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Abstract
Purpose The current analytical study is devoted to examining the nonlinear free vibration behavior of the laminated nanocom-
posite cylindrical shells containing multi-scale hybrid reinforcements once a nonlinear three-parameter substrate surrounds 
the structures. The multi-phase material of the structures includes polymeric matrix, nano-scale GOPs, which are uniformly 
distributed through the thickness of each layer and macro-scale carbon fibers with various orientation angles.
Methods The effective material properties of each multi-phase nanocomposite layer are calculated by implementing the 
modified Halpin–Tsai micromechanical scheme together with the extended rule of the mixture in a hierarchy. After that, 
with an incorporation of the improved Donnell’s shell theory and Hamilton’s principle, the governing equations are derived. 
Then by adopting a two-step solution technique, these nonlinear equations are transferred to one ordinary differential equa-
tion via Galerkins’ method, and in the next step, the nonlinear frequencies of the structure are obtained by employing the 
multiple scale technique.
Results In the framework of various graphical results, a parametric analysis is conducted in detail to reveal the influences 
of the different parameters such as nonlinear foundation parameters, carbon fibers’ orientation angles, GOPs’ weight, and 
carbon fibers’ volume fractions and length-to-radius ratios on the nonlinear vibration characteristics of the multi-phase 
laminated nanocomposite cylindrical shell.
Conclusions The results declare that the addition of the GO nanofillers along with the CFs and also embedding the structure 
on the nonlinear substrate can significantly enhance the vibrational behavior of the multi-phase laminated nanocomposite 
cylindrical shell.

Keywords Nonlinear vibration · Laminated cylindrical shell · Multi-scale reinforcements · Improved Donnell’s shell 
theory · Multiple scale technique · Nonlinear substrate

Introduction

Today, composite materials are used in almost every indus-
try in which stiffness and weight are important factors. Car-
bon fiber reinforced composites (CFRC) are kind of strong 
and lightweight composites utilized in our many daily life 
products. The CFRCs have some superiorities compared to 
traditional materials and other FRCs, such as metals and 
glass fiber-reinforced composites. These advantages include 
lighter weight, higher stiffness, and excellent performance in 
high temperatures [1, 2]. In these composites, the role of the 
polymer matrix is just to hold and protect fibers together and 
makes some toughness for these materials. According to the 
low capacity of the polymers in tolerating the loads, the pol-
ymer matrix has a slight contribution in the effective stiffness 
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of the CFRC structures. However, in recent years, scientists 
have introduced polymer nanocomposites with high stiffness 
and significant electrical, thermal, and mechanical proper-
ties, which can cover the most deficiency of the polymers. 
These polymer nanocomposites with improved features usu-
ally contain one of the evolved and advanced nanofillers such 
as graphene, graphene platelet (GPL), and carbon nanotube 
(CNT). Due to the outstanding mechanical properties, these 
polymer nanocomposites have been utilized in numerous 
industrial and general products such as fuel tanks, blades, 
packaging, fuel cell, energy sensors, etc. [3]. Undoubtedly, 
many theoretical, numerical, and experimental investigations 
have been conducted on these polymer nanocomposites to 
reveal their characteristics and capabilities for use in vari-
ous industries. Some of these investigations are going to be 
reviewed in this section focusing on the theoretical analyses 
in the field of dynamic and static responses of the structures 
made of these materials. For the CNT-reinforced structures, 
Shen et al. [4] studied the effect of the thermal environ-
ment on the nonlinear vibration behavior of the polymer 
nanocomposite shells reinforced with various uniform and 
functionally graded (FG) patterns of single-walled CNTs 
through the thickness of the shells. Utilizing the first-order 
shear deformation theory (FSDT) with Donnell’s shell 
assumptions and von Kármán nonlinearities was utilized by 
Mirzaei et al. [5] to survey the buckling analysis of the CNT 
reinforced conical shells in the presence of thermal loading. 
Heydarpour et al. [6] considered consideration the effect of 
Coriolis and centrifugal forces in the investigation dealing 
with the natural frequency responses of the FG-CNT rein-
forced conical shells by implementing Hamilton’s principle 
based on the FSDT. Heydari et al. [7] procured a nonlin-
ear theoretical model to solve the bending problem of the 
embedded temperature-dependent polymer nanocomposite 
plate reinforced with graded CNTs through the thickness 
based on the Mindlin plate theory coupled with Hamilton’s 
principle. A semi-analytical approach was employed by 
Chakraborty et al. [8] in order to examine the mechanical 
responses of the laminated FG-CNT reinforced cylindrical 
nanocomposite shells by adopting the higher-order shear 
deformation theory (HSDT) in the framework of vibration, 
post-buckling, and buckling analyses. Avramov et al. [9] 
presented a finite-degree-of-freedom model to include the 
geometrical nonlinearities effects in the research relating to 
the vibration characteristics of the CNT-reinforced nano-
composite shells once a supersonic flow is applied to the 
structures. Also, on the basis of FSDT, the issue of the vibra-
tion analysis of the conical, cylindrical polymeric shells and 
annular polymeric plates containing single-walled CNTs as 
reinforcement was investigated by Qin et al. [10] with the aid 
of the unified Fourier series solution. Most recently, Liew 
et al. [11] have successfully predicted the both static and 
dynamic behaviors of the CNT-reinforced nanocomposite 

cylindrical panels according to the 3D elasticity theory by 
applying the axial and circumferential initial stresses to the 
structures. Also, the nonlinear transient vibration behav-
ior of the magneto-electro-elastic material reinforced with 
CNTs has been examined by Mahesh [12] based on the finite 
element method. Moreover, some new recent and exciting 
researches have been devoted to analyze the wave propaga-
tion and vibration mode shapes of CNTs [13, 14].

