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Abstract
Purpose  The present investigation is devoted to providing two/three-dimensional (2D/3D) models for estimating the amount 
of thermoelastic damping (TED) in circular cross-sectional micro/nanorings by capturing the effects of size on thermal 
domain via dual-phase-lag (DPL) heat conduction model.
Methods  To achieve the goal of the article, first of all, the equation of heat conduction derived in the framework of DPL 
model is solved. In this way, for 2D and 3D models of heat propagation, the temperature field in the ring is obtained in the 
form of infinite series. Next, by exploiting the relation of quality factor in entropy generation (EG) approach, a formulation 
including the two phase lag parameters of DPL model is extracted to anticipate TED value in small-sized rings with circular 
cross section.
Results  By comparing the results of this investigation with those of studies in the literature that are based on simpler heat 
conduction models, a validation study is accomplished. An intensive numerical study is also performed to discern the influ-
ence of some of the most significant factors such as phase lag parameters of DPL model, vibration mode, the dimensions 
and ring material on TED.
Conclusion  The findings reveal the noticeable effect of phase lag parameters of DPL model on the magnitude of TED in 
miniaturized circular cross-sectional rings, especially in smaller dimensions and higher vibration modes.

Keywords  Thermoelastic damping · Dual-phase-lag model · Micro/nanorings · Circular cross section · Analytical method

Introduction

Micro/nanoelectromechanical systems (MEMS/NEMS) ben-
efit from inimitable specifications such as diminutive size, 
high precision, slight energy consumption and excellent 
level of permanence. Consequently, the demand for using 
these systems in recently developed engineering tools is 
constantly growing. One of the most employed elements in 
MEMS/NEMS are circular and rectangular cross-sectional 
micro/nanorings. On account of their plain configuration, 
miniaturized rings are extensively utilized as basic construc-
tive elements of vibrating ring gyroscopes [1, 2], rate sensors 
[3, 4], multi-axis angular velocity sensors [5], force sensors 
[6], electro-optical modulators [7], ultrasonic actuators [8], 
label-free sensors [9], diaphragm sensors [10], pressure and 
temperature sensors [11] and so on. One of the key factors 
in the design of these small-scaled systems is to minimize all 
types of energy dissipation to optimize their performance. It 
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has been found that thermoelastic damping (TED) is one of 
the definite origins of energy loss in miniaturized mechani-
cal elements [12, 13]. Therefore, its accurate modeling in 
such structures is of great importance to ascertain the factors 
affecting energy loss, perform optimal design and maximize 
the quality factor.

To find the responses of mechanical systems or solve 
their governing equations, there are various methods such 
as experimental, numerical and analytical methods. Experi-
mental methods are mostly expensive and can only be 
used for some situations or materials. Although numerical 
methods can be used for a wider range of problems, they 
mainly suffer from some shortcomings. They only yield 
approximate solutions, require some initial information at 
any point to start iterations, and cannot clearly show the 
role of influencing parameters in the solution. Analytical 
methods could remedy the deficiencies in experimental and 
numerical methods so that they can be used for a wide range 
of conditions and the impact of key factors on the response 
can be clearly seen. Therefore, the mathematical modeling 
of mechanical structures and the analytical solution of their 
governing equations have gained special importance.

For the mathematical description of heat transport in solid 
continua, several heat conduction theories have been pro-
posed. The Fourier model is the first and most well-known 
of these models, in which the heat flux is proportional to 
the temperature gradient at any point of the material. On 
the basis of several experimental observations, the Fourier 
model is not able to adequately explain heat transfer in small 
dimensions or short times. As a result, different non-Fourier 
models for heat conduction have been introduced to over-
come the shortcomings of the Fourier model. As one of the 
simplest non-Fourier models, one can mention the Lord and 
Shulman (LS) model which includes only one relaxation 
time [14]. By adding a nonlocal parameter to LS model, 
Guyer and Krumhansl presented a more complete model for 
heat conduction (GK model) [15]. By accommodating an 
additional phase lag parameter in the constitutive relations 
of LS model, Tzou established the dual-phase-lag (DPL) 
model to account for the small-scale effect on both size and 
time [16].

