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Abstract
Purpose  For fixed or hinged single cables, the vibration equation is well developed. However, the form of boundary con-
straints between fixed and hinged is used extensively for the single cable in practical engineering, such as the restraint of 
struts between multi-span cables. As the struts with different lengths and stiffness are placed in the single cable, the mode 
shape of the multi-span cables is affected significantly. Moreover, with the decrease in the aspect ratio of single-span cable, 
the effect of the cable bending stiffness cannot be overlooked. The above effects in single and multi-span cables are studied 
in the proposed model.
Methods  The vibration equation of the multi-span cable is developed in two steps. To establish the vibration equation of the 
single cable with general elastic constraint, the constraints at the ends of the strut are simplified as the compression springs 
that can bear the pressure. The bending springs that can consider the bending stiffness are also set at both ends simultane-
ously, then the vibration equation of the single cable with a general elastic constraint can be derived. For a multi-span cable 
structure, the strut is simplified into the elastic constraints of a single-span cable. By combining the aforementioned vibration 
equations of single-span cables which have general constraints, the vibration equation of multi-span cables can be established.
Results  The vibration frequency equations of m span multi-span cable with constraint stiffness are established, and the 
objective function optimization algorithm is validated.
Conclusion  The analytical solution of the multi-span cable vibration equation in this paper is then validated by the compari-
son with the multi-span cable vibration model established by the finite element method. The comparison demonstrated that 
the proposed method is valid and practical.

Keywords  Beaming string structure · Vibration stiffness · Single-span cable · Multi-span cable

Introduction

Beam string steel structure system is currently the main 
structural form of long-span spatial structures, which has 
been applied widely in sports venues, exhibition center, air-
port, train station, shopping malls and other infrastructures. 
Moreover, it can also be used in the bridge structure. In the 
aforementioned structure, the wire rope participates in the 
overall stress of the structural system as a tensile component, 
and the tension state of the steel cable can directly indicate 
the internal force distribution of the structure. In the service 
state, the identification of cable force can be used as the ref-
erence for the status of structural health and the performance 
of members. Therefore, the identification of cable forces is 
of great significance for the safety of string structures.

Existing identification methods for cable force have 
hydraulic pressure gauge measuring method, pressure 
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sensor measuring method, measuring the elongation of 
cable, magnetic flux method, and the frequency method. 
The first four methods get tensile force of the cable through 
the measurement of the tension or the deformation, and the 
frequency method indicates the relationship between the 
frequency and tensile force through the dynamic charac-
teristics of the cable. The frequency method is still the 
most practical and convenient method at this stage [1, 10, 
13]. By picking up the dynamic response signal acting on 
the cable under the forced excitation and identifying the 
frequency of the cable, the corresponding cable force can 
then be obtained using the formula between the frequency 
and the cable force [5–7, 11, 12]. The engineering practice 
indicates that when the ratio of cable single-span lengths 
to cable diameter is larger than 100 and the diameter of 
the cable is less than 44 mm, the relationship between the 
force and the frequency of the cable is relatively simple, 
then the cable force obtained from the frequency method 
would have higher accuracy. There are two major con-
siderations for the extension of the frequency method to 
the multi-span cable. First, the aspect ratio of cables is 
usually less than 100 and the cable diameter is greater 
than 44 mm in practical engineering. The application of 
this short and thick cable accounts for more than 80% 
of tensioned string structures; therefore, it has a broad 
application background. Second, existing well-developed 
frequency methods mainly focus on the single-span cable 
[2, 4, 8, 9], and the dynamic response characteristics 
of the beam string structure with multi-span cables are 
complicated due to the complex strut constraints and the 
bending stiffness of that short and thick cable [3, 14, 17]. 
Similar advances have been made recently in the study of 
the dynamic characteristics of the cable [15–39].The rela-
tionship between the characteristic frequency and cable 
force cannot be expressed by simple analytic function, 
and the theoretical results still lag behind the engineering 
practice at the current stage. A series of new advances 
have also been made on the dynamic characteristics of 
damped and series springs along circular or elliptic paths 
under resonant frequency excitation. For example, Amer 
et al. obtained the analytical solutions of bifurcated dia-
gram and time-history diagram using series approximation 
method on the motion characteristics of elemental points 
along circular paths under internal resonant frequency 
excitation 40, and then the analytical solutions of three 
series simple pendulums were obtained [45]. Similarly, 
the vibration characteristics of a single spring pendulum 
with linear damping in an elliptical path under the action 
of approximate resonance excitation were studied, and the 
resonant response was obtained, respectively. The time-
history characteristics of the stable and unstable regions 
were analyzed [41–44] In addition, an analytical solution 
is obtained for the time-history response along the elliptic 