Graphene and GPLs are two of the other carbon-based 
nanofillers with great potential to be employed in numer-
ous applications such as energy storage, MEMS and NEMS 
devices, cells, etc., owing to their astounding thermal, elec-
trical, mechanical, and optical properties [15–17]. Besides, 
one of the other applications of graphene and GPLs relat-
ing to this research is that they can be terrific nanoscale 
reinforcements in high-strength polymer nanocomposites 
[18–20]. The reason is that they have excellent stiffness and 
strength [21, 22] and also better compatibility with poly-
mers in comparison with CNTs due to their large surface 
area which can interact with carbon chains more effectively. 
The properties of graphene and GPLs make them ideal nano 
reinforcements, and they have recently been used in various 
investigations related to the mechanical behavior of rein-
forced polymer nanocomposite structures. For instance, a 
numerical solution technique by the name “generalized dif-
ferential quadrature method (GDQM)” was implemented by 
Shen et al. [23] to find out the nonlinear-to-linear natural 
frequencies of the embedded thermally affected graphene-
reinforced laminated beams based on the HSDT. Li et al. 
[24] developed a computational investigation on the dynamic 
stability and nonlinear vibration responses of the sandwich 
plates consisting of two metal face sheets and a porous GPL 
reinforced nanocomposite while various external effects 
such as thermal environment, damping, and elastic substrate 
had also been regarded. Newly, Ye et al. [25] solved the 
forced vibration problem of the GPL-reinforced metal foam 
nanocomposite shells in which the ordinary differential gov-
erning equations were achieved via nonlinear Donnell’s shell 
theory and then solved according to the pseudo-arclength 
continuation numerical method.

Although graphene is a perfect nanofiller for reinforc-
ing polymers, its process to be synthesized is very time-
consuming and exhaustive which needs high accuracy and 
full-time attention. Consequently, the final product would 
be very expensive. Graphene oxide (GO) is a derivative of 
graphene obtained from the exfoliation of graphite oxide 
through a low-cost process [26]. Moreover, GO can cause 
a strong interaction with many polymers [27] due to the 
presence of these oxygen-containing groups which leads to 
perfect load transfer between the fillers and matrix. These 
features bring about the GO to be an extraordinary nanofiller 
for polymer nanocomposites. In comparison with CNTs, gra-
phene oxide powders (GOPs) showed better improvement 
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in mechanical analyses. With this regard, Zhang et al. [28] 
compared the dynamic and static responses of the GOP 
and CNT-reinforced nanocomposite beams with each other 
by utilizing FSDT and then proved that GOPs had better 
performance in these analyses. Thereafter, Ebrahimi et al. 
[29–33] analytically studied the static and dynamic behav-
ior of the GOP-reinforced nanocomposite structures in 
employing developed a hypothesis with the name of refined 
higher-order shear deformation theory. Also, Wang et al. 
[34] probed the nonlinear static behavior of the FG-GOP 
reinforced micro arches with regarding the von Kármán 
geometrical nonlinearities based on the exponential shear 
deformation theory incorporated with a couple stress-based 
model. The literature review demonstrates that there are only 
a few limited papers that examined the mechanical responses 
of the GOP-reinforced nanocomposite structures.

Although, the aforesaid macro-fiber reinforced compos-
ites and polymer nanocomposites with nanofillers exhibit 
improved material properties; recently, scientists introduced 
a novel type of nanocomposites that profit from both macro- 
and nanoscale reinforcements. These kinds of reinforce-
ments are called multi-scale hybrid reinforcements. Still, 
there are few works that can be found in the literature that 
analyzed the mechanical behavior of these novel types of 
nanocomposites. Zarei et al. [35] and Hajmohammad et al. 
[36] illustrated the influence of hygrothermal environments 
on the dynamic instability region of the laminated conical 
shells consisting of multi-phase material with macro- and 
nanoscale reinforcements while the viscoelastic properties 
and magnetic field were regarded in their works, respec-
tively. Free vibration and wave propagation analyses of the 
monolayer multi-scale hybrid nanocomposite structures were 
carried out by Ebrahimi et al. [37–40] by employing the Hal-
pin–Tsai micromechanical model and taking into considera-
tion the effect of fibers’ orientation angle on the frequency 
responses. A combination of the Eshelby–Mori–Tanaka 
method and Han’s homogenization method was considered 
by Yousefi et al. [41] to estimate the material properties 
of the multi-phase CNT/fiber/polymer laminated conical 
shells to numerically analyze the free vibration behavior of 
these multi-scale hybrid structures. A parametric study on 
the geometrically nonlinear dynamic behavior of the CNT/
fiber/polymer multi-scale hybrid nanocomposite cylindrical 
panels was conducted by Lee [42], considering delamination 
around a central cutout. Most recently, Shahmohammadi 
et al. [43] performed an analytical study on the dynamic 
instability of the general nanocomposite shells consisting 
of three phases of polymer, CNT and fibers, once the struc-
tures were subjected to pressure and thermal loadings via an 
isogeometric approach. According to the literature survey 
and to best of the authors’ knowledge, there are no studies 
concerning the three-phase nanocomposites containing GO 
nanoparticles and macro-scale carbon fibers as multi-scale 

hybrid reinforcements in the framework of the four-layer 
laminated shell structures.

In this paper, the nonlinear free vibration behavior of the 
embedded four-layer laminated nanocomposite cylindrical 
shells consisting of a polymeric matrix, nano GOPs, and 
macro-scale carbon fibers is perused through an analytical 
study. This stiff nanocomposite benefits from both astound-
ing properties of GO nanofillers and macro-scale CFs, and 
by changing the CFs’ orientation angles, the stiffness of this 
hybrid material can be tailorable for specific applications. 
Then, a modified version of Donnell’s nonlinear shell theory 
is employed to define the strains of the proposed structure in 
terms of displacement components. Afterward, on the basis 
of Hamilton’s principle, the nonlinear governing equations 
are derived and then solved by means of multiple-scale solu-
tion techniques to obtain the nonlinear vibration responses 
of the proposed structures. Finally, some new findings have 
been achieved by investigating the influences of the critical 
parameters such as fibers’ orientation angle, GOPs’ weight 
fraction, foundation parameters, etc., which have never been 
discussed before.

Theory and Formulation

Materials Homogenization Process

In the present research, a three-phased material is utilized in 
the proposed cylindrical shell containing an epoxy matrix 
and two types of carbon-based nano-size and macro-size 
reinforcements. It is worth mentioning that the graphene 
oxide (GO) nanofillers are scattered uniformly through the 
thickness of the structure, but the carbon fibers (CFs) can 
be added in a favorable orientation angle to reach the desir-
able type of laminate. These constituents are composed  to 
construct a laminated multi-scale hybrid nanocomposite 
cylindrical shell structure.

