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Abstract
A new preconditioned modified conjugate gradient algorithm based on improved gradient operator and preconditioned 
technology is proposed for moving force identification of bridge structure in this paper. First, the moving load identification 
problem is converted into the problem of solving large-scale linear equations by the time-domain deconvolution technology 
and modal superposition method. Then the large-scale linear equations problem is transformed into easily solved equivalent 
problem by preprocessing. Subsequently, it is transformed into an unconstrained linear optimization problem by constructing 
the corresponding objective function. Finally, the problem is solved by the proposed conjugate gradient method. The innova-
tion of the proposed method lies in two aspects. First, the proposed conjugate gradient method is proved by mathematical 
theory. Second, before constructing the objective function, the preconditioned technique is utilized to simplify the original 
problem. A series of numerical simulations are carried out to verify the stability and effectiveness of the proposed approach 
under 21 kinds of noise levels and 6 different sensor configurations, and its performances are compared with several conjugate 
gradient methods. The results show that the proposed method can reduce the iteration number, and also ensure the load iden-
tification accuracy, which indicates that the proposed method can improve the speed of identification and effectively reduce 
the cost. Meanwhile, the identification situation of different load components is studied by the frequency spectrum analysis 
method. It is found that the proposed method is a stable and a reliable identification method for static and low-frequency 
components, which provides a new idea for dynamic weighing of low-frequency loads on bridges.

Keywords  Moving load identification · Gradient method · Preconditioned technology · Frequency component · Frequency 
spectrum analysis

Introduction

Dynamic information about moving load on the bridge is 
closely related to structural design, reliability analysis, fault 
diagnosis, and other engineering problems. In most practical 
engineering problems, it is difficult or impossible to directly 
measure moving loads acting on the bridge structure. How-
ever, the dynamic responses of the bridge are easier to obtain 
without damaging the bridge structure, so the load informa-
tion can be obtained in an indirect way, i.e., moving force 
identification (MFI). After decades of research by many 
scholars, a variety of moving load identification methods 
have been developed. According to different identification 
methods, it can be divided into direct method, basis function 
expansion method, regularization method, function approxi-
mation method, intelligent calculation method, and so on.

The direct method is mainly based on the basic theory of 
structural vibration to deduce and establish the mathematical 
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equation of MFI. Then matrix inverse method or least square 
method is used to solve the equation directly. For example, 
Law et al. [1] proposed the time-domain method to identify 
the moving load on the bridge from the acceleration and 
bending moment response. Huang et al. [2] transformed the 
differential equation of bridge structure vibration into the 
general form of precise integration, and then obtained the 
precise integration method for MFI. Hou et al. [3] introduced 
the idea of precise integration method into the symplec-
tic algorithm to establish a symplectic precise integration 
method for MFI. Liu et al. [4] proposed a new method called 
time-domain Galerkin method for investigating the structural 
dynamic load identification problems. Because the MFI is 
a typical inverse problem, in the case of measurement error 
or noise interference, the direct method will encounter the 
problem of ill-conditioned [5], leading to a large deviation 
in the identification results. Therefore, the direct method is 
difficult or impossible to be applied in engineering practice.

For the ill-conditioned problem of moving load identifi-
cation, the regularization methods have been developed by 
introducing reasonable additional information as the con-
straint. For example, Qiao et al. [6] used Tikhonov regulari-
zation method to overcome the ill-conditioned problem of 
bridge moving load identification. Based on integer-order 
Tikhonov regularization technique, Wang et al. [7] proposed 
a new fractional Tikhonov regularization technique. Sub-
sequently, Liu et al. [8] constructed an improved fractional 
order filtering factor and proposed an improved fractional 
order Tikhonov regularization method. Based on singular 
value decomposition, Chen et al. [9, 10] proposed the trun-
cated generalized singular value decomposition method and 
piecewise polynomial truncated singular value decomposi-
tion method for moving force identification. Chen et al. [11] 
developed a novel preconditioned least-square QR-factori-
zation method for moving force identification. Based on the 
Arnoldi process, Krylov subspace method and generalized 
minimal residual method, Chen et al. [12] proposed a pre-
conditioned range restricted generalized minimal residual 
method for moving force identification. Based on sparse reg-
ularization technique, Pan et al. [13] proposed a novel mov-
ing load identification method. Qiao et al. [14] developed a 
general sparse regularization method based on minimizing 
l1-norm of the coefficient vector of basis functions. He et al. 
[15] proposed a novel modified regularization method to 
solve the ill-posed problem and mitigate the error propaga-
tion of random dynamic loads identification. Feng et al. [16] 
proposed a novel sparse Kalman filter recursive algorithm 
to localize and reconstruct the forces in time domain. Based 
on the redundant concatenated dictionary and weighted-
norm regularization method, Wang et al. [17] proposed a 
hybrid method for MFI. Regularization methods are widely 
studied because they can improve the ill-conditioned prob-
lem of inverse problems, but the constraints introduced by 

regularization method need to be determined in advance. 
The regularization parameter plays a role in regulating the 
constraints. If the regularization parameter is too large, it 
will lead to excessive constraints; if it is too small, it cannot 
improve the ill-condition of the inverse problem. Therefore, 
regularization parameters should be selected reasonably 
according to practical engineering problems, which are the 
shortcomings of the regularization method.