path under the frequency excitation of the double pendu-
lum resonance [46, 47]. In terms of the structural working 
state detection theory, Zhou et al. developed a simulation 
evaluation method for detecting the damage generation 
from expansion of steel structures under composite fatigue 
loads [48]. On the aspect of structural vibration signal pro-
cessing, there is also some new progress based on vibra-
tion signal SHM method [49]. As for the study of vibration 
isolation effect by using flexible plate support as flexible 
boundary condition, the results of Hao et al. show that 
the nonlinear hopping phenomenon can be eliminated in 
the low-frequency range and the frequency detuning can 
be avoided at the same time [50]. Some dynamics about 
structures have made some progress [51–57].

Therefore, it is necessary to study the characteristic fre-
quency and cable force of beam string structure with the 
multi-span cable.

The test results indicate that the characteristic natural 
vibration frequency of the cable of tension-string structure is 
related to the tensile force of the cable, the bending stiffness 
of the cable, the bending stiffness of the constraints at both 
ends, and the compressive stiffness. The sag of the cable 
is affected by its linear density, bending stiffness, and the 
tensile force. Moreover, the compressive stiffness and rota-
tional stiffness at the ends determine the pattern of the cable 
and restrict the deformation of the cable at both ends. The 
relationship between natural vibration frequency and tension 
of cable considering the bending stiffness of the constraint 
at both ends has received much attention from the literature. 
However, the rigid struts of the cable and the vertical stiff-
ness of the constraints at both ends has not been reasonably 
considered, and most string structures are composed of the 
multi-span cable which has multiple struts. Therefore, it is 
necessary to consider the influence of the constraint stiff-
ness of the struts and the rotational stiffness and the vertical 
stiffness of the constraint at both ends, which is essential 
to accurately establish the nonlinear relationship between 
the low-order/multi-order characteristic frequencies and the 
tensile force of the cable as well as all the constraint stiffness 
at the boundary. First, based on the single-span tensioning 
string structure, the relationship between tension, rotational 
stiffness, vertical stiffness and the low-order frequency is 
established with the consideration of rotational stiffness 
and vertical stiffness at constraints of both ends. Second, to 
extend the relationship among tensile force, restraint stiff-
ness, and the low frequency of the single-span cable to the 
multi-span string structure, the rotation of the strut and the 
constraint effect of vertical stiffness on the cable have also 
been considered to develop the nonlinear formulation of the 
multi-span string structure. When the value of low-order fre-
quency is measured, the corresponding tensile force and the 
constraint stiffness can then be obtained through the above 
relationships.



879Journal of Vibration Engineering & Technologies (2024) 12:877–890	

1 3

The research on the relationship between the tensile 
force and the frequency of the single cable is summarized 
as follows.

(1)	 Tensioning string theory [58].

In the above formula, T is the tension of the cable, m 
is the line mass of the cable, l is the length of the single-
span cable, n is the order of the corresponding nth order 
frequency, and fn is the natural frequency of the correspond-
ing nth order.

(2)	 Simply supported beam theory [59]

(3)	 Japanese Zui H theory [60]

It is obvious that the greater the strength of the cable, 
the greater the corresponding bending stiffness, so a dimen-
sionless parameter ξ reflecting the bending stiffness can be 
defined, and different ξ can be used to obtain the above three 
formulas.

In the above formula, T0 is the corresponding initial ten-
sion of the cable, E is the elastic modulus of the cable, and 
I is the resistance moment of the cable section.

(4)	 Shao Xudong energy method theory [62]

(1)T = 4ml2
(
fn

n

)2

.

(2)T = 4ml2
(
fn

n

)2

− n2�2EI
/
l2.
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)2[
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(
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]
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(
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)2
]
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(6)� = l

√
T0

EI
.

(7)T = 4ml2f 2
0
− �2EI

/
l2 � ≥ 70 ,

(5)	 Ren Weixin energy method theory [61]

(6)	 Chen Huai fixed beam theory [63]

Wherein, the parameter C in the above equation can be 
expressed in the following form, which is obviously also 
a process parameter to express the bending stiffness of 
the line.