Based on the results reported from analytical and experi-
mental studies, thermoelastic dissipation or thermoelastic 
damping is known as one of the main sources of energy loss 
in micro/nanostructures. This mechanism of energy dissipa-
tion can limit the quality factor of MEMS/NEMS and dis-
rupt their optimal performance. Through the calculation of 
wasted energy and utilization of the entropy generation (EG) 
approach, Zener [17] provided the first analytical model for 
predicting TED value in Euler–Bernoulli beams. By sepa-
rating the real and imaginary parts of the frequency, which 
is known as the complex frequency (CF) approach, Lif-
shitz and Roukes [18] established a single-term expression 

for estimating TED value in Euler–Bernoulli beams. It is 
worth mentioning that in the CF approach, both equations 
of motion and heat conduction must be extracted, but in 
the EG approach, there is no need to derive the equation 
of motion, which can be an advantage for this approach. In 
recent years, many analytical investigations have been done 
for mathematical modeling of the thermomechanical behav-
ior of different structural elements such as beams [19–49], 
plates [50–69], shells [70–81], rings [82–90] and elastic 
media [91–98].

One of the first theoretical studies in the field of TED in 
rings has been carried out by Wong et al. [82], in which by 
employing the CF approach, a closed-form relation in the 
framework of the Fourier model has been presented for the 
calculation of TED value in the in-plane vibrations of silicon 
rings with rectangular cross section. Fang and Li [83] used 
the entropy EG approach and the Fourier model to attain an 
analytical solution for TED in rectangular cross-sectional 
ring resonators with 2D heat conduction. In the article pub-
lished by Li et al. [84], 2D and 3D cases of the Fourier 
model have been utilized to appraise TED in circular cross-
sectional small rings. By considering mass imperfections, 
Kim and Kim [85] assessed TED in toroidal solid microrings 
based on the three-dimensional Fourier model. According 
to the Fourier model, Tai and Chen [86] formulated an ana-
lytical model to evaluate TED in out-of-plane oscillations 
of microrings with rectangular cross section. In two similar 
studies conducted by Zhou et al. [87], and Zhou and Li [88], 
1D and 2D cases of LS and DPL models have been applied, 
respectively, to emphasize the momentous impact of non-
Fourier models on TED in small-sized rings with rectangular 
cross section. By means of 2D and 3D LS model, Kim and 
Kim [89] surveyed the influence of phase lag parameter on 
the amount of TED in circular cross-sectional micro/nanor-
ing resonators. By means of modified couple stress theory 
(MCST) and nonlocal version of the DPL model, Ge and 
Sarkar [90] established 1D and 2D models for TED in rec-
tangular cross-sectional miniatirized rungs.

According to the contents discussed above, thermoe-
lastic damping (TED) plays a substantial role in the per-
formance of structures with micro and submicron dimen-
sions. Additionally, the literature review illuminates the 
inevitability of using non-Fourier heat conduction theo-
ries for precise modeling of the thermoelastic behavior 
of small-sized structures. Given these two points, it can 
be concluded that the assessment of TED in micro/nano-
structures should be conducted in the purview of gen-
eralized thermoelasticity theories. The literature survey 
demonstrates that the analytical study on TED in micro/
nanorings with circular cross-section via dual-phase-lag 
(DPL) model has not been conducted until now. Consider-
ing the mentioned advantages of analytical methods and 
EG approach, the paper at hand aims to remedy this defect 
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in the literature. To reach this goal, in the first step, the 
coupled heat conduction equation is extracted in the con-
text of the DPL model. Asymmetric harmonic form is then 
considered for vibrations of the micro/nanoring resona-
tor to determine temperature distribution for 2D and 3D 
models of heat conduction. On the basis of a definition of 
TED in the entropy generation (EG) approach, an analyti-
cal solution in the series form is established for predicting 
TED value in circular cross-sectional miniaturized rings 
by capturing the dual-phase-lagging effect. In the results 
section, a validation study is first performed to ensure 
the correctness of the presented model by comparing the 
results with existing works. Next, a convergence analysis 
is carried out to ascertain the sufficient number of terms of 
the obtained solution to arrive at a convergent result. The 
final step is to conduct a parametric study for highlighting 
the sensitivity of TED to some influencing factors like 
phase lag parameters of the DPL model, vibration mode, 
the dimensions and ring material.