The main idea of the basis function expansion method is 
to expand the unknown moving load using the known func-
tion, and transform the problem of load identification into 
the problem of selecting the basis function coefficient. For 
example, Qiao et al. [18] proposed an efficient basis func-
tion expansion method based on wavelet multi-resolution 
analysis using cubic B-spline scaling functions as basis 
functions. Qiao et al. [19] developed a regularized cubic 
B-spline collocation method for identifying the impact force 
time history, which overcomes the deficiency of the ill-posed 
problem. Qiao et al. [20] proposed a novel method based on 
the discrete cosine transform in the time domain for force 
identification, which overcomes the deficiency of the ill-pos-
edness of the transfer matrix. Liu et al. [21] proposed an ana-
lytical method to identify dynamic loads acting on stochastic 
structures based on the Gegenbauer polynomial expansion 
theory and regularization method, and also investigated the 
parallelotope-formed evidence theory model [22]. There 
are two key points in identifying moving loads by the basis 
function method: one is the selection of load basis function 
type and the other one is the selection of the number of basis 
function. In fact, the basis function expansion method is a 
special regularization method.

The main idea of the function approximation method 
is to use the known basis function to fit the deflection of 
the measured point, and then obtain the velocity and accel-
eration from the deflection differentiation. Then the accel-
eration, velocity, and displacement are substituted into the 
dynamic equation of the structure to identify the load acting 
on the bridge. For example, Yuan et al. [23] used the poly-
nomial function, trigonometric function, and their combina-
tion to approximate the deflection of measured points. Jiang 
et al. [24] proposed a cubic spline curve fitting method to 
identify the moving load of the bridge. However, the iden-
tification accuracy of different approximation functions is 
quite different.

The main idea of intelligent calculation method is to 
transform the identification of moving load into an optimi-
zation problem, and use the heuristic algorithms or optimi-
zation algorithm to solve the problem. For example, Chen 
et al. [25] developed a modified preconditioned conjugate 
gradient method for moving force identification by pre-
conditioned conjugate gradient methods with a modified 
Gram–Schmidt algorithm. Chisari et al. [26] proposed an 
identification approach based on genetic algorithm. Based 
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on the firefly algorithm, Pan et al. [27] presented a novel 
method for moving force identification. Zhou et al. [28] 
applied least-squares support vector machine to identify the 
inverse model. Then based on this inverse model, the opera-
tional responses were adopted to determine the real-time 
excitation force. Zhou et al. [29] proposed a novel impact 
load identification method of nonlinear structures using deep 
Recurrent Neural Network.

In addition to the above load identification methods, 
many scholars have also proposed many other methods. For 
example, Li et al. [30] proposed an online dynamic load 
identification algorithm based on an extended Kalman filter. 
Pinkaew [31] proposed the updated static component regu-
larization technique for moving force identification. Yang 
et al. [32] studied the application of strain influence line 
method to moving load identification. Qian et al. [33] pro-
posed a novel moving load identification method based on 
the bending moment influence line. Liu et al. [34] proposed 
a novel and efficient method utilizing blind source separation 
and orthogonal matching pursuit. Jiang et al. [35] proposed 
a novel time-domain algorithm based on the Newmark-b 
method.

In fact, the direct method is simple, straightforward, 
and clear, but the MFI results are not reliable when there 
is measurement error and noise interference. Regulariza-
tion methods can improve the ill-conditioned problem of 
load identification. However, the regularization parameter 
selection needs to be considered. Moreover, the basis func-
tion expansion method has the same limitation. The func-
tion approximation method is insensitive to noise, but its 
identification accuracy is excessively dependent on the 
basic function type. Meanwhile, error accumulation occurs 
when velocity and acceleration are obtained from the deflec-
tion approximated by the function approximation method, 
which brings the inevitable error to the identification results. 
Although intelligent calculation methods avoid the short-
comings of the above methods, they require a large amount 

of data for network training or model construction, which is 
costly and time consuming, and cannot be used for real-time 
load identification. According to the discussion above, a new 
conjugate gradient method is established for MFI of vehi-
cle–bridge system, which is based on the ideas of existing 
method in [36]. The proposed method does not need to select 
regularization parameters in advance and model construc-
tion and training. Meanwhile, it has the advantages of fast 
convergence and small storage space which reduces the cost 
of load identification and improves the speed of load identi-
fication. In addition, the iterative process has regularization 
effect, so the proposed method has anti-noise property. In a 
word, the proposed method can improve the ill-conditioned 
problem of load identification and identify the moving load 
on the bridge efficiently and quickly.

This paper is organized as follows. “Moving Force Identi-
fication in Time Domain” section describes the basic theory 
of the moving load identification of vehicle–bridge system. 
The modified conjugate gradient (MCG) method is estab-
lished in “Establishment of Modified Conjugate Gradient 
Method” section. In “Proof of Global Convergence” sec-
tion, the global convergence of the MCG method is proved 
by mathematical theory. The preconditioned technique is 
introduced in “Theory of Preconditioned Modified Conju-
gate Gradient (PMCG)” section. Numerical simulations are 
carried out to investigate the stability and effectiveness of 
the proposed method in “Numerical Simulation” section. 
Finally, some conclusions are summarized in “Conclusion” 
section.