Then, to attain the effective mechanical characteristics of 
the aforementioned three-phased nanocomposite material, in 
the first step, the Halpin–Tsai micro-mechanical homogeni-
zation procedure is utilized to obtain Young’s modulus of 
the GOR nanocomposite according to the following set of 
hierarchical equations [28]:

In the preceding equation, EGORNC belongs to the equiva-
lent Young’s modulus of the GOR nanocomposite and also 
El and Et are the longitudinal and transverse Young’s modu-
lus of the mentioned nanocomposite, respectively. Hence-
forth, the subscript GORNC refers to the GOR nanocompos-
ite. Also, the El and Et can be expressed as below:

(1)EGORNC = 0.49El + 0.51Et
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where the subscripts M and GO refer to the epoxy matrix 
and GO nanoparticles, respectively. Moreover, the other 
parameters which are used in the above equation but are not 
defined before are calculated in the following:

where ξl and ξt denote the geometry factors that can be 
defined utilizing dGO and hGO which belongs to the GO pow-
ders’ diameter and thickness, respectively, as below [28]:

Thereupon, it is imperative to express the way of obtain-
ing the equivalent mass density (ρ), Poisson's ratio (ν), and 
the bulk moduli (K) of the GOR nanocomposite, which are 
attained by implementing the rule of mixture homogeniza-
tion method, as given below:

where V represents the volume fraction of the relevant 
subscript.

Furthermore, the following equation can be used to obtain 
the epoxy matrix volume fraction:

where the total volume fraction of reinforcements (VGO) 
can be expressed using the weight fraction of GOs’ (WGO) 
and the mass density of GOs and epoxy matrix together, as 
follows:

Then, Hooke’s law is employed to obtain the equivalent 
shear moduli of GOR nanocomposite (GGORNC), as expressed 
below:

(2)

El = EM ×

(
1 + �l�lVGO

1 − �lVGO

)
, Et = EM ×

(
1 + �t�tVGO

1 − �tVGO

)

(3)
�l =

(

EGO∕EM − 1
)

∕
(

EGO∕EM + �l
)

,
�t =

(

EGO∕EM − 1
)

∕
(

EGO∕EM + �t
)

(4)�l = �t = 2 dGO∕hGO

(5)�GORNC = �GOVGO + �MVM

(6)�GORNC = �GOVGO + �MVM

(7)KGORNC =
EGORNC

3 × (1 − 2�GORNC)

(8)VM = 1 − VGO

(9)VGO =
WGO

WGO + �GO
(
1 −WGO

)
∕�M

(10)GGORNC =
EGORNC

2
(
1 + �GORNC

)

Hitherto, the effective material properties of the GOR 
nanocomposite have been achieved by implementing a set 
of Hierarchical equations. But, as discussed before, the final 
proposed material consisted of three phases including the 
embedded macro-size CFs into the GOR nanocomposite 
material. Hence, it is acceptable to consider the GOR nano-
composite material as the matrix for the final three-phased 
hybrid nanocomposite material. Accordingly, it is time to 
start using proper equations to find the effective material 
properties of the aforementioned final multi-scale hybrid 
nanocomposite. In this regard, the extended rule of the mix-
ture is employed to obtain the effective characteristics of 
the mentioned orthotopic multi-scale hybrid nanocomposite 
material, as given in the following [44]:

where the CF subscript belongs to the carbon fibers’ proper-
ties. Moreover, the following equation correlates the volume 
fraction of the carbon fibers and the GOR nanocomposite:

Hitherto, the effective material properties of the presented 
hybrid multi-scale composite, comprising CFs macro-scale 
and GOs nano-scale reinforcements, have been achieved by 
the means of Eqs. (11)-(15). In the following, we intend to 
achieve the motion equations of the vibrational behavior of 
the laminated nanocomposite shells embedded on the non-
linear elastic foundation.

Governing Equations

The proposed cylindrical shell is composed of three-phase 
laminated material with length L, mean radius R, and a wall 
thickness of h, which is schematically depicted in Fig. 1. Also, 

(11)E11
eff

= VCFE
11
CF

+ VGORNCEGORNC

(12)

1
E22
eff

= 1
E22
CF

+
VGORNC

EGORNC
+ VCFVGORNC

−

(

�2CFEGORNC

E22
CF

+
�2GORNCE

22
CF

EGORNC
− 2�CF�GORNC

)

1
VCFE22

CF + VGORNCEGORNC

(13)
1

G12
eff

=
VCF

G12
CF

+
VGORNC

GGORNC

(14)�eff = VCF�CF + VGORNC�GORNC

(15)�12
eff

= VCF�CF + VGORNC�GORNC

(16)VGORNC + VCF = 1
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this figure shows that the x-θ-z coordinate system in which 
the axes are selected in the longitudinal, circumferential, and 
inward normal to the middle plane directions, respectively, is 
located on the middle surface of the left end. As mentioned 
earlier, the proposed structure is embedded in the three-param-
eter nonlinear foundation. To introduce the foundation param-
eters, including KL, KS, and KNL, Fig. 2 is provided, in which 
the red color represents the proposed cylindrical shell shown 
in Fig. 1. According to the defined coordinate system, u, v, and 

w belong to the displacements of the arbitrary points in the 
middle plane of the aforementioned shell along the x-, θ-, and 
z- axis directions, respectively. Now, the displacement fields 
of the presented model can be obtained by implementing the 
Kirchhoff–Love hypothesis as below [45]:

(17)ux(x, �, z, t) = u(x, �, t) − z
�

�x
W(x, �, t)

Fig. 1  Geometry, forces, and 
stress resultants and coordinate 
system of the laminated hybrid 
nanocomposite cylindrical shell

Fig. 2  Schematic of the laminated nanocomposite cylindrical shell resting on a three-parameter nonlinear substrate
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where t and z denote the time variable and the distance of 
the arbitrary point of the laminated shell from the middle 
surface.

It should be noted that for the designated laminated cylin-
drical shell, the constitutive relationship between stresses 
and strains can be formed as below [46]:

where,

Thereinto, θ belongs to the carbon fibers’ orientation 
angle in kth layer of the proposed laminated multi-phase 
composite, and Q parameters can be defined as follows:

Moreover, the nonlinear strain–displacement equations 
based on the Kirchhoff–Love theory, for the cylindrical shell 
must be written in the following form [46]:

In which, the εx,0, εy,0, and γxθ,0 belong to the middle-plain 
strains. Also, κxx, κθθ, and κxθ denote the middle surface cur-
vature and torsions.