Basic Relationships of Dual‑Phase‑Lag (DPL) 
Heat Conduction Model

On the basis of the DPL heat conduction model for iso-
tropic materials, the heat flux vector q and gradient of 
temperature increment ∇� are related through the follow-
ing relation [3]:

in which k denotes thermal conductivity. In addition, mate-
rial constants �q and �T are called phase lag of heat flux 
and phase lag of temperature gradient. Moreover, symbol ∇ 
represents the Laplace operator. The variable � = T − T0 is 
also the temperature variation with T  and T0 as instantane-
ous and environmental temperatures, respectively. Note that 
when �T vanishes, the heat conduction equation of the DPL 
model corresponds to that of the LS model. Furthermore, 
in the absence of phase lag parameters �q and �T , Eq. (1) 
reduces to the constitutive relation of the Fourier model. 
For an isotropic material, the equation of conservation of 
energy is given by [3]:

where � and cv refer to the mass density and specific 
heat per unit mass, respectively. Additionally, parameter 
� = E�∕(1 − 2�) defines thermal modulus. Variable e is also 
a volumetric strain. Lastly, by omitting heat flux q from Eqs. 

(1)q + �q
�q

�t
= −k∇� − k�T

�∇�

�t
,

(2)−∇.q = �cv
��

�t
+ T0�

�e

�t
,

(1) and (2), equation of heat conduction in the framework of 
DPL models is obtained as follows:

Coupled Thermoelastic Equation of Circular 
Cross‑Sectional Rings Based on DPL Model

Figure 1 displays the schematic view and coordinate system 
of a circular cross-sectional ring with mean radius R0 and 
cross-sectional radius r0 . The global and local coordinates 
are defined by (R, �, Z) and (x, y, z) , respectively. Moreover, 
the parameter � denotes the local angle. By considering 
these definitions, the circumferential strain can be expressed 
by [84]:

in which u represents the radial displacement. Based on 
coupled thermoelastic constitutive relation, the following 
relation can be obtained:

where ��� indicates circumferential normal stress. Using the 
above relation, one can get:

Other thermoelastic constitutive relations can be 
expressed as follows:

(3)k
(

1 + �T
�

�t

)

∇2� =
(

1 + �q
�

�t

)(

�cv
��

�t
+ T0�

�e

�t

)

.

(4)��� = −
x

R2
0

(

u +
�2u

��2

)

,

(5)��� =
���

E
+ ��,

(6)��� = E��� − E��.

Fig. 1   Schematic view and coordinate system of a circular cross-sec-
tional ring
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Substitution of Eqs. (4) and (6) in the above equation 
gives:

By inserting Eq.  (8) into Eq.  (3) and simplifying the 
result, the equation of heat conduction becomes:

with � = k∕�cv and ΔE = E�2T0∕�cv . Due to the small 
amount of parameter ΔE for most materials (i.e. ΔE ≪ 1 ), 
Eq. (9) can be replaced with the following equation:

Temperature increment � and radial displacement u can 
be expressed as follows [84]:

in which �n refers to the n-th vibration frequency, which 
is calculated from the following relation [84]:

with I = �r4
0
∕4 and A = �r2

0
 as the moment of inertia and 

cross-sectional area, respectively. From Fig.  1, one can 
write:

By substituting Eqs. (11) and (13) into Eq. (10) and sort-
ing the result, one can achieve the following equation:

Three-dimensional form of the Laplace operator can be 
written as follows:

(7)�RR = �zz = −�
���

E
+ ��.

(8)

e = �RR + ��� + �zz = (2� − 1)
x

R2
0

(

u +
�2u

��2

)

+ 2(1 + �)��.

(9)

�
(

1 + �T
�
�t

)

∇2� −
[

1 + 2(1 + �)
1 − 2�

ΔE

]

(

1 + �q
�
�t

)��
�t

= −
ΔE
�

(

1 + �q
�
�t

) �
�t

[

x
R2
0

(

u + �2u
��2

)

]

,

(10)

�
(

1 + �T
�
�t

)

∇2� −
(

1 + �q
�
�t

)��
�t

= −
ΔE
�

(

1 + �q
�
�t

) �
�t

[

x
R2
0

(

u + �2u
��2

)

]

.