In formula (14), it is obvious that when ξ is large 
enough, the corresponding linear bending stiffness is small 
enough and the corresponding C value is small enough, 
and the ratio to first-order natural vibration frequency is 
usually small, ensuring that the calculated value under the 
root sign is greater than zero.

(7)	 Ma Hongxu test calibration method theory [64]

In the above formulas, fi represents the characteristic 
frequency of the i order, and T represents the tension value 
of the corresponding anchor cable. The aforementioned 
methods can directly derive the relationship between the 
frequency and tension of the single cable based on some 
kind of constraints. However, the constraint conditions 
are the results under the ideal condition. At present, the 
method to reasonably consider the boundary constraint of 
strut is less from the literature. Based on the fact that the 

(8)
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i
+ 0.0002f − 0.0018.
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constraint of strut on the single cable is a state between the 
fixed and the hinged constraints, the constraints of struts 
are decomposed into the vertical tension and compression 
stiffness and the bending stiffness considering the rota-
tion, the formulation of single-span cable under general 
constraints can then be derived. The second step is to con-
nect the above single-span cables in series to obtain the 
vibration equation of multi-span cables that have multiple 
struts.

The aforementioned methods can directly derive the rela-
tionship between the frequency and tension of the single 
cable based on some kind of constraints. However, the con-
straint conditions are the results under the ideal condition. At 
present, in a variety of practical cable structural engineering, 
especially in bridge structural engineering, the supporting 
member that plays a supporting role provides the corre-
sponding supporting stiffness and vertical constraints for the 
cable. However, in the existing literature, there is almost no 
mention of the above which can reflect the constraint effect 
of the strut between the cable, and what was mentioned in 
the past may be simplified as rigid support conditions. But 
this is not in line with the pole has a certain stiffness of 
the actual situation. The cable force model proposed in this 
paper is based on the general constraint conditions at both 
ends of the cable. The two ends are considered as double 
spring constraints that can consider rotational stiffness and 
a certain compressive stiffness at the same time. Meanwhile, 
to reasonably consider the vertical constraint effect of the 
strut on the cable, the strut is also considered as double 
spring constraints with a certain compressive stiffness and 
bending stiffness. The frequency vibration equations of the 
cable model with n-span strut are derived under the gen-
eral constraints. The undetermined parameters containing 
2n + 2 unknown stiffness and 1 unknown cable force can be 
obtained by using the multi-frequency fitting method. The 
optimization algorithm model can be used for calculation, 
the optimization objective function is established, and the 
iterative function is used for iterative solution. Finally, the 
constraint spring stiffness of 2n + 2 and the tension value of 
the cable are obtained.

Vibration Equation of Single‑Span Cable 
Under General Constraints

Basic Assumptions

For the analytical solution of the single-span cable, some 
basic assumptions are required. The basic assumptions of 
this problem are summarized as follows:

(1)	 Assuming the problem as a plane problem, and the 
vibration and the mode shape of single or multi-span 
cables are within the vertical plane;

(2)	 Single or multi-span cables and struts can be simplified 
as the ideal elastic material, which conform to Hooke’s 
law;

(3)	 Friction occurs between the seven strands of the steel 
wire in the cable due to the tension. It is assumed that 
the seven strands of steel wire are uniformly stressed 
without stress difference;

(4)	 As the cable is also affected by the gravity, the cable 
will form a pattern similar to the catenary shape with 
certain sag under the condition of zero tension, portion 
of the cable will correspond to higher characteristic 
frequency as the sag directly improves the bending 
stiffness of the cable. The value of the cable force will 
be overestimated if the effect of sag is not taken into 
account. However, when slenderness ratio is relatively 
large, the aforementioned effect is minor which can be 
ignored;

(5)	 It is assumed that the relationship between the charac-
teristic frequency and the tension of the cable remains 
constant within the range of normal temperature, which 
represents that the effect of the temperature fluctuation 
within the normal range is negligible;

(6)	 The inclination of the cable has no effect on the rela-
tionship between the characteristic frequency and the 
tension of the cable, which indicates that the placement 
of cable in the form of horizontal or inclined has neg-
ligible influence on the relationship.

Mechanical Model

For the vibration analysis of the single cable under gen-
eral constraints, the stress model of single cable unit AB 
has been depicted in Fig. 1. In the vibration process, the 
vibration amplitudes of the force P at both ends of the 
cable are the moment amplitudes MA and MB, and the 
shear amplitudes QA and QB, respectively. The vibration 
amplitudes of the displacement δ at both ends of the cable 
are the amplitude of the angular displacement φA and φB, 

A

Δ3=YA
Δ4=YB

P2=MB

P4=QB

BT

Δ2=φB

P3=QA

T

P1=MA

Δ1=φA

Fig. 1   Vibration model of single-span cable under general constraints
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and the amplitude of the vertical displacement YA and YB, 
respectively.

