
Vol.:(0123456789)1 3

Journal of Vibration Engineering & Technologies (2023) 11:4371–4385 
https://doi.org/10.1007/s42417-022-00820-5

ORIGINAL PAPER

Dynamic Behavior Analysis of a Rotating Shaft with an Elliptical 
Breathing Surface Crack

Ahmed A. Elkashlawy1 · Younes K. Younes1 · Heba H. El‑Mongy1,2 

Received: 9 May 2022 / Revised: 17 October 2022 / Accepted: 7 December 2022 / Published online: 8 February 2023 
© The Author(s) 2023

Abstract
Purpose  In this paper, dynamic behavior of a rotor system with an elliptical breathing crack that simulates the real shape 
of the crack front is investigated.
Methods  A finite element model of the cracked rotor system is developed. The crack breathing mechanism is modelled based 
on an improved breathing model which considers the inclination of the neutral axis of the cracked element cross-section 
during shaft rotation. Harmonic balance method is used to solve the equations of motion of the rotor system for steady-state 
response characteristics.    The effect of some parameters such as crack depth, crack shape factor and the spinning speed is 
investigated.
Results and conclusions  The results show that the unique whirl orbits behavior during passage through the subcritical speeds 
serve as a key indicator of crack presence in the shaft. The effects of the crack front curvature and the breathing model are 
revealed. The value of shape factor affects the whirl orbit characteristics such as size of the inner or outer loops and the 
amount by which the orbits rotate while crossing the subcritical speeds. The presented model considering the real crack front 
shape may contribute towards improved modelling of cracked rotors and better interpretation of measured vibration response.

Keywords  Elliptical crack · Crack breathing · Cracked rotor · Finite element analysis · Harmonic balance method

Introduction

Rotating machines are widely used in engineering applica-
tions such as aircrafts, pumps, compressors, turbines, power 
plants, etc. In practice, most rotors operate under heavy load-
ing conditions that may result in undesirable defects. Crack 
is one of these defects which is considered the most dan-
gerous one as it may cause serious damage and loss of the 
machine operating lifetime. Numerous review papers sum-
marize the various modelling and identification techniques 
of cracks in stationary and rotating shafts studied in previous 
research works [1–3]. Most recently, Kushwaha et al. [4] 
provided a rich survey on various modelling approaches and 
crack detection techniques adopted by previous researches.

Several research works provided helpful crack indica-
tors. Al-Shudeifat et al. [5] employed the harmonic balance 

approach verified by experimental work to study the effect 
of crack depth on the steady state dynamic behavior of a 
cracked rotor system. It was found that the unique behavior 
of the whirl orbit during passage through subcritical speeds 
is an indicator of presence of breathing crack in the shaft. 
The results showed that as the crack depth increases, reso-
nance peaks at subcritical speeds increase. Compared with 
[5], Al-Shudeifat et al. [6] developed new breathing func-
tions that accurately model the crack breathing mechanism. 
Then, Al-Shudeifat [7] introduced the finite element model-
ling of asymmetric open cracked rotor. Distinguishing fea-
tures between open and breathing crack were revealed via 
the whirl orbits at the vicinity of the first subcritical speeds. 
A further improvement in the modeling of the breathing 
behavior of transverse cracks in rotating shafts was devel-
oped by Spagnol et al. [8]. Since the breathing crack causes 
asymmetry in the shaft cross section, the principle of unsym-
mertic bending should be utilized for accurate modeling of 
the breathing behavior, in which the neutral axis will be 
inclined with changing the rotational angles, instead of the 
assumed horizontal neutral axis as developed in Ref. [6]. 
Sinou [9] used the harmonic balance method to investigate 
the evolution of the super harmonic frequency components 
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(2X, 3X) in the subcritical response region as a crack pres-
ence indicator. However, it was demonstrated that these fre-
quency components are affected by other factors such as 
unbalance orientation, crack depth and location. Empirical 
mode decomposition (EMD) was employed by Guo et al. 
[10] to track the change of amplitudes of the super harmonic 
frequency components and whirl orbits in the vicinity of 1/2 
and 1/3 of the critical speed. Variation of these components’ 
amplitudes can be considered as a crack indicator. However, 
noise may cause a limitation to the proposed method.