It is worth mentioning that Donnell’s nonlinear shell the-
ory confronts imprecision at the small circumferential wave-
number. Hence, it has been decided to utilize the improved 
Donnell’s nonlinear shell hypothesis to overcome the afore-
mentioned imprecision. Accordingly, the related expressions 
in the before equations can be represented as follows:

(18)uy(x, �, z, t) = v(x, �, t) − (z∕R)
�

��
W(x,�, t)

(19)uz(x, �, z, t) = w(x, �, t)

(20)

⎡⎢⎢⎢⎣

�k
xx

�k
��

�k
x�

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

Q11 Q12 0

Q12 Q22 0

0 0Q66

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

�xx

���

�x�

⎤⎥⎥⎥⎦

(21)

Q11 = Q11 cos
4 � + Q22 sin

4 � + 2Q12 sin
2 � cos2 �

Q22 = Q11 sin
4 � + Q22 cos

4 � + 2Q12 sin
2 � cos2 �

Q12 =
1

4
sin2 2�

(
Q11 + Q22

)
+ Q12

(
sin4 � + cos4 �

)

Q66 = Q66 cos
2 �

(22)

Q11 =
E11
eff

1 − �12�21
, Q22 =

E22
eff

1 − �12�21
, Q12 =

�12E
22
eff

1 − �12�21
, Q66 = E12

eff

(23)

�xx=�x,0 + z�xx

���=��,0 + z���

�x�=�x�,0 + 2z�x�

The internal moment and force resultants are given by the 
following equations:

Thus, by substituting Eqs. (20) and (23) into Eq. (26), it 
yields the constitutive equations in the matrix form as fol-
lows [46, 47]:

Thereinto,

Now, Hamilton’s principle [48] will be utilized as below 
for obtaining the Euler–Lagrange equations:

Then, at this stage, it is required to express the strain 
energy ПS, kinetic energy ПK, and the work done by the 
external forces ПF. To define these parameters, we have [49]:

(24)

[
�
x,0, ��,0, �x�,0

]
=

[
1

2

(
2
�u

�x
+ (

�w

�x
)2
)
,
w

R
+

1

R

(
�v

��
+

1

2R
(
�w

��
)2
)
,
1

R

(
�u

��
+

�w

�x

�w

��

)
+

�v

�x

]

(25)

[
�xx, ��� , �x�

]
=

[
−�2w

�x2
,
−1

R2

�

��

(
�w

��
− v

)
,
−1

R

�

�x

(
�w

��
− v

)]

(26)

[
Nx Mx

]
= ∫

h∕2

−h∕2

[1 z] �k
xx
dz

[
N� M�

]
= ∫

h∕2

−h∕2

[1 z] �k
��
dz

[
Nx� Mx�

]
= ∫

h∕2

−h∕2

[1 z] �k
x�
dz

(27)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Nx

N�

Nx�

Mx

M�

Mx�

⎫
⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 0B11 B12 0

A12 A22 0B12 B22 0

0 0A66 0 0B66

B11 B12 0D11 D12 0

B12 B22 0D12 D22 0

0 0B66 0 0D66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�x,0

��,0

�x�,0

�x

��

2�x�

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

(28)[Aij,Bij,Dij] =

N=4∑
k=1

∫
zk+1

zk

Qij[1, z, z
2] dz, i, j = 1, 2, 6

(29)∫
t2

t1

�
(
ΠK − ΠS − ΠF

)
dt = 0

(30)

�ΠS =∫V
�k
ij��ijdV

=∫

2�

0 ∫

L

0

(

Nx�x,0 + Nx��x�,0 + N���,0 +Mx�xx +Mx��x� +M����
)

Rdxd�
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In Eq. (31) �T
eff

 is the total mass density of the structure 
which can be defined as follows:

Also, the external forces in Eq.  (32) include just the 
forces related to the three-parameter nonlinear elastic foun-
dation and there are no other external forces in this study. In 
this regard, kL, kP , and kNL are the parameters of the linear 
sublayer, shear layer, and nonlinear springs, respectively.

By substituting Eqs. (30)-(32) in Eq. (29), and then put-
ting the coefficients of δu, δv, and δw equal to zero, the fol-
lowing nonlinear Euler–Lagrange equations of the proposed 
model can be obtained as given below:

Afterward, by introducing Eqs. (27) and (28) into Eqs. 
(34, 35, 36), it yields:

(31)

�ΠK =
1

2 ∫
L

0 ∫
2�

0

�T
eff

((
�u

�t

)2

+
(
��

�t

)2

+
(
�w

�t

)2
)
Rd�dx

(32)

�ΠF = 1
2 ∫

L

0 ∫

2�

0

(

kLw − kP

((

�2w
�x2

)

+
(

�2w
R2��2

))

+ kNLw3
)

Rdxd�

(33)�T
eff

=

N=4∑
k=1

∫
zk+1

zk

�k
eff
dz

(34)
�Nx�

R��
+

�Nx

�x
= �T

eff

�2u

�t2

(35)
�M�

R2��
+

2�Mx�

R�x
+

�N�

R��
+

�Nx�

�x
= �T

eff

�2v

�t2

(36)

N�

R

(
�2W

��2
− 1

)
+ 2Nx�

�2w

R�x��
+ Nx

�2w

�x2
+

�w

R��

(
�N�

��
+

�Nx�

�x

)
+

�w

�x

(
�Nx

�x
+

�Nx�

R��

)

+
�2M�

R2��2
+

�2Mx

�x2
+ 2

�2Mx�

R�x��
− kLw + kP

(
�2w

�x2
+

�2w

R2��2

)
+ kNLw

3 = �T
eff

�2w

�t2

(37)

A11

(
�2u

�x2
+

�2w

�x2
�w

�x

)
+

A12

R

(
�2�

�x��
+

�w

�x

(
1 +

�2w

�x��

))
+

A66

R2

(
�2u

��2
+

R�2�

�x��
+

�w

�x

�2w

��2
+

�w

��

�2w

�x��

)
= �T

eff

�2u

�t2

(38)

A11

R2

(
�2�

��2
+

�w

��

(
1 +

�2w

R��2

))
+

A12

R2

(
R�2u

�x��
+

�2w

�x��

�w

��

)
+

A66

R

(
�2u

�x��
+ R

�2�

�x2
+

�2w

�x��

�w

�x
+

�2w

�x2
�w

��

)
= �T

eff

�2�

�t2

where P1 and P2 correspond with:

Also, the corresponding general boundary conditions 
are concurrently attained as follows:

(39)

A11
R

(

��
��

+ 1
2R

(�w
��

)2
+ w

)

−
A12
R

(

�u
�x

+ 1
2

(�w
�x

)2)

− D11

(

�4w
�x4

+ �4w
R4��4

)

−
2D12

R2
�4w

�x2��2
−

4D66

R2
�4w

�x2��2
− kLw

+ kP

(

�2w
�x2

+ �2w
��2

)