(11)�(R, �, z, t) = Θ0(R, �, z)e
i�nt, u(�, t) = Un sin (n�)e

i�nt,

(12)�n =
n
�

n2 − 1
�

√

n2 + 1

�

EI

�AR4
0

(n ≥ 2),

(13)x = r sin�, z = r cos�.

(14)
�
(

1 + i�n�T
)

∇2Θ0 −
(

i�n − �q�
2
n
)

Θ0

= −
ΔE
�

r sin�
R2
0

(

1 − n2
)

Un sin (n�)
(

i�n − �q�
2
n
)

.

By referring to Eq. (13) and relation R = R0 + x , and con-
sidering the fact that in thin rings R0 ≫ x , Eq. (15) takes the 
following form:

In the case of 2D heat conduction, the temperature gradi-
ent along the circumferential direction is neglected. Hence, 
the Laplace operator can be written as:

According to the relationship between global and local 
coordinates, Θ0(r, �,�) can be used instead of Θ0(R, �, z) . 
By assuming adiabatic conditions on the outer surface of the 
ring and continuity of temperature in all angles � and � , the 
thermal boundary conditions can be expressed as follows:

By considering the above relations and inserting Eq. (16) 
into Eq. (14), the temperature distribution is derived as fol-
lows [84]:

in which J1 refers to the first-order Bessel function of the first 
kind. To attain the amount of coefficients aj , the first relation 
of Eq. (18) is employed. By substituting Eq. (19) into the 
mentioned relation and exploiting the properties of Bessel 
functions, one can get:

Thus, aj is equal to the j-th root of the above equation. The 
first ten roots of this equation are listed in Table 1. To extract 
the coefficients Cjm , the orthogonality property of Bessel and 
trigonometric functions is used. By inserting Eq. (19) into 
(14), multiplying the result by rJ1

(

ak

r0
r
)

sin (n�) sin� , and 
integrating the outcome in the range of 

(

0, r0
)

 , (0, 2�) and 
(0, 2�) , it is finally obtained that:

(15)∇2
3D
Θ0 =

�2Θ0

�R2
+

1

R

�Θ0

�R
+

1

R2

�2Θ0

��2
+

�2Θ0

�z2
.

(16)∇2
3D
Θ0 =

�2Θ0

�r2
+

1

r

�Θ0

�r
+

1

R2
0

�2Θ0

��2
+

1

r2

�2Θ0

��2
.

(17)∇2
2D
Θ0 =

�2Θ0

�r2
+

1

r

�Θ0

�r
+

1

r2

�2Θ0

��2
.

(18)
�Θ0

�r
(

r = r0
)

= 0,Θ0(r, �,�) = Θ0(r, � + 2�,�),

Θ0(r, �,�) = Θ0(r, �,� + 2�).

(19)Θ0(r, �,�) =

∞
∑

m=0

∞
∑

j=1

CjmJ1

(

aj

r0
r

)

sin (m�) sin�,

(20)J0
(

aj
)

= J2
(

aj
)

.

(21)

Ckn =
ΔE
�

2r0
R2
0

(

1 − n2
)

Un
1

(

a2k − 1
)

J1
(

ak
)

(

i�n − �q�2
n
)

�k
(

1 + i�n�T
)(

1 + �2kn
)

+
(

i�n − �q�2
n
)

�k
,
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where

Hence, the final form of temperature distribution can be 
expressed via the following relation:

By separating the real and imaginary parts of the above 
relation, one can obtain:

(22a)�kn =
nr0

akR0

(22b)�k =
r2
0

�a2
k

.

(23)Θ0(r, �,�) =
ΔE

�

2r0

R2
0

(

1 − n2
)

Un sin (n�) sin�

∞
∑

k=1

J1

(

ak

r0
r
)

(

a2
k
− 1

)

J1
(

ak
)

(

i�n − �q�
2
n

)

�k
(

1 + i�n�T
)(

1 + �2
kn

)

+
(

i�n − �q�
2
n

)

�k
.