Background of Theory

Moving Force Identification in Time Domain

As shown in Fig. 1, the vehicle–bridge system is modeled 
as a Bernoulli–Euler simply supported beam subjected to 

Fig. 1   Moving force identifica-
tion model with a Bernoulli–
Euler simply supported beam
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unknown time-varying forces [1]. Assuming that the force 
f(t) moves from left to right at a constant velocity, the motion 
equation in terms of the modal coordinate qn(t) can be writ-
ten as

where �n is the n-th modal damping ratio; pn(t) = f (t) sin(
n�ct

L
) 

is the modal force; �n is the n − th modal frequency; � is the 
density of the beam; L is the span of the beam. Based on 
modal superposition and time-domain deconvolution, the 
dynamic deflection v(x, t) of the beam at point x and time t 
can be obtained as

where ��
n
= �n

√
(1 − �2

n
).

The acceleration and bending moment response can 
be obtained by v(x, t). Then according to the relationship 
between dynamic response and moving force, which together 
with the discretization and dimensionless processing, the 
following equation is formed:

where A is the vehicle–bridge system matrix, w is the mov-
ing force vector, and r is the dynamic response vector. The 
specific form of A and r can be referred to [1], which will 
not be repeated here.

Establishment of Modified Conjugate Gradient 
Method

It can be seen from “Moving Force Identification in Time 
Domain” section that the load identification problem is 
finally transformed into the solution of the high-dimensional 
equation. To facilitate the calculation, the original equation 
is usually transformed into the following symmetric positive 
definite equations

where K = ATA , b = ATr.
By constructing the corresponding objective function, 

the problem about solving large system of linear equations 
Kw = b can be transformed into an unconstrained optimiza-
tion problem

where H(w) represents the objective function, which is 
defined as

(1)q̈n(t) + 2𝜉n𝜔nq̇n(t) + 𝜔2
n
qn(t) =

2

𝜌L
pn(t),

(2)
v(x, t) =

∞∑
n=1

2

�L��
n

sin
n�x

L ∫
t

0

e−�n�n(t−�)

sin
[
��
n
(t − �)

]
sin

n�c�

L
f (�)d�,

(3)Aw = r,

(4)Aw = r ⇔ Kw = b,

(5)min
w∈Rn

H(w),

As we all know, the conjugate gradient algorithm is a com-
mon optimization method which has the characteristics of 
small storage space and fast convergence. Therefore, the 
conjugate gradient method can be used for load identifica-
tion, and the iteration form can be expressed as

where �i is the step length and di is the search direction. 
This step size �i is often obtained by the Wolfe line search 
method. The search direction di is defined as

where gi is the gradient of H(w) and �i is a scalar. Different 
parameters �i correspond to different conjugate gradient 
methods. There are many different conjugate gradient meth-
ods, such as HS conjugate gradient [37], RPR conjugate 
gradient [38], and DY conjugate gradient [39], which are 
g i ve n  by  �HS

i
=

gT
i
(gi−gi−1)

dT
i−1

(gi−gi−1)
 ,  �PRP

i
=

gT
i
(gi−gi−1)

‖gi−1‖2  a n d 

�DY
i

=
‖gi‖2

dT
i−1

(gi−gi−1)
 , respectively. Different conjugate gradient 

methods have different properties. In fact, the DY method 
has good convergence property, and the PRP method and the 
HS method have good numerical performance. Based on this 
idea, many new conjugate gradient methods are derived. 
Such as VHS [40], VRPR [41], and MDY [42], which are 

given by �VHS
i

=
‖gi‖2

−
‖gi‖‖gk−1‖ �gTi gi−1�

dT
i−1

(gi−gi−1)
 , �VPRP

i
=

gT
i
(gi−

‖gi‖‖gi−1‖ gi−1)
‖gi−1‖2  

and �MDY
i

=
gT
i
(gi−

gT
i
di−1

‖di−1‖2 di−1)
dT
i−1

(gi−gi−1)
 , respectively.

Based on the analysis above, this paper proposes a modified 
conjugate gradient method, in which �i is defined as

where 0 < 𝜇 < 1 is a variable parameter.
In this paper, the step size �i is determined by the following 

standard Wolfe line search

(6)H(w) =
1

2
wTKw − wTb.

(7)wi+1 = wi + �idi, i = 0, 1, 2,… ,

(8)di =

{
−gi, i = 1

−gi + �idi−1, i ≥ 2
,

(9)𝛽i =

⎧
⎪⎪⎨⎪⎪⎩

gT
i
(gi−𝜇

di−1g
T
i

‖di−1‖2 di−1)
dT
i−1

(gi−gi−1)
gT
i
gi−1 ≥ 0,

gT
i
(gi+𝜇

di−1g
T
i

‖di−1‖2 di−1)
dT
i−1

(gi−gi−1)
gT
i
gi−1 < 0.

(10)H(xi + �idi) − H(xi) ≤ ��ig
T
i
di,

(11)g(xi + �idi)
Tdi ≥ �gT

i
di,
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where 0 < 𝛿 < 𝜎 < 1 . We can name the conjugate gradient 
method based on (9–11) as the modified conjugate gradient 
method.