The general solution of the vibration equation of the 
single cable can be given by:

where C1, C2, C3, and C4 are undetermined constants.

The expression of the boundary conditions can be 
established according to Fig. 1.

Regarding the general boundary conditions, the vibra-
tion frequency of the bending moment and the shear force 
at one end is ω, and the vibration amplitude is M0, Q0; the 
vibration cycle of the rotation and the deflection is ω, and 
the amplitude is φ0, Y0.

It is stipulated that the downward deflection is posi-
tive, the clockwise inclination is positive, the tension on 
the lower side of the bending moment is positive, and the 
clockwise shear is positive.

Considering the general solutions and boundary condi-
tions of the vibration equations simultaneously, the fol-
lowing equations can be obtained:

By solving these equations simultaneously, the undeter-
mined coefficients can be obtained.

(17)Y(x) = C1ch�x + C2sh�x + C3 cos �x + C4 sin �x,
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.

Then, substituting these coefficients back to the equa-
tion of the general solution, the equation for the deflec-
tion, rotation, and the shear force can be established 
directly:

For the single-span cable, the relationship between the 
reaction force and the displacement at the end of the cable 
also needs to be considered. For single-span cable AB with 
the length of L, the corresponding deflection, rotation, bend-
ing moment, and shear force at point B can be given by the 
following.

(24)
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By solving the first two equations simultaneously, MA and 
QA can be solved; then, substituting MA and QA into the last 
two equations, MB and QB can also be obtained as following:

The capital letter in the above equation can then be 
expressed by the following formulas sequentially:

(31)

QB = − EI

(
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where i represents the linear stiffness of single-span cable.

When π not equals zero, the characteristic equation of 
the single-span vibration can be expressed by the above 
equation; when π equals 0, the condition switches to the 
fixed connection at both ends, the characteristic equation 
of single-span vibration can then be expressed in a general 
form as the following:

The displacements in the above equations are:

Moreover, the stiffness coefficients in the above equa-
tions are:

Vibration Equations Under Two Typical Boundary 
Conditions

(1)	 Hinged at both ends

The model with both hinged boundary is shown in 
Fig.2. The following characteristic equation can be 
obtained when both ends of the cable are hinged:

Substituting this characteristic equation into the stiff-
ness equations in the previous section, the following equa-
tion can be developed;

(42)i =
EI

l
,

(43)� ∗= �l, � ∗= �l.

(44)
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K11Δ1 + K12Δ2 + K13Δ3 + K14Δ4 = P1
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K41Δ1 + K42Δ2 + K43Δ3 + K44Δ4 = P4

.

(45)Δ1 = �A Δ2 = �B Δ3 = YA Δ4 = YB .
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l
G ,
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i

l
H K33 = −K44 = −

i

l2
K ,

(49)K34 = −K43 =
i

l2
R.

(50)MA = 0 MB = 0 YA = 0 YB = 0.

(51)
{

D�A + E�B = 0

E�A + D�B = 0
.
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Its characteristic equations are:

Arranging the above equations leads to the following:

where

(2)	 Fixed at both ends
The model with two fixed boundary had been shown in 

Fig.3. The boundary conditions of the single-span cable with 
two fixed ends can be described as:

Substituting the boundary condition into the stiffness equa-
tion, the following equation can be developed:

Vibration Equation of Single‑Span Cable 
Under Arbitrary Elastic Boundary Conditions

The model with arbitrary elastic constraints had been shown in 
Fig.4. Under arbitrary elastic constraints, the vibration equa-
tion of the cable can be described as:

The frequency equation can be given by:

(52)D2 − E2 = 0,

(53)

1

Π2

(
� ∗2 +� ∗2

)2
(� ∗ ch� ∗ sin � ∗ −� ∗ sh� ∗ cos � ∗)

2

−
1

Π2

(
� ∗2 +� ∗2

)2
(� ∗ sh� ∗ −� ∗ sin � ∗)

2 = 0.

(54)
1

Π

(
� ∗2 +� ∗2

)2
sin � ∗ sh� ∗= 0,

(55)
(
� ∗2 +� ∗2

)2
sh� ∗≠ 0,

(56)sin � ∗= 0.