More crack indicators have been obtained through the 
investigation of the coupling phenomenon of the vibration 
modes due to presence of cracks [11–21]. According to this, 
due to crack presence, excited vibration in one direction 
results in vibration interaction in other directions. In Ref. 
[13], Darpe et al. investigated the coupling of longitudinal, 
torsional and lateral vibrations. Numerical work by Darpe 
et al. [22], and parametric experimental work by El-Mongy 
et al. [23] analyzed the coupling of the longitudinal and lat-
eral steady state vibrations of a cracked Jeffcott rotor system 
subjected to axial excitation. Presence of axial excitation fre-
quencies in the lateral vibration spectra represents the vibra-
tion coupling and thus a crack presence indicator. Moreover, 
numerical and experimental investigation of the dynamic 
behavior of a cracked rotor system during start-up was car-
ried out by El-Mongy et al. [24, 25] for sub-critical analysis. 
It was concluded that the presence of subcritical resonances 
in the system’s sub-critical response can be considered as a 
good crack detector. As the crack depth increases, more sub-
critical resonances appear in the response. Darpe et al. [26] 
numerically and experimentally studied the breathing behav-
ior of a cracked rotor while passing through critical speed 
and subharmonic resonances. Three different crack models 
were considered (open, switching and breathing). Higher 
harmonic components and orbit orientation change during 
passage through these subharmonic resonances provided 
reliable crack indicators. The effect of crack on the nonlin-
ear response of a rotating shaft was analyzed by Sinou et al. 
[27] using the alternate frequency/time domain approach 
and path-following procedure were the crack breathing was 
modeled as a truncated Fourier series.

Most of the previous research on cracked rotors consid-
ered the crack front to be straight edged. However, the actual 
crack front usually takes an elliptical profile. Hence, the 
results achieved using the straight edge assumption reflect 
the behaviour of the idealized crack shape not the real crack 
behaviour. Earliest work on semi-elliptical cracks in round 
bars was focused on determining the stress intensity fac-
tors under bending loading [28–32] and studying fatigue 
crack growth under specific loading conditions as in Ref. 
[33]. Fonte and Freitas [34, 35] constructed an experimental 
rig to study fatigue crack growth of semi-elliptical cracks 
under bending and steady torsion loading and observed the 

elliptical crack shape evolution. Rubio et al. [36] presented 
closed form flexibility coefficients for bending and tension 
taking into account the size and shape of the whole elliptical 
crack front. These obtained expressions were validated via 
calculation of static transverse displacement due to a point 
load. In a series of papers, Rubio et al. [37–39] presented 
different approaches for evaluation of the stress intensity 
factors of an elliptical breathing crack in a rotating shaft. 
Also, the dynamic behavior of rotors with elliptical cracks 
were investigated. Han et al. [40] studied the steady state 
response and dynamic instability regions of an elliptically 
cracked shaft. The crack was modelled using the local flex-
ibility method. The crack front shape had significant effect 
on the instability regions. Di et al. [41] studied the vibra-
tion response of a rotor system with an elliptical crack. The 
cracked element stiffness was estimated based on the strain 
energy density approach that was described for the straight 
fronted crack in Ref. [42]. They considered the coupling 
of bending and torsional vibrations. The study was limited 
to the frequency spectra and harmonics amplitudes varia-
tion with the crack depth. Muñoz-Abella et al. [43] studied 
the influence of unbalance mass position on the breathing 
mechanism of elliptical crack on a rotating shaft. Then, in 
Ref. [44] they introduced an analytical expression to evalu-
ate the first four bending natural frequencies of a nonrotat-
ing pinned–pinned Euler–Bernoulli shaft. And as an inverse 
problem, they proposed a genetic algorithm technique to 
identify elliptical crack using these known natural frequen-
cies. Wei et al. [45] analyzed the breathing behavior of the 
elliptical crack and derived the cracked element stiffness 
matrix based on the time changing area and area moments 
of inertia. Spagnol et al. [46] further improved the work 
done in Ref. [45] to study cracks with a range of elliptical-
front crack curvatures. A four-degree-of–freedom Jeffcott 
rotor model with massless shaft was considered by Spag-
nol et al. in Ref. [47]. The dynamic response was computed 
using Runge–Kutta numerical integration of the equations 
of motions in state-space form. Significant differences were 
found between the straight-front and elliptical front models 
in transverse trajectories at one-third and one-half of the 
critical speed.