− kNLw3 + P1 + P2 = �Teff
�2w
�t2

(40)
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A12

R2
�2w
��2

(

�u
�x
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2

(�w
�x

)2)

+
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R
�w
��
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�2u
�x2
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�x

�2w
R�x��

)

+ A11
�w
�x

(

�2u
�x2
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�x

�2w
�x2

)

+
A11

R3

(

�v
��
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2R2

(�w
��

)2
+ w

)

+
A11

R2
�w
��

(

�2v
R��2
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��

�2w
R2��2
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R��

)
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+
(�w
�x
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+
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R
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��
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+
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R
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��
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��
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(41)

P2 =
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�2u
�x��

+ R�
2v

�x2
+ �2w

�x2
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��
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(42)

x = 0, L then

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�u = 0, or Nx = 0

�� = 0, or 2Mx� + RNx� = 0

�w = 0, or
Nx�w

�x
+

Nx��w

R��
+

�Mx

�x
+

2�Mx�

��
= 0

Mx = 0, or �(�w∕�x) = 0
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Solution Procedure

By considering the implemented simply supported bound-
ary conditions, at x = 0 and also x = L the relations given 
below must be satisfied:

Accordingly, the displacement functions that can satisfy 
the aforementioned boundary condition, by considering the 
m and n as the axial half-wave number and circumferential 
wave number, respectively, can be set as below:

where umn(t), vmn(t), and wmn(t) belong to the displace-
ment amplitude components.

Also, by substituting Eqs. (45), (46) and (47) into Eqs. 
(37), (38) and (39) and then employing Galerkin’s method, 
we can achieve the subsequent set of ordinary differential 
equations:

in which the coefficients L̃ij(i, j = 1,2,…,7) given in the 
Appendix A.

According to the fact that two of the inertia terms ümn(t) 
and v̈mn(t) , compared with the transverse inertia term ẅmn(t)  
have inconsiderable effects, then both can be neglected in 

(43)

� = 0, 2� then

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�u = 0, or Nx� = 0

�� = 0, or M� + RN� = 0

�w = 0, or
N��w

��
+

Nx��w

�x
+

�M�

R��
+

2�Mx�

�x
= 0

M� = 0, or �(�w∕��) = 0

(44)v = w = 0 and
�u

�x
= Nx =

�2w

�x2
= Mx = 0

(45)u(x, �, t) =

∞∑
m=1

∞∑
n=1

umn(t) cos (m�x∕L) cos(n�)

(46)�(x, �, t) =

∞∑
m=1

∞∑
n=1

�mn(t) sin (m�x∕L) sin(n�)

(47)w(x, �, t) =

∞∑
m=1

∞∑
n=1

wmn(t) sin (m�x∕L) cos(n�)

(48)
L̃11umn(t) + L̃12vmn(t) + L̃13wmn(t) + L̃14w

2
mn
(t) = ümn(t)

(49)
L̃21umn(t) + L̃22vmn(t) + L̃23wmn(t) + L̃24w

2
mn
(t) = v̈mn(t)

(50)
L̃31umn(t) + L̃32vmn(t) + L̃33wmn(t) + L̃34umn(t)wmn(t)
+ L̃35vmn(t)wmn(t) + L̃36w2

mn(t) + L̃37w3
mn(t) = ẅmn(t)

Eqs. (48) and (49). Hence, by solving umn(t) and vmn(t) in 
the aforesaid equations, and also substituting the results in 
Eq. (50) we have:

By considering the following initial conditions:

where wmax belongs to the maximum value of wmn(t).

Then, in order to solve Eq. (51), the multiple scale method is 
implemented. At first, it’s required to present the scaled time 
by introducing a small dimensionless parameter named ε 
that has been used as a bookkeeping device, as given below:

Now, the time derivatives can be written in terms of Tη 
as below:

where

The vibration response which is a function of various 
scaled times can be represented as follows:

By introducing Eqs. (54)-(56) in Eq. (51) and also putting 
the coefficients of all powers of ε equal to zero, it yields:

In which, the achieved linear natural frequencies are 
achieved as follows:

(51)ẅmn(t) + a1wmn(t) + a2w
2
mn
(t) + a3w

3
mn
(t) = 0

(52)wmn(t = 0) = wmax,
�wmn

�t
||t=0 = 0

(53)T� = ��t, � = 0, 1, 2, ...

(54)

⎧⎪⎨⎪⎩

�

�t
= D0 + �D1 + �2D2

�2

�t2
=
�
D0

�2
+ 2�D0D1 + �2

��
D1

�2
+ 2D0D2

�

(55)D�

|||||�=0,1,2,...
=

�

�T�

(56)
w
mn
(t) = �w1

(
T0, T1, T2, ...

)
+ �2w2

(
T0, T1, T2, ...

)

+ �3w3

(
T0, T1, T2, ...

)

(57)
(
D2

0
+ �2

0

)
w1 = 0

(58)
(
D2

0
+ �2

0

)
w2 = −w1

(
2D0D1 + a2w1

)

(59)

(
D2

0
+ �2

0

)
w3 = −w1

(
2D0D2 + a3w

2
1
+ D2

1
+ 2a2w2

)
− 2D0D1w2

(60)�0 = �L =
√
a1
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Hence, for Eq. (57) the solution achieved as:

Then by inserting it into Eq. (57) we obtain:

where the CC term can be dedicated to the conjugate func-
tion of all former parameters.

Due to the elimination of all the secular terms in Eq. (62) 
we achieve:

By inserting  w1 and  w2 which have been found in Eqs. 
(61) and (63) into Eq. (59) we obtain:

Likewise, the secular terms in this equation must be omit-
ted too:

The solution of the above equation would be in the fol-
lowing form:

By introducing the solution namely Eq. (66) in Eq. (65), 
we achieved a complex equation. Then by separating imagi-
nary and real parts, we have:

By solving Eq. (67) and assuming ψ0 as a constant param-
eter, we attain:

(61)
w1 = A

(
T1, T2

)
exp

(
i�0T0

)
+ A

(
T1, T2

)
exp

(
−i�0T0

)

(62)

w2
(

D2
0 + �2

0

)

= − 2i�0AD1 exp
(

i�0T0
)

− a2A2 exp
(

2i�0T0
)