Throughout the paper, we make the following 
assumptions:

(AC1): The objective function H(w) has a lower bound 
on the level set Ω = {w ∈ Rn|H(w) ≤ H(w1)} , where w1 
is the initial point.
(AC2): The objective function H(w) is continuously dif-
ferentiable in some neighborhood U of Ω , in which the 
gradient is Lipchitz continuous, and that is to say there 
exists a constant L > 0, such that 

The new conjugate gradient algorithm is given as follows:

Step 1 :  Select  an ini t ial  point  w1 ∈ Rn ,  set 
i ∶= 1, 𝜀 > 0, d1 = −g1; if ‖‖g1‖‖ ≤ � , then stop.
Step 2: Compute the step length �i by the standard Wolfe 
line search such that �i satisfies the formula (10)–(11).
Step 3: Calculate wi+1 by the formula (7); if ‖‖gi+1‖‖ ≤ � , 
then stop.
Step 4: Compute �i by the formula (9), and generate di+1 
by the formula (8).
Step 5: Let i = i + 1 ; go to step 2.

Proof of Global Convergence

Lemma 1  Suppose that (AC1) and (AC2) hold. The param-
eter �i comes from formula (9), and let the sequences gi and 
di be generated by the new conjugate gradient algorithm. If 
gi ≠ 0 , � ∈ [0, 1] for i ≥ 1 , then gT

i
di < 0.

Proof  Case (1) if � = 0 , then �i = �DY
i

.
Case (2) if i = 1 , then gT

1
d1 = −‖‖g1‖‖2 < 0 . The conclu-

sion holds.
Assume that gT

i−1
di−1 < 0 is true for i − 1 and i ≥ 2 , from 

(11), we have

Define �i as the angle between the gi and di−1 vectors, then

If gT
i
gi−1 ≥ 0 , then we take the inner product of both sides 

of (8) with vector gT
i
 . According to (9) and (11), we have

(12)‖g(w) − g(y)‖ ≤ L‖w − y‖, ∀w, y ∈ Ω.

(13)dT
i−1

(gi − gi−1) ≥ (𝜎 − 1)gT
i−1

di−1 > 0.

(14)cos �i =
gT
i
di−1

‖‖gi‖‖‖‖di−1‖‖
.

If gT
k
gk−1 < 0 , we have

By mathematical induction, we know that Lemma  1 is 
true. 	�  ◻

Lemma 2  Suppose that (AC1) and (AC2) hold. If the step 
length �i satisfies the standard Wolfe line search (10) and 
(11), then we have

Proof  From the formula (9) and the angle �i , we have

Therefore, �i ≥ 0.
Exploiting Lemma 1, we obtain

(15)

‖‖di‖‖2
(gT

i
di)

2
=

�2
i
‖‖di−1‖‖2

(gT
i
di)

2
−

2

gT
i
di

−
‖‖gi‖‖2
(gT

i
di)

2

=
�2
i
‖‖di−1‖‖2

(gT
i
di)

2
+

1

‖‖gi‖‖2
(

1
‖‖gi‖‖

+
‖‖gi‖‖
gT
i
di

)2

≤ �2
i
‖‖di−1‖‖2

(gT
i
di)

2
+

1

‖‖gi‖‖2
.

(16)

gTi di = −‖
‖

gi‖‖
2 + �igTi di−1

= −‖
‖

gi‖‖
2 +

gTi

(

gi −
�di−1gTi di−1

‖
di−1‖

2

)

dTi−1(gi − gi−1)
gTi di−1

=
−‖
‖

gi‖‖
2dTi−1gi + ‖

‖

gi‖‖
2dTi−1gi−1 + ‖

‖

gi‖‖
2gTi di−1 −

�gTi di−1g
T
i di−1

‖
di−1‖

2 gTi di−1

dTi−1(gi − gi−1)

=
‖

‖

gi‖‖
2dTi−1gi−1 − �‖

‖

gi‖‖
2cos2�i ⋅ gTi di−1

dTi−1(gi − gi−1)

≤
‖

‖

gi‖‖
2gTi−1di−1(1−��cos

2�i)

dTi−1(gi − gi−1)
< 0.

(17)0 ≤ �i ≤ gT
i
di

gT
i−1

di−1
.

(18)�i =
‖‖gi‖‖2(1 − �cos2�i)

dT
i−1

(gi − gi−1)
≥ 0, (gT

i
gi−1 ≥ 0),

(19)𝛽i =
‖‖gi‖‖2(1 + 𝜇cos2𝜂i)

dT
i−1

(gi − gi−1)
≥ 0, (gT

i
gi−1 < 0).

(20)

�i =
‖‖gi‖‖2(1 − �cos2�i)

dT
i−1

(gi − gi−1)
≤ ‖‖gi‖‖2(1 − ��cos2�i)

dT
i−1

(gi − gi−1)

≤ gT
i
di

gT
i−1

di−1
, (gT

i
gi−1 ≥ 0),
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In summary, �i ≤ gT
i
di

gT
i−1

di−1
 . So, 0 ≤ �i ≤ gT

i
di

gT
i−1

di−1
 , and that is to 

say, Lemma 2 holds. 	�  ◻

Theorem 1  Suppose that (AC1) and (AC2) hold. Consider-
ing any iteration of the formula (8), where the di is a descent 
direction and the step length �i satisfies the standard Wolfe 
line search conditions, then we have

Proof  From Lemma 1, we have gT
i
di < 0 . By the formula 

(11), we get

From (AC2), it follows that

Thus, we can obtain

Because the sequences Hi is monotonic decreasing and con-
vergent, we get

Taking the limit of the sum of both sides of formula (26), 
we have

Therefore, the formula (22) holds, that is, Theorem 1 is 
true. 	�  ◻

Theorem 2  Suppose that (AC1) and (AC2) hold. The step 
length �i is generated by the standard Wolfe line search 

(21)

𝛽i =
‖‖gi‖‖2(1 + 𝜇cos2𝜂i)

dT
i−1

(gi − gi−1)
≤ ‖‖gi‖‖2(1 + 𝜎𝜇cos2𝜂i)

dT
i−1

(gi − gi−1)

≤ gT
i
di

gT
i−1

di−1
, (gT

i
gi−1 < 0).

