1 sinm1z + L∗

1
W2 sinm2z +M∗

1
W3 sinm3z

]
A1J1(�r)e

−��t,

(67)
Tasy =

[
S1 sinm1z + L∗

1
S2 sinm2z +M∗

1
S3 sinm3z

]
A1J1(�r)e

−��t.

(68)uL1 = ��O∗
1
sinm5[z − d − h]A1J1(�r)e

−��t,

Fig. 3   Displacement of Lamb wave modes

where

(69)wL1
= m5O

∗
1
cosm5[z − d − h]A1J1(�r)e

−��t,

L1 =
s4
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m3c1s3W3 − m1c3s1W1
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+ q∗m1m3m4c4s1s3

(
W3 −W1

)

s4
(
m2c3s2W2 − m3c2s3W3
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(
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(
m3c3s2W3 − m2c2s3W2

) ,

M∗
1
=

(
p∗c4s5 + q∗m4m5c5s4

)
m1m2c1c2

(
W2 −W1

)
+ m5c4c5

(
m2c2s1W2 − m1c1s2W1

)
(
p∗c4s5 + q∗m4m5c5s4

)
m2m3c2c3

(
W3 −W2

)
+ m5c4c5

(
m3c3s2W3 − m2c2s3W2

) ,

N∗
1
=

2�m5c5

�2
4
�2

[
m2m3c2c3s1

(
W3 −W2

)
+ m1m3c1c3s2

(
W1 −W3

)
+ m1m2c1c2s3

(
W2 −W1

)]
(
p∗c4s5 + q∗m4m5c5s4

)
m2m3c2c3

(
W3 −W2

)
+ m5c4c5

(
m3c3s2W3 − m2c2s3W2

) ,

O∗
1
= −c4

[
m1m2c1c2s3

(
W1 −W2

)
+ m2m3c2c3s1

(
W2 −W3

)
+ m1m3c1c3s2

(
W3 −W1

)]
(
p∗c4s5 + q∗m4m5c5s4

)
m2m3c2c3

(
W3 −W2

)
+ m5c4c5

(
m3c3s2W3 − m2c2s3W2

) .
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Here,

In addition, in the absence of liquid, displacements given 
by relations (60)–(67) are the same as obtained by Kaur [12].

Solution of the Secular Equation

The frequency Eq. (46) for Rayleigh–Lamb waves gives 
information about the behavioral pattern of the waves, for 
instance, phase velocity, attenuation coefficient, etc., which 
can be known after working on the frequency equation. To 
solve this frequency equation, the following relation has 
been considered.

which gives � = R + �Q;R = �∕V , Q ∈ R , a set of real 
numbers. Here Q and V  represent, respectively, the coef-
ficient of attenuation and waves’ speed. For the existence of 
waves, the real part of phase velocity c must be non-negative 
i.e., Re(c) ≥ 0 , where “ Re ” denotes the real part. For the 
undamped time-harmonic wave waves, the imaginary part of 
the phase velocity c must be zero i.e., Im(c) = 0 , where “ Im ” 
denotes the imaginary part. Also, for the damped waves, the 
imaginary part of the phase velocity c must be negative i.e., 
Im(c) < 0 . Five real roots of the secular Eq. (46) correspond 
to the propagation speeds of the elastic longitudinal waves, 
elastic shear waves, void-volume fraction variation waves 
(V-mode), and thermal waves for the solid medium as well 
as one compressional wave for each liquid layer. A program 
in MatLab software has been written to solve the Eq. (30) 
and the secular Eq. (46) to find the phase velocity, attenua-
tion coefficient, etc. with the aid of the functional iteration 
method, and the which yields

Specific Damping Capacity

In a stress cycle of the specimen, while strain is maximal, 
the rate at which energy dissipates in a system is named as a 
specific loss or specific damping capacity and can be meas-
ured for a stress cycle without any assumptions being made 
related to the nature of internal friction. The specific loss 
for the sinusoidal plane wave of small amplitude is given by

si = sinmid, ci = cosmid; i = 1 − 4, s5 = sinm5h, c5 = cosm5h,

p∗ =
�L

��2

(
2�2 − �2

4
�2

)
, q∗ =

4�2

�4
4
�4

.

(70)c−1 = V−1 + ��−1Q,

(71)V =
1

Re(�)
, Q = �Im(�).

Penetration Depth

The penetration depth of the surface waves is typically 
taken to be the depth at which the amplitude of the wave is 
attenuated to e−1 of its value at the surface. The characteris-
tic penetration depth is about 0.4�∗ for the Rayleigh waves 
with wavelength �∗ . The main point of difference between 
Rayleigh waves and Lamb waves is that Rayleigh waves 
penetrate only up to one full wavelength while Lamb waves 
penetrate and affect entire plate thickness. The penetration 
depth is given by

where Re(�) and Im(�) represent the real and imaginary part 
of the �.