(57)�A = 0 MB = 0 YA = 0 YB = 0.

(58)D = 0,

(59)
⎧

⎪

⎨

⎪

⎩

1
Π

(

� ∗2 +� ∗2
)

(� ∗ ch� ∗ sin � ∗ −� ∗ sh� ∗ cos � ∗) = 0
Π ≠ 0, � ∗2 +� ∗2≠ 0

� ∗ ch� ∗ sin � ∗ −� ∗ sh� ∗ cos � ∗= 0
.

(60)

⎧⎪⎨⎪⎩

�
K11 + k1

�
Δ1 + K12Δ2 + K13Δ3 + K14Δ4 = 0

K21Δ1 +
�
K22 + k2

�
Δ2 + K23Δ3 + K24Δ4 = 02

K31Δ1 + K32Δ2 +
�
K33 + k3

�
Δ3 + K34Δ4 = 0

K41Δ1 + K42Δ2 + K43Δ3 +
�
K44 + k4

�
Δ4 = 0

.

It can be seen clearly that the above equation contains 
five unknowns, which are the cable force T, and four stiff-
ness, K1, K2, K3, and K4.

The above equation can be simplified as:

According to the above nonlinear equation, these five 
unknown parameters can be determined by setting the 5th 
order frequency ω1–ω5. Then, the following nonlinear 
equation composed of five equations can be developed, 
and the five unknown parameters can be determined by 
solving this equation.

For the error analysis of cable force, the identification 
of cable force distortion caused by the dislocation of the 
frequency order can be conducted for the above equations. 
It is relatively easy to identify as the difference between 
the real cable force and the cable force induced by the dis-
tortion is relatively large. Taking simply supported single 
cable as the illustration, the formulation of single cable 
tensile force can be described as the following:

When the real frequency is the n-order frequency but 
identified mistakenly as the k-order frequency, the error in 
the cable force under this condition is:

The value of the relative error is:

(61)

|||||||||

(
K11 + k1

)
K12 K13 K14

K21

(
K22 + k2

)
K23 K24

K31 K32

(
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)
K34

K41 K42 K43

(
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)

|||||||||
= 0.

(62)f
(
EI, l,m,�n, T , k1, k2, k3, k4

)
= 0.

(63)
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f
�
EI, l,m,�1, T , k1, k2, k3, k4

�
= 0

f
�
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�
= 0

f
�
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= 0

f
�
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f
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.
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(65)

ΔTmk = Tn − Tk = 4mf 2
n

[(
l

n

)2

−

(
l

k

)2
]
−

(
n2 − k2

l2

)
�2EI,

(66)ΔTmk =

(
k2 − n2

)
k2

(
4mf 2

n
l2

n2
+

k2�2EI

l2

)
.

(67)
ΔTmk

Tmk
=

(
1 −

n2

k2

)(
4mf 2

n
l2

n2
+

k2�2EI

l2

)
(

4mf 2
n
l2

n2
−

n2�2EI

l2

) .



884	 Journal of Vibration Engineering & Technologies (2024) 12:877–890

1 3

When the frequency order is low, for the adjacent fre-
quency order (k = n–1), the calculated cable force under 
this condition is 1 time greater than the real cable force. 
When the frequency order is high, the value of the relative 
error can be determined if the effect of the difference in 
stiffness of the cable is ignored.

As illustrated in Table 1, the estimations of the cable 
force error for the first 20 frequencies are summarized. 
When the real frequency is mistaken judged as a frequency 
of one order less, the ratio of the interpolation between the 
calculated cable force and real cable force to the real cable 
force was greater than 2.

Vibration Equation of Multi‑Span Cable 
with Multiple Braces

Multi-span cables can be developed by connecting the sin-
gle-span cables in series. A number of struts with certain 
rotational stiffness and vertical stiffness are (Figs. 2, 3, 4, 
5) placed between two ends of the multi-span cables. These 
struts further constrain the freedom of the cable in the verti-
cal plane, and the vibration equation of the multi-span cables 
can be established as:

The non-zero elements of the stiffness coefficients in the 
above equations are:

The corresponding characteristic equation of the fre-
quency can be expressed as:

(68)

⎧⎪⎪⎨⎪⎪⎩

�
Z11 + k1

�
Δ1 + Z12Δ2 + Z13Δ3 ⋯ + Z1nΔn = 0

Z21Δ1 +
�
Z22 + k2

�
Δ2 + Z23Δ3 ⋯ + Z2nΔn = 0

Z31Δ1 + Z32Δ2 +
�
Z33 + k3

�
Δ3 ⋯ + Z3nΔn = 0

⋯

Zn1Δ1 + Zn2Δ2 + Zn3Δ3 ⋯ +
�
Znn + kn

�
Δn = 0

.