(22)
∑
i≥1

(gT
i
di)

2

‖‖di‖‖2
< +∞.

(23)dT
i
(gi−1 − gi) ≥ (𝜎 − 1)gT

i
di > 0.

(24)dT
i
(gi−1 − gi) ≤ L�i

‖‖di‖‖2.

(25)�i ≥ (� − 1)gT
i
di

L‖‖di‖‖2
.

(26)

Hi − Hi−1 ≥ − ��ig
T
i
di ≥ −�(� − 1)(gT

i
di)

L‖‖di‖‖2

=
�(1 − �)

L

(gT
i
di)

2

‖‖di‖‖2
.

(27)

∑
i≥1

𝛿(1 − 𝜎)

L

gT
i
di

2

‖‖di‖‖2
≤∑

i≥1
(Hi − Hi−1)

=H1 − lim
x→∞

Hi < +∞.

conditions, and Lemma 1 holds. �i is the parameter of the 
formula (9). Then we have

Proof  Assume by the contradiction that the formula (28) 
does not hold. For all i, there exists a constant 𝜆 > 0 , such 
that

Rearranging di = −gi + �idi−1 into di + gi = �idi−1, and 
squaring both sides, we can obtain

Dividing the above formula by (gT
i
di)

2, we get

From the formula (17) of Lemma 2, we have

From the formula (8), we can get

Thus, we have

By recursion, we have

That is,

(28)lim
i→∞

inf ‖‖gi‖‖ = 0.

(29)‖‖gi‖‖ ≥ �.

(30)‖‖di‖‖2 = �2
i
‖‖di−1‖‖2 − 2gT

i
di −

‖‖gi‖‖2.

(31)

‖‖di‖‖2
(gT

i
di)

2
=

�2
i
‖‖di−1‖‖2

(gT
i
di)

2
−

2

gT
i
di

−
‖‖gi‖‖2
(gT

i
di)

2

=
�2
i
‖‖di−1‖‖2

(gT
i
di)

2
+

1

‖‖gi‖‖2
−

(
1

‖‖gi‖‖
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Summing both sides of the above formula, we can obtain

This contradicts (22). So, Theorem 2 holds. 	� ◻

Theory of Preconditioned Modified Conjugate 
Gradient (PMCG)

It is well known that conjugate gradient method converges 
slowly when cond(K) is large. Therefore, the preconditioned 
technology is introduced to deal with this problem. The main 
idea of the preconditioned technology is to transform the 
original problem into an equivalent problem that is easy to 
solve, and its equivalent transformation is given as follows:

where, K̃ = Q−1KQ−T , w̃ = QTw , b̃ = Q−1b . Q represents 
the preconditioned matrix, and its selection method can be 
found in [43]. In this paper, the diagonal matrix is chosen as 
the preconditioned matrix. Through this equivalent transfor-
mation, if cond(�K) < cond(K) , the solving speed of conju-
gate gradient algorithm will be improved.

Based on MCG algorithm and the preconditioned tech-
nology, the PMCG algorithm can be established. The com-
putation flowchart of the PMCG algorithm is shown in 
Fig. 2. In the following simulation experiment, the conver-
gence control error � of the conjugate gradient method is set 
to 10e-5 and the maximum number of iterations maxiter is 
set to 5000.

Numerical Simulation

Problem Description

As shown in Fig.  1, a Bernoulli–Euler simply sup-
ported beam subjected to moving force is investigated 
to evaluate the performances of the proposed algorithm 
in this paper. The beam has a span of 40 m, and the 
parameters of the beam are given as: the flexural rigid-
ity EI = 1.274916 × 1011 Nm2 ; the density of unit length 
� = 12,000 kgm−1 ; the first three natural frequencies of 
the beam are 3.2Hz, 12.8Hz and 28.8Hz , respectively. 
The parameters of the vehicle are given as follows: the 
speed of vehicle moving is 40m s−1 ; the distance between 
two axles is 4 m. The analysis frequency ranges from 0 
to 40 Hz. The sampling frequency is selected as 200 Hz. 

(37)
∑
i≥1

(gT
i
di)

2

‖‖di‖‖2
≥ �2

∑
i≥1

1

i
= +∞.

(38)Kw = b ⇔ K̃w̃ = b̃,

Biaxial time-varying force identification with six different 
cases is investigated. The moving force is given as follows:

There are measurement error and noise interference in the 
practical engineering, so the polluted responses with the ran-
dom noise are given as

where, btrue is the real response of simulation; bsimulate rep-
resents the polluted measured response; nl represents the 
noise level, which is selected as 0–20% in subsequent stud-
ies; Nnoise is the random white Gaussian noise.