− a2AA + CC

(63)w2 =
a2

3�0

exp
(
2i�0T0

)
A2 −

a2

�2
0

AA + CC

(64)

w3

(
D2

0
+ �2

0

)
= −A3

(
a3 +

2a2
2

3�2
0

)
exp

(
3i�0T0

)
+

AA2

(
−3a3 +

10a2
2

3�2
0

− 2i�0D2∕AA

)
exp

(
i�0T0

)
+ CC

(65)−3a3AA
2 +

10a2
2

3�2
0

AA2 − 2i�0D2A = 0

(66)A = 0.5a exp (i�)

(67)

⎧⎪⎪⎨⎪⎪⎩

�0

�a

�T2
= 0

5a2
2

12�2
0

a3 −
3a3

8
a3 + �0a

��

�T2
= 0

(68)� = T2a
2

(
3a3�

2
0

8�3
0

−
5a2

2

12�3
0

)
+ �0

By substituting Eqs. (67) and (52) into Eq. (65) the fol-
lowing equation can be attained:

Then, by substituting Eqs. (61), (63), and (69) in Eq. (56) 
we achieved the following relation:

Then we can obtain a1, a2, and a3 parameters as it is given 
below:

By exerting the initial conditions into Eq. (52) we have:

Eventually, the nonlinear frequency of the multi-phase 
laminated nanocomposite shell is achieved as:

(69)A =
a

2
exp

(
ia2�2t

(
3a3�

2
0

8�3
0

−
5a2

2

12�3
0

)
+ i�0

)

(70)

wmn(t) =�a cos
(

�NLt + �0
)

−
�2a2a2

2a1

(

1 − 1
3
cos

(

2�NLt + 2�0
)

)

+ O
(

�3
)

(71)
a1 =L̃23

L̃12L̃31 − L̃11L̃32
L̃12L̃21 − L̃23L̃22

− L̃22
L̃31L̃13 − L̃11L̃33
L̃12L̃21 − L̃23L̃22

+ L̃21
L̃32L̃13 − L̃12L̃33
L̃12L̃21 − L̃23L̃22

(72)a2 = 0

(73)a3 = L̃35

(74)�0 = 0, and a� = wmax

(75)�NL =
√
a1

�
1 + �2a2

�
3a3a1

8a2
1

−
5a2

2

12a2
1

��
+ O(�3)

Table 1  Comparison of the linear natural frequencies ( �
L
 ) of the thin 

isotropic cylindrical shell for different mode numbers

Mode numbers 
(m,n)

Linear natural frequencies, �
L
 (Hz)

Ref [50] Ref [51] Ref [4] Present

(1,7) 305.22 305.32 306.73 306.3423
(1,8) 281.31 281.37 281.30 282.3169
(1,9) 288.24 288.28 290.59 289.2502
(1,10) 317.49 317.51 320.04 318.5885
(1,11) 362.20 362.22 364.83 363.4435
(1,12) 417.94 417.96 420.59 419.3724
(1,13) 482.22 482.23 484.84 483.8618
(1,14) 553.67 553.67 556.24 555.5564
(1,15) 631.58 631.59 634.08 633.7257
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Verification Studies

The nonlinear and linear frequency responses of the current 
study are compared with both experimental and numerical 
results of the previous works, investigating the vibrational 
performance of the cylindrical shell structures, to prove the 
accuracy and correctness of the present methodology.

A set of comparisons have been carried out in Table 1, 
in which the linear natural frequencies of a thin homog-
enous cylindrical shell have been obtained using various 
methods and theories such as improved Donnell’s nonlin-
ear shell theory (present study), finite element method (by 
Gonçalves et al. [50]), Sanders’ shell theory (by Dym [51]), 
and HSDT (by Shen et al. [4]). The physical and geometri-

cal parameters of this isotropic shell are considered as: 

 
R = 301.5mm.

 Comparing the results of this study in 
Table 1, with those reported in the other mentioned refer-
ences, with considering different mode numbers, shows a 
perfect agreement and the result are quite close to each 
other.

E =210Gpa, � = 0.3, � = 7850
kg

m3
, L = 410mm, h = 1mm,

In order to investigate the reliability of the nonlinear 
responses, the nonlinear-to-linear natural frequency ratios 
of an isotropic cylindrical shell are gathered in Table 2, 
with constant values of axial half-wave number (m) and 
variable values of circumferential wave number (n). As 
observed in this table, the very low differences between 
the results of this study and those reported by Raju et al. 
[52] and Rafiee et al. [53] can approve the accuracy of 
the present solution technique utilized for predicting the 
nonlinear frequencies.

Up to now, the validity of the various parts of this study, 
including theory and solution technique, related to the lin-
ear and nonlinear responses of the cylindrical shells, have 
been surveyed. To cover all parts of this investigation, the 
validity of the approach considered for the lamination con-
cept of this paper is going to be asked in the framework 
of Table 3. In this table, the dimensionless linear natural 
frequencies of the cross-ply laminated nanocomposite 
cylindrical shells are compared with those provided by 
Chakraborty et al. [8] regarding various radius-to-thick-
ness ratios and different CNTs’ volume fractions. Again, 
an excellent agreement is obtained in this table.

This section revealed the high accuracy of the current 
methodology, and also it is confirmed that this study can 
competently predict the nonlinear vibration responses of 
the laminated nanocomposite cylindrical shells containing 
multi-scale reinforcements.

Numerical Results and Discussion

This section is allocated to survey the achieved results in the 
framework of graphical diagrams and tabulated outcomes 
by working on the nonlinear free vibration analysis of the 

Table 2  Comparison of the nonlinear to linear frequency ratio 
( �

NL
∕�

L
 ) of the isotropic cylindrical shell with considering 

w
max

∕h = 1

Obtained from (m,n)

(1,2) (1,3) (1,4)

Ref [52] 1.008 1.0060 1.0398
Ref [53] 1.0010 1.0064 1.0404
Present 1.009 1.0033 1.0117

Table 3  Comparison of the 
dimensionless linear natural 
frequencies (Ω = �

L

(
L
2

h

)√
�
m

E
m

) 
of the cross-ply CNTR 
laminated [0/90/90/0] 
nanocomposite cylindrical shell 
with a uniform distribution 
pattern of CNTs

R

L

V
CNT

0.11 0.14 0.17

Present Ref [8] Present Ref [8] Present Ref [8]

2 26.5580 26.5322 28.4251 28.3170 30.1294 29.9671
5 21.0253 20.9522 23.2095 23.0035 25.1261 24.8521
12 20.0466 19.9075 22.3163 22.0278 24.3057 23.9257

Table 4  Material properties 
of the multi-scale hybrid 
nanocomposite shell [28, 44]