Re
(

Θ0

)

=
ΔE

�

2r0

R2
0

(

1 − n2
)

Un sin (n�) sin�

(24a)

Re
(

Θ0

)

=
ΔE

�

2r0

R2
0

(

1 − n2
)

Un sin (n�) sin�

∞
∑

k=1

J1

(

ak

r0
r
)

(

a2
k
− 1

)

J1
(

ak
)

−�k�q�
2
n

(

1 + �2
kn
− �k�q�

2
n

)

+ �k�
2
n

[(

1 + �2
kn

)

�T + �k
]

(

1 + �2
kn
− �k�q�

2
n

)2
+
[(

1 + �2
kn

)

�T + �k
]2
�2
n

(24b)

Im
(

Θ0

)

=
ΔE

�

2r0

R2
0

(

1 − n2
)

Un sin (n�) sin�

∞
∑

k=1

J1

(

ak

r0
r
)

(

a2
k
− 1

)

J1
(

ak
)

�k�n

(

1 + �2
kn
− �k�q�

2
n

)

+ �k�q�
3
n

[(

1 + �2
kn

)

�T + �k
]

(

1 + �2
kn
− �k�q�

2
n

)2
+
[(

1 + �2
kn

)

�T + �k
]2
�2
n

Derivation of a Relationship to Compute 
the Value of TED

According to the entropy generation (EG) approach, TED 
value is determined by:

where ΔW  is the wasted energy through entropy generation 
per cycle of vibration and W  stands for the maximum strain 
energy stored in the ring at the time of vibration. The wasted 
energy in a vibrating structure with volume Ω during a cycle 
is given by [99]:

where the symbol ∼ refers to the maximum value of a vari-
able per cycle of oscillation. The value of W is also given by:

In a ring, the amount of ΔW  is estimated by the follow-

ing relation:

(25)TED =
1

2�

ΔW

W
,

(26)ΔW = −𝜋∭
Ω

𝜎̃ijIm
(

𝜀̃thermal
ij

)

dΩ,

(27)W =
1

2 ∭
Ω

𝜎̃ij𝜀̃ijdΩ.

(28)ΔW = −𝜋∭
Ω

𝜎̃𝜃𝜃Im
(

𝛼Θ0

)

dΩ.

Table 1   The first ten terms of 
a
k
 and G

k
 for the rings with 

circular cross-section

k a
k

G
k

1 1.841 0.987
2 5.331 0.010
3 8.536 1.528 × 10–3

4 11.706 4.292 × 10–4

5 14.864 1.647 × 10–4

6 18.016 7.618 × 10–5

7 21.164 3.996 × 10–5

8 24.311 2.294 × 10–5

9 27.457 1.409 × 10–5

10 30.602 9.132 × 10–6
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In addition, the maximum stored energy W  can be deter-
mined by:

By utilizing Eqs. (4), (6) and (11) and disregarding ther-
mal stress, one can arrive at the following relation:

Similarly, one can obtain:

For a toroidal ring, one can write:

By inserting Eqs. (30)–(32) into Eq. (29) and integrating 
the result over 0 ≤ � ≤ 2� , 0 ≤ � ≤ 2� and 0 ≤ r ≤ r0 , the 
maximum stored energy W  is obtained as:

Through a similar method, substitution of Eqs. (24b), (30) 
and (32) into Eq. (28) and integration over the entire ring 
volume gives:

in which Gk is a weight coefficient that is defined by:

The values Gk for the first ten terms are presented in 
Table 1.

Finally, by inserting Eq. (34) into Eq. (25), the relation 
for computing TED value in circular cross-sectional micro/
nanorings, which includes the phase lag parameters of the 
DPL model is obtained as follows:

It is worth noting that in the absence of phase lags �q 
and �T , above equation is reduced to the relation derived 
by Li et al. [84] by means of the Fourier model. Also, by 

(29)W =
1

2 ∭
Ω

𝜎̃𝜃𝜃𝜀̃𝜃𝜃dΩ.
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)
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)
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x
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0

(
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0

(
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)
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�EIR0
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R2
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.
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�k�n

(

1 + �2
kn
− �k�q�

2
n

)
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3
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[(

1 + �2
kn

)

�T + �k
]

(
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2
n

)2
+
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1 + �2
kn

)
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n

,

(35)Gk =
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a2
k

(

a2
k
− 1

) .