To date, research works are still ongoing to reach closed-
form expressions for flexibility coefficients of the elliptical 
crack (i.e. the real crack front shape). The effect of crack 
parameters (such as crack depth, shape factor and crack loca-
tion) combined with system parameters (such as unbalance 
amount and orientation) needs further extensive numerical 
and experimental investigations. The breathing models used 
for the elliptical crack investigations needs further refine-
ment to obtain more realistic results that accurately represent 
the dynamic behavior of elliptically cracked rotor systems.

In this paper, the dynamic behavior of a rotor system with 
a transverse elliptical breathing crack is studied numerically 
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using finite element analysis. The crack is modeled using the 
moment of inertia reduction approach. The present breathing 
model not only accounts for the real crack shape but also for 
the real asymmetry of the cracked cross-section where the 
neutral axis orientation change is taken into account rather 
than being assumed constantly horizontal as in Refs. [46, 
47]. Harmonic balance method is used to solve the system’s 
equations of motion. Whirl orbits of the shaft rotating at con-
stant speeds during crack propagation considering the effect 
of shape factor are studied. In addition, whirl orbits during 
passage through subcritical speeds are presented. Signifi-
cant differences between the real elliptical front versus the 
assumed straight front may help in earlier crack diagnosis 
and in turn prevent misdiagnosis to avoid component failure.

Finite Element Modelling of Rotor System

Modeling of the Shaft

The shaft of length L is discretized into N elements with 
N + 1 nodes. Each node has four degrees of freedom con-
sisting of two translational displacements in the X and Y 
directions and two rotational displacements about the X and 
Y directions (Fig. 1).

On assembling the equations of motion of each element, 
the finite element equation of motion of the whole shaft can 
be written as [48]:

where �, �, � and � are the shaft mass, damping, gyro-
scopic and stiffness matrices, respectively. Expressions of 
these matrices for each element can be found in Refs. [48, 
49]. The vector �(t) =

[
�T1 �T2 … �T

i
… �T

N+1

]T is the 
nodal displacements vector in which �T

i
(t) =

[
ui vi �

x
i
�
y

i

]
 

is the displacement vector of a single node. Here, the exci-
tation vector �(t) is the unbalance force vector due to the 
unbalance mass located on the disk. The vector �g is the 
gravity force vector of the rotor system.

Disk Modelling

The disk is assumed to be a rigid concentrated mass in which 
its mass center is assumed to lie at the intersection node of 

(1)��̈(t) + (� − Ω�)�̇(t) +��(t) = �(t) + �g,

two elements as shown in Fig. 2. Therefore, the disk mass 
center has the same displacement vector as this node.

The equation of motion of the rigid disk at node i is 
expressed as [5]:

where �d , �d are the rigid disk mass and gyroscopic matri-
ces, respectively whose expressions can be found in Refs. 
[5, 48].

The unbalance force vector due to the unbalance mass 
attached to the disk can be expressed as:

where me is the unbalance amount in (kg m), Ω is the spin-
ning speed in (rad/s) and � is the initial unbalance angle with 
respect to the positive X axis.The system damping matrix 
� is assumed to be proportional damping matrix and can be 
calculated as [50]:

where the parameters �d, �d  are calculated using the first 
two natural frequencies and first two modal damping ratios.

Crack Modelling

The crack is introduced at a cross section at the middle of 
the shaft. The crack front realistic shape is considered as the 
intersection of an ellipse with the shaft’s circular circumfer-
ence [45] (Fig. 3).