Polymeric matrix (epoxy) E = 3Gpa, � = 0.34, � = 1200 kg/m3

Graphene Oxide nanofillers (GOPs) E = 444.8Gpa, � = 0.165, � = 1090 kg/m3

Carbon fibers (CFs) E11 =233.05Gpa,E122 = 23.1Gpa, �

= 0.2, � = 1750 kg/m3
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cross-ply laminated nanocomposite cylindrical shell, con-
taining multi-scale hybrid reinforcements and, embedded 
on a three-parameter nonlinear foundation. The major center 
of attention in this segment would be on the susceptibil-
ity of the linear and nonlinear natural frequency responses 
versus the variations in some of the effective and important 
parameters, such as circumferential wave number, vibra-
tion amplitude, values of CF's volume fraction, and GOP's 
weight fraction, nonlinear three-parameter substrate (dis-
crepancy applied on all three parameters together, or one 
by one individually), length-to-radius ratio, and also fibers’ 
orientation angle. Also, in all illustrated graphs, the simul-
taneous effect of two or more parameters' variations is pre-
sented to help to reach a more extensive study. Furthermore, 
in terms of material characterization and finding the best and 
most optimized kind of material composition of multi-scale 
reinforcements, different types and percentages of macro-
scale CFs and nanoscale GOPs reinforcements is inspected 
through some plots. The material properties of the utilized 
reinforcements and polymer matrix are available in Table 4. 
It should be mentioned that the geometrical and other effec-
tive parameters would be as follows unless otherwise stated:

Also, the radius (R) of the shell is considered to be 1 m 
in all tables and figures. In terms of perusing the variation 
of the nonlinear to linear frequency ratio due to applying 
changes in the circumferential wave number, Fig. 3, with 
three subplots, is depicted for different values of the vibra-
tion amplitude; each subplot consists of three branches indi-
cating various amounts of the GOPs' weight fraction. It is 
observable that, in all three subplots, the values of the non-
linear to linear frequency ratio are experiencing an increas-
ing trend up to reaching a particular maximum value, and 
then decrease suddenly with a declining slope, and tend to 
a constant value gradually. Furthermore, an enhancement 
in the percentage of the weight fraction of added GOP rein-
forcements, which causes an improvement in the stiffness of 
the matrix of the multi-scale hybrid nanocomposite, leads 
to the reduction in the nonlinear to linear frequency ratio, 
in all values of circumferential wave number or vibration 
amplitude. Also, as it is obvious, an improvement in the 
structure’s stiffness induces an increment in the linear fre-
quency parameter. But, the observed reduction in the non-
linear to linear frequency ratio values is probably due to 
the lower enhancement in the nonlinear frequency amounts 
compared to the linear frequency values. In addition, at any 
given circumferential wave number, by the increment of 
the vibration amplitude, values of the nonlinear to linear 
frequency ratio enhance in all GOP reinforcements’ weight 
fraction amounts.

h = 0.002R, L = 20R, m = 1, n = 3, wmax∕h = 1,
VCF = 0.1, WGop = 1%, KNL = KP = KL = 0

Figure 4 is plotted to investigate the influence of various 
values of the nonlinear three-parameter foundation on the 
nonlinear to linear frequency ratio at any given value of the 
vibration amplitude parameter, consisting of three independ-
ent graphs presented for different values of the CFs vol-
ume fraction. It can be seen that each branch of every graph 
experiences an increasing trend, which means the values 
of the nonlinear to linear frequency ratio are enhanced by 
the vibration amplitude’s increment, which happens due to 
the direct relation. Also, it can be noticed that, at any given 
value of the vibration amplitude, regardless of the CFs’ vol-
ume fraction, values of the nonlinear to linear frequency 
ratio lessen by enhancing the amounts of the nonlinear three-
parameter foundation. Plus, this is worth mentioning that, 
the more the value of the CFs volume fraction grows, the 
more the branches of graphs become distinguished. This 
conversion appears since the nonlinear three-parameter 
foundation parameters increase, which leads to a growth in 
the stiffness characteristic of the proposed nanocomposite. 
Also, more detailed information about how each layer of 
this three-layered nonlinear substrate affects the nonlinear 
vibrational responses of the structure can be found in the 
results of the next figure. Further, as explained before, the 
growth of stiffness leads to a decrement in the nonlinear 
to linear frequency ratio. Moreover, it should be remarked 
that, by an increment in the percentage of CFs’ volume frac-
tion, all branches of different substrate parameters, confront 
a reduction in the nonlinear to linear frequency ratio values. 
In addition, the observed decline in the nonlinear to linear 
frequency ratio owing to the growth of the  VCF happens for 
a similar logic that has been explained previously via the 
observed reduction in the nonlinear to linear frequency ratio 
due to the increment of  WGOP.

The influence of embedding the structure on each layer 
of this nonlinear substrate individually versus the nonlinear 
to linear frequency ratio is illustrated in different subplots 
in Fig. 5. Besides, each subplot is devoted to exploring the 
effect of various values of the vibration amplitude too. It is 
clear that while the linear and nonlinear substrate parameters 
are subjected to an incrementation, the nonlinear to linear 
frequency ratio will experience decline and rise, respec-
tively, linearly with a small slope. Although in the shear 
substrate parameter type, the nonlinear declining trend is 
observable, which means by increasing the values of the 
shear substrate parameter, the nonlinear to linear frequency 
ratio will reduce in a relatively severe trend. In addition, in 
each branch of subplots, it is evident that at any given value 
of the foundation parameters, applying an enhancement in 
the vibration amplitude value leads to an increment in the 
nonlinear to linear frequency ratio. Besides, in all subplots 
of this figure, especially in part (c), it can be seen that by 
employing some higher values of the vibration amplitude 
parameter, values of the nonlinear to linear frequency ratio 
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will experience a steeper reduction in comparison with lower 
vibration amplitudes. In addition, in this group of graphs, it 
can be discovered that the shear foundation parameter has a 

more distinct influence on the variation trend of the nonlin-
ear to linear frequency ratio.