Numerical Study

For the numerical findings, the solid plate has been supposed 
to be made up of magnesium crystal and the bordered layers 
have been supposed to be of water. The values of relevant 
parameters, following Pathania and Dhiman [23] are

For the longitudinal and flexural families of the wave for 
the different modes’ values n, the effect of wavenumber on 
the phase velocity has been depicted in Fig. 4. For the funda-
mental longitudinal mode, the phase velocity of Lamb-type 
waves is dispersionless and attains its value close to thermo-
poroelastic Rayleigh wave velocity. Phase velocity for the 
fundamental flexural mode 

(
A0

)
 has a small value for a low 

wavenumber value but as the wavenumber value increases, it 
first increases gradually and then eventually becomes steady 

(72)SL =
||||
ΔW

W

|||| = 4�
||||
Im(�)

Re(�)

|||| = 4�
||||
VQ

�

||||.

(73)PD =
1

|Im(�)| =
1

|Q| ,

� = 1.74 × 10
3
Kgm

−3
, �L = 1000Kgm

−3
,

� = 2.17 × 10
10
Nm

−2
, �L = 2140Nm

−2
,

� = 1.639 × 10
10
Nm

−2
, T0 = 298K, K = 1.7 × 10

2
Wm

−1
K

−1
,

Ce = 1.04 × 10
3
JKg

−1
K

−1
,

�∗ = 3.688 × 10
−5
N, � = 2.68 × 10

6
Nm

−2
K

−1
,

m
∗ = 2.0 × 10

6
Nm

−2
K

−1
, � = 1.753 × 10

−15
m

2
,

�1 = 1.475 × 10
10
Nm

−2
, �2 = 1.475 × 10

10
Nsm

−2
,

b = 1.13849 × 10
10
Nm

−2
, �∗ = 3.33 × 10

11
s
−1
.
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and approaches the Rayleigh wave velocity at higher values 
of wavenumber.

Each optical mode (n > 0) is dispersive and at a small 
value of wave number, the phase velocity is high which fol-
lows with a decline in its value up to the arrival of steady-
state as the wavenumber increases. This approaches Rayleigh 
wave velocity because, at such a steady state, the vibrational 
energy primarily travels through the liquid–solid interface 
rather than the interior of the plate. A similar type of result 
has also been obtained by Sharma and Pathania [30], Kaur 
[12], and Pathania and Dhiman [23].

Figure 5 presents the effect of wavenumber on the coeffi-
cient of attenuation for the flexural modes. The coefficient of 
attenuation has a negligible value for the fundamental mode 
(n = 0). For the optical modes (n > 0), the attenuation coef-
ficient attains zero value for the small value of the wavenum-
ber which increases as the wavenumber increases and then 
decreases after reaching its saturation point, then, it repeats 
this trend taking different magnitude values of wavenumber. 

The attenuation coefficient becomes large at some fixed 
wavenumbers because of the easy dispersion of waves due 
to the existence of voids present in the material. For n = 1, it 
attains the largest peak value. The combined effect of voids, 
thermal parameters, and liquid results in the suppression of 
sinusoidal behavior with a significant decrease in the mag-
nitude of profile deviations in this range of wavenumbers. 
Similar trends have been obtained for the longitudinal mode.

In Fig. 6, the effect of wavenumber on the variation of 
the specific loss has been presented for the flexural modes. 
Specific loss has a negligible magnitude value for the fun-
damental mode (n = 0). For the optical modes (n > 0), the 
specific loss for the flexural mode attains the large values 
for the insignificant values of the wavenumber and when 
the wavenumber takes higher values, it decreases and keeps 
on decreasing up to a fixed point and then, it begins to 
increase. Again, as the wavenumber value increases, spe-
cific loss decreases but with reduced magnitudes, and like 
this, alternative increase and decrease repeat. It is observed 
that there is a negligible effect of voids, thermal parameters, 
and liquid on the specific loss factor at high wavenumbers. 
Similar trends have been obtained for the longitudinal mode.

For different values of n, Fig. 7 depicts the effect of 
the wavenumber on the penetration depth for the flexural 
modes. It has been noted that for the small values of the 
wavenumber, the magnitude of penetration depth is small 
for each mode, which increases with the increase in the 
wavenumber up to a certain value and then decreases with 
a further increase in the wavenumber. On further increase 
in the value of wavenumber, this trend repeats with varying 
magnitude values of penetration depth. For n = 0, penetration 
depth attains the maximum value. Similar trends have been 
obtained for the longitudinal mode.

For the optical and acoustical modes, Fig. 8 shows the 
effect of h , i.e., the layer width on the phase velocity for the 
longitudinal and flexural family of waves. From the behavior 
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of curves for optical modes, it has been observed that the 
volume of inviscid fluid affects the phase velocity for opti-
cal modes i.e., phase velocity for optical modes decreases 
with the increase in the value of layer width. The damping 
effect becomes more and more prominent as the layer width 
increases.

In Fig. 9, the relation between the coefficient of attenu-
ation and layer width has been presented for the longitu-
dinal and flexural family of wave modes. For each mode, 
the magnitude of the coefficient of attenuation is small if 
the width of the layer is small as it raises, the coefficient 
of attenuation also increases until it reaches its peak point 
and then decreases gradually up to a certain value on a fur-
ther increase of the values of layer width in the considered 
range from 0 to 9.