Here, this ellipse has a major axis b which represents the 
crack depth and a minor axis a . The major centerline of that 

(2)�d�̈(t) − Ω�d�̇(t) = 0,

(3)�
u
=

⎡⎢⎢⎢⎢

meΩ2cos(Ωt + �)

meΩ2sin(Ωt + �)

0
0

⎤⎥⎥⎥⎥
,

(4)� = �d� + �d�,

Fig. 1   Shaft finite element 
model

Fig. 2   Disk at node i on the shaft



4374	 Journal of Vibration Engineering & Technologies (2023) 11:4371–4385

1 3

ellipse is always tangent to the shaft cross-section. The crack 
depth ratio is taken as � = b∕R and the crack front shape 
factor is defined as � = b∕a . The shape factor gives an indi-
cation of the crack front curvature such that, as β increases, 
the front becomes more curved and as it decreases, the front 
becomes more flattened. Hence, the straight-front transverse 
crack is a special case of the elliptical crack where β = 0. The 
crack is assumed to be fully open at t = 0 (before rotation). 
In this case, the area of the crack segment Ac is composed of 
two areas Ac1 and Ac2 , meanwhile, the uncracked portion of 
the cross section has an area A1 . The Y-coordinate of the 
centroids of the areas Ac1 , Ac2 and A1 are denoted respec-
tively as YAc1

c  , YAc2
c  and yce . The moments of inertia of the area 

components Ac1,Ac2 about the X and Y axes are denoted as 
IAc1
X

,IYAc1 , IXAc2 and IYAc2 . Then, the moments of inertia of 
the area A1 about the X and Y axes are denoted as IA1

X
 and IA1

Y
 . 

The moments of inertia of A1 about the centroidal X and Y  
axes are denoted as IA1

X
 and IA1

Y
 . Mathematical calculations of 

these areas, centroid coordinates and moments of inertia at 
t = 0 are found in Refs. [45, 46].

Crack Breathing

Due to the heavy weight of the rotor in which the static deflec-
tion dominates the deflection due to vibration, the crack was 
found to open and close synchronously with the shaft rotation. 
In other words, as the shaft rotates, the angular orientation of 
the neutral axis of the cross section of the cracked element 
keeps changing. So, at some instants, part of the crack segment 
becomes in the compressive stress region and so it is closed, 
while the other part lies in the tensile stress region and hence 
it remains open. This process of gradual closing and open-
ing is called crack breathing. The angular regions where the 
crack closes or opens gradually and remains fully open or fully 
closed are described in Fig. 4.

The values of the breathing angles �1 and �2 can be calcu-
lated as:

Accordingly, the time varying moments of inertia of the 
cracked element cross section about the fixed centroidal axes 
X and Y can now be expressed as [8, 51]:

(5)�1 = tan−1
⎛
⎜⎜⎝

I
A1

Y

I
A1

X

.
yce + Rcos�

Rsin�

⎞
⎟⎟⎠
, �2 =

�

2
+ � .

(6)Î
X
(t) = I − I11f1(t)

(7)Î
Y
(t) = I + f1(t)I11 + f2(t)I22

Fig. 3   Shaft cross section with a fully open elliptical crack

Fig. 4   Crack breathing process 
and the neutral axis inclination 
during shaft rotation
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where f1(t) , f2(t) and f3(t) are the breathing functions that 
model the crack breathing mechanism. Expressions of these 

(8)Î
XY
(t) = I33f3(t),

functions are found in Ref. [51]. The parameters, I11 , I22 and 
I33 are expressed as:

Then, the time varying cracked element stiffness matrix 
can be expressed as:

where �1 , �2 and �3 are the secondary stiffness matrices due 
to crack presence. Expressions of �1 , �2 can be found in Ref. 
[6] and expression of �3 is found in Ref. [8]. Hence, the finite 
element equation of motion for an unbalanced rotor system 
with breathing crack is written as:

(9)

I11 = I −
(
I
Ac1

X
+ I

Ac2

X
+ A1yce

2
)
,

I22 = I −
(
I
Ac1

Y
+ I

Ac2

Y

)
, I33 =

I
A1

Y
− I

A1

X

2
.