Figure 6 is devoted to studying the effect of the fibers’ ori-
entation angle parameter on the nonlinear to linear frequency 

Fig. 3  Variation of the nonlinear to linear frequency ratio versus circumferential wave number for different values of vibration amplitude 
( w

max
∕h) and various amounts of GOPs (m = 1, V

CF
= 0.1)
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ratio, considering different values of the length-to-radius 
ratio via each branch of every subplot. In which, the influ-
ence of various amounts of the circumferential wave number 
is checked in different subplots. It is demonstrated that the 
nonlinear to linear frequency ratios values experience an 

increasing–decreasing graph. Hence, certainly there exists 
a peak, this peak occurs at the 90-degree orientation angle, 
and then the trend starts to decline again till it tends to a 
constant value symmetrically. It is notable that regardless 
of the length-to-radius ratio, all the branches confront their 

Fig. 4  Influence of nonlinear three-parameter substrate on the frequency ratio-amplitude curves with respect to various values of CFs’ volume 
fractions (n = 3, m = 1, W

GOP
= 1%)
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maximum value of the nonlinear to linear frequency ratio at 
the 90-degree fibers’ orientation angle. Furthermore, at any 
given value of the fibers’ orientation angle, the increment 
of the length-to-radius ratio causes the enhancement of the 
nonlinear to linear frequency ratio parameter’s values. More-
over, it’s demonstrated that by applying an increase in the 
circumferential wave number's values, the nonlinear to linear 

frequency ratios values increase, but after passing n = 2, this 
value confronts a reduction. It is worth mentioning that the 
foresaid response is valid according to the explored informa-
tion in Fig. 3 before, which confirms that the nonlinear to 
linear frequency ratio values grow to a maximum value and 
then decrease afterward to reach a constant value. In addi-
tion, it is declared in the diagram that applying a decrement 

Fig. 5  Interaction of each layer of the nonlinear substrate with the hybrid laminated nanocomposite cylindrical shell with considering different 
values of vibration amplitude (m = 1, n = 1, W

GOP
= 3%,V

CF
= 0.1)
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in the circumferential wave number's values causes the 
branches of different values of the length-to-radius ratio get 
more distinguishable.

The simultaneous effects of the length-to-radius ratio 
and the GOPs’ weight fraction on the nonlinear vibration 

responses of the structure are covered in Fig. 7. In con-
trast, the variation of the nonlinear to linear frequency 
ratio has been plotted against the vibration amplitude. 
Also, this plot shows a rising trend in which the nonlinear 
to linear frequency ratio is experiencing an increase by 

Fig. 6  Variation of the nonlinear to linear frequency ratio against CFs’ orientation angle with considering different length-to-radius ratios for 
various circumferential wave numbers (m = 1, W

GOP
= 1%,V

CF
= 0.1,w

max
∕h = 1)
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an increment in the vibration amplitude values. In addi-
tion, it is indicated that at any given value of the vibration 
amplitude parameter, an increment in the GOPs’ weight 
fraction values leads to a reduction in the nonlinear to 

linear frequency ratio values. It is worth noting that all of 
the reported outcomes are completely valid, as discussed 
in detail to declare logical and scientific reasons earlier. 

Fig. 7  Simultaneous effect of the GOPs’ weight fraction and hybrid laminated nanocomposite cylindrical shell’s length-to-radius ratio on the 
frequency ratio-amplitude curves (m = 1, n = 3, V

CF
= 0.1)
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Furthermore, the length-to-radius ratio has a direct impact 
on the nonlinear to linear frequency ratio parameter in 
a way that an addition in the L/R parameter leads to an 
enhancement in the nonlinear to linear frequency ratios 
parameter.

Figure  8 is dedicated to investigating the variation 
of the nonlinear to linear frequency ratio of the hybrid 
laminated nanocomposite cylindrical shell based on the 
changes in the fibers' orientation angle parameter, consid-
ering disparate values of the circumferential wave num-
ber parameter. It can be perceived that the values of the 
nonlinear to linear frequency ratio are symmetrical with 
respect to the 90-degree fibers’ orientation angle, and the 
maximum value of the mentioned under-study parameter 
appears at this angle of fibers’ orientation. Also, around 
the 0- and 180-degree orientation angle, the nonlinear to 
linear frequency ratios values lead to a constant value sym-
metrically. Also, it is notable that at any given value of 
the fibers’ orientation angle, the values of the nonlinear 
to linear frequency ratio increase by enhancement of the 
circumferential wavenumber parameter, up to reaching 
(n = 2), and then it experiences a reduction for the same 
scientific reason that discussed in former graphs (Fig. 6).

Conclusion

This article is primarily inquiring about the nonlinear 
frequency responses of the cross-ply laminated multi-
scale hybrid nanocomposite shell embedded on a three-
parameter nonlinear foundation. The macro-scale carbon 
fiber reinforcements are added to the polymer matrix, 
which is already reinforced with the nano-size GOPs. The 
homogenization procedure for deriving the effective mate-
rial properties is conducted with an incorporation of the 
rule of mixture and Halpin–Tsai and methods. Also, an 
improved and more accurate form of the nonlinear Don-
nell’s shell theory was introduced to predict the nonlinear 
strains’ relations in a better way. Afterward, the nonlinear 
equations of motion are accomplished utilizing Hamilton's 
principle. Subsequently, to obtain the structure’s natural 
frequencies, the derived nonlinear equations were analyti-
cally solved via a two-step process, including Galerkin and 
multiple-scale techniques. Finally, a complete parametric 
study was carried out in the framework of the nonlinear 
vibration analysis to cover both influences and confronta-
tions of various parameters. Some of these new interesting 
consequences are expressed below.

• The increment of any kind of reinforcements, for instance, 
the weight fraction of the nano-size GOP or macro-scale 
CF reinforcement, and also nonlinear three-parameter foun-
dation parameters, will improve the stiffness of the multi-
scale hybrid nanocomposite.

• Improvement of stiffness undoubtedly increases the linear 
frequency parameter.

• Enhancement of stiffness characterization lessens the non-
linear to linear frequency ratio.

• The values of the nonlinear to linear frequency ratio 
increase by enhancement in the fibers’ orientation angle, 
by approaching the 90-degree reaches the maximum value 
and then symmetrically, like the before-maximum value 
trend, lessens gradually and tends to a constant value.

• The values of the nonlinear to linear frequency ratio 
increase until reaching a particular maximum value and 
then decrease suddenly with varying slopes due to the 
enhancement of the circumferential wavenumbers.

• The growth in the radius to thickness ratio induces an incre-
ment in the nonlinear to linear frequency ratio values.

• The length-to-radius ratio values has a significant influence 
on the diagrams’ trend of the nonlinear to linear frequency 
ratio due to the changes in fibers’ orientation angle.

Fig. 8  Variation of the nonlinear to linear frequency ratio of 
the hybrid laminated nanocomposite cylindrical shell with 
considering various circumferential wave numbers (m = 1, 
W

GOP
= 1%,V

CF
= 0.1,

w
max

h
= 1)
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