(36)

TED = ΔE

∞
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k=1

Gk

�k�n

(
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kn
− �k�q�

2
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)
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3
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1 + �2
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)

�T + �k
]

(

1 + �2
kn
− �k�q�

2
n

)2
+
[(

1 + �2
kn

)

�T + �k
]2
�2
n

dropping the terms including �T , the relationship devel-
oped in this work corresponds to that established by Kim 
and Kim [89] according to single-phase-lag (SPL) or LS 
model. These comparisons can be evidence to verify the 
presented formulation.

Numerical Results and Discussion

In this section, firstly, a comparison study is carried out to 
examine the validity and accuracy of the developed formu-
lation in this research. For this purpose, the results of the 
present study for a specific case are compared with those 
reported by Kim and Kim [89]. It should be noted that for 
estimating the amount of TED in 2D model, it is enough 
that the terms caused by the derivatives in the circumfer-
ential direction are removed. In other words, the value of 
�kn is set equal to zero in the calculations. In the article of 
Kim and Kim [89], TED in rings with circular cross sec-
tion has been assessed on the basis of LS model. Accord-
ingly, the outcomes of the current article can be compared 
with those of [89] by setting �T = 0 in the formulation 
presented in Eq. (36). In addition, to compare the results 
of this paper with the investigation of Li et al. [84], which 
has been done in the framework of the Fourier model, the 
terms including �q and �T in Eq. (36) should be neglected. 
In Fig. 2, the variation of TED in a ring made of silicon 
(Si) with respect to the vibration mode n is depicted. Mate-
rial constants of Si are presented in Table 2. The geometric 
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parameters of the ring are also considered as r0 = 1 µm and 
R0 = 50 µm. As can be seen, the outcomes of the present 
work are consistent with those of [89], which can be a 
sign of the integrity and veracity of the model derived in 
this article.

In the following, several numerical examples are provided 
to appraise the sensitivity of TED value to some key fac-
tors such as phase lag parameters of DPL model, number of 
vibration mode, 2D and 3D cases of heat transfer, geometri-
cal characteristics and material. Mechanical and thermal 
properties of gold (Au), copper (Cu), lead (Pb) and silver 
(Ag) at T0 = 300K are presented in Table 3 [3]. Except for 
the cases where the effect of the material on TED is inves-
tigated, the rest of the results are given for the rings made 
of gold.

In Fig. 3, the effect of the number of terms considered in 
Eq. (36) on the value of TED as a function of vibration mode 
number is analyzed. In this figure, the curves are plotted for 
2D and 3D models and for solutions including only one term 
and the first ten terms. Also, the geometrical properties of 
the ring are assumed to be r0 = 200nm and R0 = 20r0 . As it 
is clear, the difference of the results obtained from consider-
ing the first ten terms and only one term is insignificant and 
the graphs of these two cases are almost identical.

For 2D and 3D models of heat conduction, Fig. 4 indi-
cates the ratio of TED calculated by the first ten terms to 
that estimated by the single term. As can be seen, the differ-
ence between the results of these two cases is less than one 
percent. This difference is much smaller for lower vibration 
modes. Based on Figs. 3 and 4, it can be concluded that con-
sidering the first ten terms is enough to achieve convergent 
results. Therefore, in the following figures, the results are 
drawn for the first ten terms of the provided solution.