The acceleration and bending moment sensors are 
located at 1/4,  1/2, and 3/4 of the bridge span, respec-
tively. For convenience, M14 represents the bending 
moment response of 1/4 bridge span, J12 represents the 
acceleration response of 1/2 bridge span, and so on. The 
load identification speed will be evaluated by the num-
ber of iterations. The relative percentage error (RPE) is 
adopted as the criterion to evaluate the accuracy of load 
identification, and the calculation formula is given as

where ftrue represents the true load; fiden represents the load 
from MFI.

Parameter Selection

As can be seen from the description in “Background of 
Theory” section, there is a variable parameter � in the 
PMCG method, which needs to be selected appropriately. 
The parameter � is usually selected by the posterior RPE 
criterion, which can be described as:

where RPE(�) represents the relative percentage error of the 
identified load by PMCG when the variable parameter is � , 
which is defined as follows:

where F�,identification represents the load identified by the 
PMCG method when the parameter is � , and Ftrue represents 
the true load.

(39)
F1(t) =20[1 + 0.1 sin(8�t) + 0.05 sin(20�t)](kN),

F2(t) =20[1 − 0.1 sin(8�t) + 0.05 sin(24�t)](kN).

(40)bsimulate=btrue(1+ nl × Nnoise),

(41)RPE =
‖‖fiden − ftrue

‖‖
‖‖ftrue‖‖

× 100%,

(42)RPE(𝜇optimal) = min
0<𝜇<1

{RPE(𝜇)},

(43)RPE(�) =

‖‖‖F�,identification − Ftrue
‖‖‖

‖‖Ftrue
‖‖

,
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However, in practical engineering, the true load Fture 
required in RPE criterion is generally unknown. Therefore, a 
new equivalent evaluation criterion named as response rela-
tive percentage error (RRPE) can be adopted, and it can be 
expressed as

where RRPE(�) represents the relative percentage error 
between the measured response and the reconstructed 
response when the parameter is � , which can be expressed 
as:

(44)RRPE(𝜇optimal) = min
0<𝜇<1

{RRPE(𝜇)},

where Rmeasurement represents the measured response, and 
R�,reconstruction represents the reconstructed response from 
the load identified by the PMCG when the parameter is �.

For the iterative method, the number of iterations has 
a linear relationship with the identification speed. There-
fore, it is necessary to take the number of iterations as the 
evaluation criterion, and its mathematical expression is 
given as

(45)RRPE(�) =

‖‖‖R�,reconstruction − Rmeasurement
‖‖‖

‖‖Rmeasurement
‖‖

,

(46)Iterations( 𝜇optimal) = min
0<𝜇<1

{Iterations(𝜇)},

Fig. 2   The flowchart of the PMCG algorithm
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where Iterations(�) represents the number of iterations when 
the parameter is �.

The sensor configuration is selected as M14 &M12 
&M34 &J14 &J12 &J34, and the parameters are chosen by 
the above two posterior parameter selection criteria under 
five different noise levels. The number of iterations of load 
identification corresponding to different � is shown in 
Fig. 3. It can be seen from Fig. 3 that the iteration number 
of PMCG is relatively low when � is between 0.87 and 0.99. 
Similarly, the relative percentage error of the reconstruction 
response corresponding to different � is shown in Fig. 4. As 
can be seen from Fig. 4, when � is between 0.84 and 0.99, 
the reconstruction response of load identified by PMCG is 
more consistent with the measured response. It can be seen 
from the above description that when the variable parameter 

� is between 0.87 and 0.99, PMCG has good numerical per-
formances and convergence, so the variable parameter � is 
selected as 0.98 in the following analysis.

Moving Force Identification and Results Analysis

The accuracy of load identification is affected by the meas-
urement error and noise, so it is necessary to study the 
anti-noise ability of the proposed algorithm. Generally, the 
identification error is used to assess the accuracy of load 
identification results. To verify the accuracy of the pro-
posed PMCG, 6 different sensor configurations are selected 
to perform load identification under 21 different noise lev-
els, and PMCG is compared with 6 different preconditioned 
conjugate gradient methods. Figures 5 and 6 show the RPE 

Fig. 3   The iteration number 
criterion

Fig. 4   Reconstructed response 
relative percentage error 
criterion
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of front and rear axle loads identified by seven methods 
respectively. It can be seen from Fig. 5 that the errors of 
PMCG, perconditioned modified DY conjugate gradient 
(PMDYCG), and perconditioned HS conjugate gradient 
(PHSCG) in identifying the front axle load are very close 
under various noise and different sensor configurations. 
Meanwhile, in most cases, the errors of PMCG, PMDYCG, 
and PHSCG are lower than those of other four methods. 
The identification error of seven methods increases with the 
increase of noise, but the error of PMCG, PMDYCG, and 

PHSCG increases less than that of the other four methods. 
Similarly, the same conclusion can be drawn from Fig. 6.