(69)Z11 = K
(1)

11
,

(70)

⎧⎪⎪⎨⎪⎪⎩

Z12 = K
(1)

12
, Z21 = K

(1)

21
, Z22 = K

(1)

22
+ K

(2)

11

Z23 = K
(2)

12
, Z32 = K

(2)

21
, Z22 = K

(2)

22
+ K

(3)

11

⋯

Z(n−1)n = K
(n−1)

12
, Zn(n−1) = K

(n−1)

21
, Znn = K

(n−1)

22

.

Table 1   Estimation of cable force error induced by mistaken identifi-
cation of the frequency

k n ΔT/T k n ΔT/T

1 2 − 3 11 12 − 2.09
2 3 − 2.5 12 13 − 2.08
3 4 − 2.333 13 14 − 2.076
4 5 − 2.25 14 15 − 2.071
5 6 − 2.2 15 16 − 2.066
6 7 − 2.167 16 17 − 2.062
7 8 − 2.143 17 18 − 2.058
8 9 − 2.125 18 19 − 2.055
9 10 − 2.11 19 20 − 2.052
10 11 − 2.1 20 21 − 2.05

L

y

x

Fig. 2   Vibration model of single-span cable with two hinged ends

x

L

y

Fig. 3   Vibration model of single-span cable fixed at both ends

T EI

m

∆1

∆2

T
k4k3

k1 k2

∆4

∆3

Fig. 4   Vibration model of single-span cable under arbitrary elastic 
constraints

Δ1

Δ2
Δ3 ΔnEI

i1

EI EI
i2 in-1

k1 k2 k3 kn

T T

L1 L2 Ln-1

Fig. 5   Vibration model of multi-span cable under arbitrary elastic 
constraints
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The above determinant can be described in the form of 
equation with multiple unknowns as following:

According to above formulations, if the bending stiff-
ness of multi-span cables (EI), the compressive stiffness of 
struts (EA), linear density of cables (m), and cable length 
of each span (L) are known, the cable forces and n con-
straint stiffness coefficients (K1, K2… Kn) can be deter-
mined by measuring the frequency of overall cable struc-
ture at n + 1th order.

According to the calculation model of multi-span cable, 
the following nonlinear equations about cable force and 
natural frequency can be established. For a cable with 
strut with m span and n unknown constraint stiffness, 
the following frequency characteristic equations can be 
established.

For the identification of characteristic parameters of 
multi-span cables, the unknown constraint stiffness and 
tension force can be obtained by using multi-order fre-
quencies as known quantities. As long as the number of 
unknown stiffness and unknown tension is equal to the 
measured frequency number n + 1, the above equations 
can theoretically be obtained to obtain the corresponding 
unknown stiffness and tension values. For the problem of 
multi-span cable force identification, the cable force and 
the corresponding constraint stiffness of the cable can be 
obtained by using the vibration model of the multi-span 
cable and the multi-frequency fitting technology.

Based on the optimization method, multi-frequency fit-
ting algorithm is used to obtain the constraint stiffness of 
multi-span cable forces and the principle process of cable 
force value algorithm is shown as follows.

(1)	 Establish the physical vibration model of multi-span 
cable

For a m span cable with a strut and n unknown con-
straint stiffness, the characteristic equation is established 
as follows.

(71)

|||||||||

(
Z11 + k1

)
Z12 ⋯ 0

Z21
(
Z22 + k2

)
⋯ 0

⋯ ⋯ ⋯ 0

0 0 ⋯

(
Znn + kn

)

|||||||||
= 0.

(72)f
(
T , k1, k2,⋯ , kn

)
= 0 (i = 1, 2, 3⋯) .

(73)

⎧⎪⎨⎪⎩

f1
�
EI,m,�1, l1, l2, ..., lm, T , k1, k2, ..., kn

�
= 0

f2
�
EI,m,�2, l1, l2, ..., lm, T , k1, k2, ..., kn

�
= 0

...

fn+1
�
EI,m,�n+1, l1, l2, ..., lm, T , k1, k2, ..., kn

�
= 0

.

where the cable stiffness is EI, the line density is m, and 
the cable lengths of each section are l1,l2… lm parameter is 
known, cable force T and n constraint stiffness have n + 1 
parameters to be determined.