Figures 5a, b illustrate the impact of the Fourier and 
DPL models on the variations of TED with mode number 
for cases R0 = 20r0 and R0 = 100r0 , respectively. To achieve 

these figures, it is assumed that r0 = 50nm . Based on these 
graphs, it can be concluded that, in general, DPL model pre-
dicts lower values for TED than the Fourier model. When 
the dimensions of the ring are larger (i.e. R0 = 100r0 ), this 
result can be stated with more certainty and for almost all 
vibration modes. The physical interpretation of this result 
is that DPL model anticipates a wave-like characteristic 
for heat propagation with finite velocity, whereas the Fou-
rier model estimates that thermal signals transfer in solids 
through diffusion phenomenon. Owing to finite speed of heat 

Table 2   Material constants 
of silicon (Si) at a reference 
temperature T

0
= 293K [89]

E(GPa) �
(

kg m−3
)

k
(

W m−1 K−1) �
(

10−6 K−1)
cv

(

J kg−1 K−1
)

�q(ps)

165.9 2330 156 2.59 713 3.95649

Table 3   Properties of gold (Au), copper (Cu), lead (Pb) and silver 
(Ag) at a reference temperature T

0
= 300K [3]

Material constant Au Cu Pb Ag

E(GPa) 79 110 16 76
�
(

kg m−3
)

19,300 8940 11,340 10,500

k
(

W m−1 K−1
) 315 386 35.3 430

�
(

10−6 K−1
) 14.2 16.5 28.9 19.5

cv
(

J kg−1K−1
) 129.1 385.9 128 285.7

�q(ps) 0.7438 0.4348 0.1670 0.7438
�T(ps) 89.286 70.833 12.097 89.286
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transfer in DPL model, heat induced by a nonuniform stress 
field has no adequate time to propagate during the vibration 
of structure, which alleviates energy loss originated by ther-
moelastic damping. Accordingly, TED values predicted by 
the DPL model are lower than those of the Fourier model. 
Another conclusion that can be drawn from these curves is 
that for a wide range of vibration modes, TED value calcu-
lated by 3D model is smaller than that determined by the 
2D model. It is also observed that when the size of the ring 
becomes larger (i.e. R0 = 100r0 ), the difference between the 
Fourier and DPL models as well as the difference between 
2 and 3D cases of heat conduction lessen for a wider range 
of vibration mode number.

Figures 6a, b are drawn under the same conditions as 
Fig. 5a, b. The only difference is that in these figures r0 = 1 
µm is considered. In other words, these diagrams are plotted 

for the rings with larger dimensions than the previous figure. 
Comparing these diagrams with the curves in the previous 
figure shows that the effect of the DPL model on TED is 
almost the same for both cases r0 = 50nm and r0 = 1 µm, 
that is, for a large range of vibration modes, TED value cal-
culated by the DPL model is lower than that obtained by 
means of the Fourier model. These graphs also illustrate that 
2D and 3D models have different effects on cases r0 = 50nm 
and r0 = 1 µm, so that unlike the case r0 = 50nm , 3D model 
predicts more values for TED in case r0 = 1�m . According 
to what was said before, to arrive at the results of 2D model, 
term �kn in Eq. (36) should be set equal to zero. Thus, one 
can state that the difference between 2 and 3D models gets 
negligibly small as the variable �kn takes an insignificant 
value. In view of the relation �kn =

(

n∕ak
)(

r0∕R0

)

 , this issue 
happens when either the number of vibration mode n is low 
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or the amount of ratio r0∕R0 is very small. This can be read-
ily seen in Figs. 5 and 6. In cases where �kn has a consider-
able value, given the appearance of this term in both the 
numerator and denominator of Eq. (36), it is problematic 
to extract a single pattern for TED for 2D and 3D models.

In Fig. 7a, b, the impact of the Fourier and DPL mod-
els on TED versus geometrical ratio R0∕r0 is examined for 
cases n = 10 and n = 100 , respectively. In these curves it is 
supposed that r0 = 50nm . By observing these curves, it is 
reconfirmed that TED obtained in the framework of the DPL 
model has a smaller value compared to that computed based 
on the Fourier model. It is also obvious that for case n = 10 
where the vibration mode number is relatively small, as the 
value of R0∕r0 ascends and the parameter �kn reduces, both 
the effect of size and the effect of using a 2D or 3D model 
on TED value shrink.

Figure  8a, b are drawn with the same conditions as 
Fig. 7a, b, with the only difference that in these figures it is 
assumed that r0 = 1 µm. It can be seen again that for case 
r0 = 1 µm, TED value calculated by 3D model is higher than 
that determined by 2D model. Besides, it is evident that by 
increasing the value of R0∕r0 , the effect of size weakens 
and the results of DPL model approach those of the Fourier 
model.