For the iterative method, the number of iterations has a 
linear relationship with the calculation time, so it is neces-
sary to reduce the number of iterations for real-time load 
identification. Meanwhile, reducing the number of iterations 
can effectively decrease the cost of MFI. The number of 
iterations of seven methods in different sensor configura-
tions and with different noise levels is shown in Fig. 7. It 
can be observed in Fig. 7 that the number of iterations of 

Fig. 5   Comparison on RPE of front axle loads identified by seven methods under different sensor placement
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perconditioned DY conjugate gradient (PDYCG) and per-
conditioned VHS conjugate gradient (PVHSCG) methods 
is significantly lower than those of the other five methods, 
which indicate that the convergence speed of PDYCG and 
PVHSCG is much faster than that of other methods. Con-
versely, the number of iterations of the perconditioned PRP 
conjugate gradient (PPRPCG) and perconditioned VPRP 
conjugate gradient (PVPRPCG) almost reaches the preset 
maximum (5000). In addition, it can be obviously seen that 
the number of iterations of PMCG method is lower than 
PMDYCG and PHSCG.

Table 1 lists the average number of iterations and average 
identification errors of 7 methods under 21 different noise 
levels. In this table, the last row is the average number of 
iterations and the mean error of the biaxial load identifi-
cation for all the above sensors configurations and all the 
noise situations. As can be seen from Table 1, PDYCG and 
PVHSCG have the least average number of iterations, which 
indicates that their identification speed is fast. The average 
error of PMCG, PMDYCG, and PHSCG is small, which 
indicates that their identification accuracy is good. Based 
on the results in Table 1, it can be seen that compared with 

Fig. 6   Comparison on RPE of rear axle loads identified by seven methods under different sensor placement
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PMDYCG and PHSCG, the average number of iterations 
of PMCG is reduced by about 62.37% and 39.95%, respec-
tively; compared with PDYCG and PVHSCG, the front 
axle load identification errors of PMCG are decreased by 
20.82% and 20.23%, and the rear axle load identification 
error of PMCG is decreased by 15.31% and 15.79%, respec-
tively; compared with PPRPCG and PVPRPCG, the average 
number of iterations of PMCG is reduced by 86.77% and 
86.77%, the front axle load identification errors are reduced 

by 24.29% and 16.53%, and the rear axle load identification 
errors are reduced by 18.10% and 13.52%, respectively. The 
above data analysis shows that the PMCG method reduces 
the average number of iterations and improves the speed of 
load identification on the premise of ensuring the identifica-
tion accuracy.

Figure 8 shows the comparison between the true load 
and the identified load by seven methods from the com-
bined responses ( M14&M12&M34&J14&J12&J34 ). As 

Fig. 7   Comparison on the number of iterations of MFI by seven methods under different sensor placement
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shown in Fig. 8, when the noise level is 0%, all seven 
methods can accurately identify the moving load. When 
the noise level increases to 5%, seven methods can identify 
the load, but all of them have a slight deviation. When 
the noise level increases to 10%, all the seven methods 
have large error, but the identification error of PMCG, 
PDYCG, PMDYCG, and PHSCG is, respectively, smaller 
than PVPRPCG, PPRPCG, and PVHSCG. When the 
noise level reaches the extreme value 20%, the identifica-
tion error of PMCG, PMDYCG, and PHSCG is less than 
that of PDYCG, PPRPCG, PVPRPCG, and PVHSCG. The 

above results also demonstrate that PMCG, PMDYCG, 
and PHSCG have high identification accuracy and strong 
robustness.

Spectrum Analysis

As we all know, the moving load is a special dynamic load 
whose main dynamic characteristics contain frequency and 
corresponding amplitude. To verify the accuracy of PMCG 
in identifying the moving loads, the spectrum analysis is 

Table 1   The comparison of the average number of iterations and average identification RPE (%)

Location Method PMCG PDYCG​ PMDYCG​ PPRPCG PVPRPCG PHSCG PVHSCG

M14 &M12 &M34 Front axle 3.27 4.31 3.26 4.89 4.46 3.29 4.13
Rear axle 4.52 5.46 4.49 6.01 5.63 4.55 5.51
Iterations 644 80 1588 5000 5000 926 84

J14 &J12 &J34 Front axle 4.17 6.26 4.02 4.66 4.66 4.43 6.25
Rear axle 6.46 8.01 6.25 6.86 6.9 6.71 8.02
Iterations 429 39 1188 1149 1261 919 39

M14 &M12 &J34 Front axle 3.52 4.21 3.63 5.06 4.47 3.43 4.18
Rear axle 4.57 5.47 4.55 5.95 5.54 4.54 5.45
Iterations 562 80 1533 5000 5000 958 81

J14 &J12 &M34 Front axle 4.45 5.07 4.39 4.51 4.4 4.42 4.97
Rear axle 6.59 7.19 6.57 7.15 7.03 6.61 7.15
Iterations 701 78 1863 5000 5000 1146 79

J14 &J12 &M14 &M12 Front axle 3.55 4.19 3.62 5.25 4.46 3.53 4.22
Rear axle 4.61 5.43 4.55 6.12 5.54 4.56 5.46
Iterations 553 80 1501 5000 5000 900 82

M14 &M12 &M34 &J14 
&J12 &J34

Front axle 3.27 4.05 3.22 5 4.18 3.34 4.12
Rear axle 4.54 5.4 4.51 6.13 5.53 4.6 5.57
Iterations 585 81 1560 5000 5000 938 84

Average Front axle 3.71 4.68 3.69 4.89 4.44 3.74 4.65
Rear axle 5.22 6.16 5.15 6.37 6.03 5.26 6.19
Iterations 579 73 1539 4358 4377 964 75

Table 2   The comparison of 
amplitude and ARPE (%)