(2)	 Multi-span cable model natural vibration frequency 
testing and cable force stiffness optimization identifi-
cation model

n + 1 natural vibration frequency ωi can be obtained 
through measurement test, and then n + 1 values about 
cable force T and constraint stiffness k1, k2… kn is a sys-
tem of equations with unknown quantity. The optimization 
algorithm model is designed to establish the optimization 
objective function.

(3)	 Calculation and recognition of cable force

The initial cable force parameters were selected, n + 1 
unknown parameters were calculated by regression on the 
optimization objective function, and the optimized cable 
force values and n constraint stiffness were obtained, 
and the corresponding boundary constraint stiffness was 
identified.

(4)	 Verify the correctness of the calculated cable force 
value

The implementation flow chart of the multi-frequency 
fitting method is shown in Fig. 6.

Theory Validation

a)	 Verification of cable force and vibration stiffness of 
single-span cable

Assuming there is a single-span cable with unknown 
constraint stiffness, the linear density is 252.72 kg/m, the 
length of the cable (L) is 10 m, the bending stiffness of 
the cable is 1.02 × 107 Nm2, and the force exerted on the 
cable is 680.4 kN. The finite element method is adopted 
to determine its 1st to 6th order of the frequency, which 
are 4.09, 13.65, 29.46, 51.56, 79.98, and 114.7 Hz, respec-
tively, and the bending stiffness at both ends is determined as 
K1 = 7.16 × 104 Nm2, and K2 = 2.5 × 104 Nm2. According to 

(74)
fi
(
EI,m,�i, l1, l2, ..., lm, T , k1, k2, ..., kn

)
= 0(i = 1, 2, ...n + 1),

(75)
fobj = min

{∑|||fi
(
EI,m,�i, l1, l2, ..., lm, T , k1, k2, ..., kn

)|||
}
.
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the model depicted in Fig. 7, the optimization method based 
on the objective function is used to calculate the cable force, 
and the results obtained from the analytical solution are then 
compared with the numerical results obtained from the finite 
element method. The comparison indicates a good consist-
ency between the results from the optimization formulation 
and the finite element method (Table 2).

The error in the cable force between the optimization 
method presented in this study and the finite element method 

is 0.2%, which indicates that the optimization method is 
capable for the calculation of single-span cable force, and 
the results can also meet the accuracy requirements.

b)	 Verification of cable force and vibration stiffness of 
multiple-span cable

Considering the vibration model of a double-span cable 
which has fixed end-constraints and the struts: the length of 
the cable is 2L, the bending stiffness is EI, the prestressed 

Fig. 6   Multi-frequency fitting 
implementation flow chart Sensor arrangement

Percussion excitation

Signal acquisition instrument

Vibration signal acquisition in time domain

Cable force analysis tool

Multi-span cable vibration model

Multi-order frequency for target 
cable force recognition

Time domain to frequency domain transform 
analysis tool

FFT and Spectral analysis

Cable force check

Multi-order frequency

Δ1 Δ2
EI

i1

EI
k1 k2

T T

L

Fig. 7   Tensile force test of single cable when the end-restraint stiff-
ness unknown

Table 2   Comparison of cable force between FEM and analytical method

m (kg/m) Length of cable L (m) Bending stiffness (N.m2) First six frequencies (Hz) Cable force by FEM 
method (kN)

Cable force by analytical 
solution (kN)

252.72 10 1.02 × 107 4.09, 13.65, 29.46, 51.56, 
79.98, 114.7

680.4 682.016

Δ
EI

i1

EI
K2

T

L L

Fig. 8   Tensile force test of double-span cable when ends constraint 
stiffness unknown
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tension is N, the ends of the cable is fixed, and the connec-
tion between the bracing rod and the cable is hinged, as 
illustrated in Fig. 8. Assuming that the rotation at the strut 
is δ and zero at the ends of the cable, then substituting the 
boundary conditions into the frequency characteristic equa-
tion of the multi-span cable and the internal force equation 
of the boundary:

As δ not equals 0, the following equation can then be 
derived:

where

Subsequently, the following equation can be developed:

The above equation is identical with the natural vibration 
characteristic equation of the cable which is fixed at one end 
and hinged at the other end, so the effectiveness of the vibra-
tion equation of the multi-span cable is validated.