Figure 10 describes the effect of layer width on the spe-
cific loss for the longitudinal and flexural wave modes. 
Specific loss has a negligible magnitude value for the 

fundamental mode (n = 0). For the optical modes (n > 0), 
the specific loss is comparatively high for the small value 
of layer width, which declines at a slow pace as the layer 
width increases from 0 to 9. In this case, the specific loss 
decreases with the increase in the value of layer width. 
Therefore, for more volume of an inviscid fluid, the spe-
cific loss must be small.

For h = 0.25, 0.50, 0.75, and 1, Fig. 11 presents the effect 
of the plate thickness on the r−component of solid displace-
ment for the longitudinal mode. The minimum value of usy 
exists at the plate surface while the maximum one is at the 
center. It is shown that the displacement is in direct rela-
tion with the layer width because the amplitude of the radial 
component of displacement increases parallelly when the 
layer width value shifts from 0.25 to 1. The attributes of 
�sy, wasy and Tsy have been found similar to the usy but with 
different magnitude values.

For h = 0.25, 0.50, 0.75, and 1, Fig. 12 has been portrayed 
showing the graph between the r−component of the solid 
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displacement for the flexural mode and the plate thick-
ness. On the horizontal line going through the origin O (see 
Fig. 1), usy is zero while at z = ±d , while it is very large. The 
behavior of wsy, �asy and Tasy has been found similar to the 
uasy but with different magnitude values. Here, contrary to 
the longitudinal case, the amplitude of displacement attains 
the maximum value at the liquid–solid interface, and at the 
center, it reduces to zero. From Figs. 11 and 12, it can be 
inferred that the magnitude values for the flexural mode have 
been dominated by those for the longitudinal mode. Similar 
results have been obtained by Sharma and Pathania [30] and 
Pathania and Dhiman [23].

Figure 13 exhibits the impact of plate thickness on the 
radial component of liquid displacement 

(
uL1

)
 for the vary-

ing widths of the liquid layer. For h = 0.25 , the magnitude 
of liquid displacement uL1 is almost negligible. As the layer 
width increases from 0.25 to 1, the corresponding increase 
in the liquid displacement uL1 has been observed from the 
curved lines plotted in Fig. 13.

For h = 0.25, 0.50, 0.75, and 1, the impact of plate thick-
ness value on the z−component of liquid displacement has 
been portrayed in Fig. 14 by two-dimensional curves. It has 
been observed that the wL1

 has a comparatively lower mag-
nitude for h = 0.25 than the wL1

 for other values of h, the 
layer width. Like uL1 , the amplitude of displacement wL1

 is 
proportional to the magnitude value of layer depth.

Summary and Conclusions

In this contribution, circularly crested thermo-poroelastic 
waves in a thermally conducting, isotropic homogene-
ous, cylindrical solid plate sandwich-packed by layers of 
non-viscous fluid using the LS and GL theories have been 
studied. The frequency equation for Rayleigh–Lamb waves 
has been obtained for the longitudinal and flexural modes. 
The special cases of the frequency equation have also been 
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obtained. Some observations/results obtained from the 
analytical and numerical study have been reported as

(1)	 The transverse horizontal waves (TH-mode) propagate 
only in the horizontal plane of the plate because their 
polarization is not modified by eventual reflections and 
refractions. It is worth noting that these waves travel 
without being dispersed and attenuated because it 
remains unaffected by the voids and thermal variation.

(2)	 The guided normal Lamb waves appear in a plate of 
thickness 2d comparable to the wavelength �−1 , due to 
the existing coupling between the mechanical longitu-
dinal waves (L-mode), transverse vertical waves (TV-
mode), void-volume fraction field motion (V-mode), 
and thermal waves (T-mode) components.

(3)	 In addition to the waves in the solid plate, one mechani-
cal wave in each liquid layer also exists. Since the shear 
stresses do not exist in the inviscid liquid, therefore, 
these waves are dilatational (sound waves) in nature.

(4)	  In thick plate results ( 2d >>>> 𝜉−1 ) in the absence of 
liquid ( �L → 0 ), the frequency equation reduces to the 
same for wave propagation in the thermo-poroelastic 
semi-infinite solid i.e., Rayleigh waves (cf. Figure 4).

(5)	  For the optical modes, the phase velocity and the spe-
cific loss decrease with the increase in either the layer 
width or wavenumber value. For the fundamental lon-
gitudinal modes (n = 0), the phase speed is the function 
of neither wavenumber nor layer width which means 
phase velocity curves are non-dispersive in such a case.

(6)	  For the symmetric mode, solid displacement is maxi-
mum at the center of the plate whereas the same attains 
the largest value at the solid–liquid interface for the 
antisymmetric mode.

The Lamb waves have been used in nondestructive 
evaluation (NDE) techniques for damage identification 
in materials. Abundant information regarding damage is 
encoded in the Lamb waves scattered by that damage, and 
this paper provides ample information about the behavioral 
pattern of Lamb wave motion through the homogeneous 
isotropic thermoelastic plate with voids bordered with 
inviscid liquid on both sides. The advantage of the present 
study is that Lamb waves can also be used for nondestruc-
tive testing (NDT), sensors, and material characterization.
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