In Figs. 9 and 10, the dependence of TED value on the 
material of the ring is discussed. For this purpose, four 
materials gold (Au), copper (Cu), lead (Pb) and silver (Ag) 
at a reference temperature T0 = 300K are surveyed. In all 
these figures, the parameter r0 is considered a fixed value of 
400 nm . Figure 9a, b represent the variation of TED versus 
vibration mode number for 2D and 3D cases of heat con-
duction, respectively. In these figures, it is assumed that 
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R0 = 20r0 . According to these figures, in low vibration 
modes (i.e. n < 20 ), TED in ascending order belongs to Au, 
Ag, Cu and Pb rings. In regard to the reason for this outcome 
one can say that the principal parameter that makes the cou-
pling between structural and thermal domains is the thermal 
expansion coefficient � . Hence, greater amounts of � lead to 
more intensive thermoelastic coupling and higher levels of 
energy dissipation. Additionally, when phase lag parameters 
�q and �T take higher values, the impact of diffusion-type 
heat conduction dwindles. Consequently, for larger amounts 
of �q and �T , it is expected that the value of TED will be 
lower. In high mode numbers (i.e. almost n > 50 ), the highest 
value of TED occurs in rings made of Ag, Au, Cu and Pb, 
respectively. In Fig. 10a, b, the variation of TED as a func-
tion of the geometrical ratio R0∕r0 is displayed for 2D and 
3D models, respectively. These figures are plotted for mode 

number n = 20 . As it is apparent, for the range R0∕r0 < 30 , 
no specific rule can be mentioned for different materials, but 
for the range R0∕r0 > 30 , rings made of Pb, Cu, Ag and Au 
experience the highest amount of TED, respectively.

Conclusions

In the current article, by incorporating the size effect into the 
thermal domain by way of a dual-phase-lag (DPL) heat conduc-
tion model, 2D and 3D models has been developed for evaluat-
ing thermoelastic damping (TED) in micro/nanorings with cir-
cular cross section. To this aim, the equation of heat conduction 
obtained in the context of the DPL model has been solved first. 
Next, the temperature distribution in the ring has been extracted 
in the form of infinite series for 2D and 3D models of heat 
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transfer. Then, the definition of quality factor in entropy genera-
tion (EG) approach has been applied to establish an analytical 
relation containing the two-phase lag parameters of the DPL 
model for approximation of TED value in circular cross-sectional 
micro/nanorings. At the final stage, a thorough parametric study 
has been made to appraise the dependence of TED on some cru-
cial factors like phase lag parameters of the DPL model, vibration 
mode number, geometrical parameters and material. The main 
concluding remarks can be stated as follows:

•	 Convergence analysis demonstrates that the inclusion of 
the first ten terms of a developed solution is adequate for 
the attainment of an accurate result.

•	 In general, the amount of TED estimated in the frame-
work of the DPL model is lower than that predicted by 
the Fourier model. The greatest effect of the DPL model 
on TED can be seen in high vibration modes or smaller 
ring sizes (more precisely in nano dimensions).

•	 According to the definition of a parameter �kn , the differ-
ence between 2 and 3D models becomes noticeable in 
high vibration modes n and low geometrical ratios R0∕r0.

•	 In the range of low values of vibration mode number n or high 
values of geometrical ratio R0∕r0 , the sensitivity of TED to 
dual-phase-lagging effect and 2D or 3D cases of heat conduc-
tion gets weak. Additionally, for very thin rings vibrating in the 
low mode numbers, TED is affected faintly by the DPL model 
and two or three-dimensionality of heat conduction.

•	 By the enlargement of cross-sectional radius r0 , the 
impact of size on the heat conduction field shrinks, so 
that the discrepancy between the predictions of the Fou-
rier and DPL models descends.

•	 Among the examined materials, the maximum and mini-
mum amount of TED in the low vibration modes occurs 
in the rings made of lead (Pb) and gold (Au), respectively.

Data availability  The raw data required to reproduce these findings can 
be accessed by directly contacting the corresponding author.
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