(10)�ce(t) = � + �1f1(t) + �2f2(t) + �3f3(t),

(11)
��̈(t) + (� − Ω�)�̇(t) +

(
� + f1(t)�1 + f2(t)�2

+f3(t)�3

)
�(t) = �1cosΩt + �2sinΩt + �g,

where �1 , �2 , �3 are the secondary stiffness matrices of 
zero entries except for those corresponding to the cracked 
element where the entries equal to �1 , �2 , �3 respectively; �1 , 
�2 are the unbalance force amplitude vectors of zero entries 
except for those corresponding to the disk node. Expressions 
of �1 , �2 can be found in Ref. [5].

Steady State Solution of the System

The harmonic balance method is used to get the steady state 
solution of the cracked rotor system represented by Eq. (11) 
and shown in Fig. 5. The disk is located at the shaft midspan 
where the elliptical crack is located in the most adjacent 
element to the disk.

The solution is expressed as a finite Fourier series as:

where n is the number of harmonics used. The breathing 
functions can be rewritten as:

Inserting this solution into Eq. (11) yields:

(12)�(t) = �
o
+

n∑
k=1

(
�

k
cos(kΩt) + �

k
sin(kΩt)

)
,

(13)

f1(t) = ao +

m∑
j=1

ajcos(jΩt), f2(t) = bo +

2n∑
j=1

bjcos(jΩt),

f3(t) =

2n∑
j=1

�jsin(jΩt).

(14)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̃ 0.5�
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2
0.5�

(1)

22
0.5�
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2
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22
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Fig. 5   Finite element model of 
the rotor system assembly
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w h e r e  �̃ = � + ao�1 + bo�2  a n d 
�(i) = �̃ − ((i + 1)Ω∕2)2� +

1

2

(
ai+1�1 + bi+1�2

)
 

for odd values of i   (i = 1, 3, 5,…… , 2n − 1) and 
�(i) = �̃ − (iΩ∕2)2� −

1

2

(
ai�1 + bi�2

)
 for even values of 

i   (i = 2, 4, 6,…… , 2n) and �(i)

1 = iΩ(� − Ω�) +
1

2
�i�3 

for (i = 1, 2,⋯ , n) and �(i)

11 = −iΩ(� − Ω�) +
1

2
�i�3 and 

�
(i)

2 = ai�1 + bi�2 for (i = 1, 2,⋯ , n) and �(i)

22 = �i�3 
a n d  �

(k,i)
3 =

1

2

[(
ai+k+1 + ai

)
�1 +

(
bi+k+1 + bi

)
�2

]
 

for odd values of k    (k = 1, 3, 5,…… , 2n − 3) and 
�

(k,i)
3 =

1

2

[(
ai − ai+k

)
�1 +

(
bi − bi+k

)
�2

]
 for even values of 

k(k = 2, 4, 6,…… , 2n − 2)  and   �(k,i)
33 =

1

2

(
�i+k+1 + �i

)
�3 

fo r  o d d  va l u e s  o f  k  (k = 1, 3, 5,…… , 2n − 3) 
and �

(k,i)
33 =

1

2

(
�i − �i+k

)
�3 for  even values of  k  

(k = 2, 4, 6,…… , 2n − 2).
Note that, in this case the Z matrix is of size 

((2n + 1) × S, (2n + 1) × S))
.

Results and Discussion

Geometrical and material data of the rotor system are 
given in Table 1. A MATLAB® code is used to build the 
finite element model of the system and perform the numer-
ical calculations. The shaft is divided into 22 Euler–Ber-
noulli beam elements. Steady state response is evaluated 
using the harmonic balance method with 8 harmonics.

The horizontal and vertical vibration responses 
(denoted as u andv , respectively) are calculated at the 
node where the disk is located. The whirl amplitude is then 
calculated as 

√
u2 + v2 . From the eigen value analysis of 

the uncracked simply supported system, the first bending 
natural frequency Ωcr1 is obtained as ≈ 124 Hz.

To validate the model, the Newmark integration method 
(with parameters αN = 0.25 and δN = 0.5 [50]) was used to 
obtain the response and compare with the results obtained 
from the Harmonic balance method (HBM). Arbitrary 
different cases of crack depth, shape factor and spinning 
speed were chosen for the validation process. The spinning 
speeds were chosen around the subcritical speed zones.