Conclusion

The theoretical analysis and measured results indicate that 
under the external dynamic impact, the vibration charac-
teristics of the cable load are extremely complex, and the 
spectral characteristics are not only affected by the constraint 
stiffness at both ends, but also by the prestressed tension 
on the cable. Through the analysis of the natural vibration 
frequency, the constraint stiffness, and tension of cable, the 
following conclusions can be deduced:

(1)	 Based on the reasonable assumptions, the vibration 
characteristics of the cable subjected to a certain pre-
stressed tension are analyzed, and the relationship 
between the tension force and the natural vibration 
frequency of the cable under various end constraint 
stiffness is established. Using the above natural vibra-
tion characteristic equation, the constraint stiffness 
of the end and the tensile force of the cable can be 
simply solved when the multi-order natural vibration 
frequency is known.

(2)	 To establish the natural vibration frequency equation 
of the multi-span cable with multiple struts, the vibra-

(71)2DΔ = 0.

(72)
D =

1

Π

(
� ∗2 +� ∗2

)
(� ∗ sin � ∗ ch� ∗ −� ∗ cos � ∗ sh� ∗) = 0,

(73)
1

Π

(
� ∗2 +� ∗2

)
≠ 0.

(74)� ∗ sin � ∗ ch� ∗ −� ∗ cos � ∗ sh� ∗= 0.

tion equation of the multi-span cable under the impact 
load is developed. The multi-order natural vibration 
frequency is adopted to determine the constraint stiff-
ness of the ends and the struts, including rotational 
stiffness and compressive stiffness. The correspond-
ing nonlinear equation to the vibration equation of the 
multi-span cable presented in this study can be solved 
by multi-order frequency optimization algorithm, then 
the corresponding constraint stiffness and tension can 
be obtained.

(3)	 The force of the single-span cable solved by the itera-
tion on the nonlinear equation related to the character-
istic frequency, the constraint stiffness, and the tension 
presented in this study is basically consistent with the 
numerical results of the cable force from the finite ele-
ment method. The characteristic frequency equation 
of the multi-span cable degraded to the characteristic 
frequency equation of the standard double-span cable 
with a fixed end by assuming the boundary condition of 
the multi-span cable, the effectiveness and the applica-
bility of the nonlinear equation of the multi-span cable 
characteristic frequency can be validated further.

(4)	 The vibration modes of single-span cable are analyzed 
by finite element simulation, and its formation is ana-
lyzed. Based on the analysis of the first six orders of 
formation, the corresponding first six orders of natural 
vibration frequency can be obtained. By comparing the 
analytical method in this paper with the finite element 
method, it can be seen that the parameters of cable 
force and constraint stiffness obtained by the analytical 
method in this paper with the finite element method are 
basically the same. This further verifies the analytical 
method proposed in this paper to obtain the cable force 
by using the multi-frequency fitting method.

Discussion

Since the materials assumed in this paper are elastic materi-
als, the nonlinear problems of materials are not involved. 
Just because the vibration frequency equations obtained are 
nonlinear equations, the relationship between cable force, 
natural vibration frequency and corresponding constraint 
stiffness, including the elastic constraint stiffness of both 
ends and the strut, is typical nonlinear. Therefore, it can be 
called the exploration of nonlinear constraint stiffness calcu-
lation method. The premise is that the cable is a pure elastic 
tensioned member. On the one hand, it can be effectively 
simplified when establishing the vibration frequency equa-
tion of the cable, so as to avoid dealing with the hardening or 
softening problems in plastic mechanics. On the other hand, 
in practical engineering practice, most of the cable is in the 
elastic working state, not to reach the elastic ultimate stress 
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state. On the other hand, Since the boundary conditions con-
stituting both ends of the cable are set as a combination of 
complete spring and compressive spring, the struts are also 
set in the same way for the support of the cable. Since the 
cable is in a state of tension under load, the cable has a cer-
tain interface, so it has a certain degree of flexural stiffness 
EI, and the vertical action of loads such as dead weight on 
the cable will produce sag effect. The sag effect will increase 
the cable force, and the large displacement phenomenon of 
the structure will be formed under the action of working 
load. In addition, the constraint of both ends and the con-
straint reaction of the supporting rod on the cable make the 
cable in a geometric nonlinear state. Therefore, the vibration 
frequency equation obtained from the cable deflection has 
typical nonlinear characteristics. So the proposed method 
by authors to solve the calculation for nonlinear stiffness of 
boundary and cable force is demonstrated effectively.
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