The bold part represents the amplitude error; static, Low-frequency and High-frequency component cor-
responding to exact amplitude is 20 kN, 2 kN and 1kN, respectively

Noise level Load component Static  Low-frequency  High-frequency

Amplitude ARPE Amplitude ARPE Amplitude ARPE

0% noise Front axle 20.01 0.05 1.999 0.05 0.8794 12.06
Rear axle 20 0 1.999 0.05 0.9041 9.59

5% noise Front axle 19.96 0.25 1.89 5.45 0.8741 12.59
Rear axle 20.09 0.45 2.101 5.10 0.8522 14.78

10% noise Front axle 19.93 0.35 1.783 10.85 0.7117 28.83
Rear axle 20.19 0.95 2.205 10.25 0.6608 33.92

15% noise Front axle 19.88 0.65 1.674 16.30 0.6847 31.53
Rear axle 20.29 1.45 2.308 15.40 0.6072 39.28

20% noise Front axle 19.85 0.75 1.567 21.65 0.6073 39.27
Rear axle 20.38 1.90 2.413 20.65 0.504 49.60
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Fig. 8   The identification results of seven methods under different noise levels
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carried out to study the moving loads identified by PMCG. 
First, the dynamic characteristics (frequency and amplitude) 
of simulated true loads and the identified loads are obtained 
by frequency spectrum analysis. Then the amplitude rela-
tive percentage error (ARPE) between the load identified by 
PMCG and the exact values is caculated by:

(47)ARPE =
‖‖Aidentification − Atrue

‖‖
‖‖Atrue

‖‖
× 100%

where Aidentification represents the amplitude of the load identi-
fied by PMCG, and Atrue represents the exact values.

The  s enso r  con f igu ra t i on  i s  s e l ec t ed  a s 
M14&M12&M34&J14&J12&J34 . The moving loads are 
identified by PMCG under five different noise levels, and 
the spectral analysis of the loads is also performed. The 
spectrum analysis diagram is shown in Fig. 9, and the 
amplitude corresponding to the principal frequency and 
amplitude errors is shown in Table 2, and the relationship 

Fig. 9   The frequency spectrogram of the identified loads by PMCG under different noise levels
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between the ARPE of each frequency component and noise 
is shown in Fig. 10. According to Fig. 9, when the noise 
level is 0%, PMCG can accurately obtain the main fre-
quency and the corresponding amplitude of the moving 
load. As the noise level increases from 0 to 10%, PMCG 
can accurately obtain the main frequency, but the corre-
sponding amplitude error of the main frequency increases 
gradually. When the noise level increases to 15%, PMCG 
can also obtain the main frequency characteristic, and the 
corresponding amplitude error increases further. At the 
same time, the appearance of other frequency components 
interferes with the identification of high-frequency compo-
nents of moving loads. When the noise level increases to 
20%, the static component can still be identified accurately, 
and the amplitude error of the low-frequency component 
increases further, but the high-frequency component can-
not be identified. It can be found more clearly from Table 2 
and Fig. 10 that PMCG can accurately identify the static 
component of the biaxial load under various noise levels; 
the amplitude error of low-frequency component is linear 
with noise; the amplitude error of high-frequency com-
ponent also has a linear relationship with noise, but the 
slope is large, and the error increases faster. Even in the 
absence of noise, the amplitude identification accuracy of 
high-frequency components is low.

Conclusion

A new PMCG algorithm based on improved gradient opera-
tor and preconditioned technology is proposed for MFI of 
bridge structure. The time-domain deconvolution technol-
ogy and modal superposition method transform the moving 
load identification problem into the solution of large linear 
equations problem. Then it is transformed into an equivalent 
linear equations problem by the preconditioned technology. 
Finally, the moving load identification problem is solved by 
the proposed conjugate gradient method. Meanwhile, the 
identification situation of different load components is stud-
ied by the frequency spectrum analysis method. Numerical 
simulations are carried out for the verification of the pro-
posed method. Some conclusions can be given as follows: 

1.	 Compared with the preconditioned conjugate gradi-
ent method with good convergence property, such as 
PDYCG and PVHSCG, PMCG has higher identification 
accuracy. Compared with the conjugate gradient method 
with good numerical performance, such as PMDYCG 
and PHSCG, PMCG reduces the number of optimiza-
tion iterations and improves the identification speed of 
moving load identification on the premise of ensuring 
accuracy.

Fig. 10   Relationship between APRE of each frequency component and noise
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2.	 For sensor configuration, only using acceleration 
responses as the input responses of load identification 
can achieve fast identification, but the identification 
accuracy is low. Using the combination of acceleration 
and bending moment responses as the input responses 
of load identification can accurately identify the moving 
load.

3.	 As for the different frequency components of moving 
loads, PMCG has high identification accuracy for static 
and low-frequency components of loads, and the ampli-
tude deviation of low-frequency components is linear 
with the noise level. Under the condition of low noise 
level, the low-frequency components can be accurately 
obtained, which can be used for dynamic weighing of 
low-frequency moving loads.

In the future, we will apply the proposed algorithm into more 
complex moving load identification problems with viscoe-
lastic boundary conditions and different ground foundation 
conditions. To verify the feasibility of practical engineering 
application of the proposed algorithm, experimental verifica-
tion will be performed in the next step working.
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