For a low crack depth (μ = 0.2), validation was made 
for both straight crack front (i.e. β = 0) as shown in Fig. 6; 
and elliptical front with β = 0.5 as shown in Fig. 7. Speeds 
were chosen during passage through 1/4th, 1/3rd and 1/2 
of the respective first critical speed of the rotor. Similarly, 
Figs. 8 and 9 present the validation results for crack depth 
μ = 0.3 (with β = 0 and β = 1) but with the same set of 
rotating speeds (during passage through 1/4th and 1/5th 
of the first critical speed). Validation for moderately high 
crack depths is also presented in Fig. 10 for μ = 0.4 and 
β = 1/3; and Fig. 11 for μ = 0.5 and β = 0.5, at arbitrarily 
chosen rotational speeds. As shown in the figures, the two 
solution methods showed very good agreement with dif-
ferent values of system and crack parameters.

Effect of the Shape Factor on the Subcritical 
Resonances

Results of the whirl amplitudes versus the rotational speed 
revealed the subcritical resonance speeds in the form of 
emerging peaks which are considered an indicator of breath-
ing crack presence as shown in Fig. 12. Each case is drawn 
by varying the value of the shape factor at constant crack 
depth to show the crack front curvature effect on the system 
critical speeds. Here, this effect can be noticed as the exist-
ing shift in critical speeds compared with the straight front 
assumption (i.e. β = 0). It can be noticed also that as the 
shape factor increases, shifting in peaks increases. Also, as 
the crack depth increases, more sub-resonance peaks appear 
as shown in Fig. 12c. It can be seen that relying on the crack 
indicator related to the subcritical speeds corresponding to 
the straight front can lead to crack misdiagnosis which in 
turn may expose the system to failure especially at deeper 
cracks.

Whirl Orbits at Different Crack Depths and Shape 
Factors at Constant Rotational Speeds

The constant rotational speeds are chosen here as integer 
submultiples of the first critical speed of an intermediate 
case of crack depth and shape factor from the cases shown 
in Fig. 12. The effect of the crack shape factor and crack 
depth is shown in Figs. 13 and 14 at speeds (1847.4 rpm) 
and (3694 rpm) respectively.

Variation of the whirling response can be witnessed in 
the orbit plots in Fig. 13 as the crack propagates at different 

Table 1   Parameters of the rotor system

Parameter Value

Shaft
 Length 500 mm
 Outer diameter 20 mm
 Bearing span 410 mm
 Material density 7800 kg/m3

 Modulus of elasticity 2 × 1011 N/m2

 Poisson ratio 0.3
Disk
 Thickness 11.22 mm
 Outer diameter 150 mm
 Inner diameter 20 mm
 Mass 1.52 kg
 Mass unbalance (m.e) 2.5 × 10–4 kg m 

unless otherwise 
stated

 Unbalance angle ( �) 0°
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Fig. 6   Comparison of whirl orbits for straight crack front for μ = 0.2 using harmonic balance method and Newmark method during passing the 
fourth and third of the first critical speed

Fig. 7   Comparison of whirl orbits for elliptical crack front for μ = 0.2 and β = 0.5 using harmonic balance method and Newmark method during 
passing the third and half of the first critical speed
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Fig. 8   Comparison of whirl orbits for straight crack front for μ = 0.3 using harmonic balance method and Newmark method during passing the 
fourth and fifth of the first critical speed

Fig. 9   Comparison of whirl orbits for elliptical crack front for μ = 0.3 and β = 1 using harmonic balance method and Newmark method during 
passing the fourth and fifth of the first critical speed
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Fig. 10   Comparison of whirl orbits for elliptical crack front for μ = 0.4 and β = 1/3 using harmonic balance method and Newmark method at dif-
ferent speeds

Fig. 11   Comparison of whirl orbits for elliptical crack front for μ = 0.5 and β = 0.5 using harmonic balance method and Newmark method at dif-
ferent speeds
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shape factors. It is observed that at this speed with small 
crack depth (μ = 0.2), no loops are formed in the whirl orbits. 
At μ = 0.3 and μ = 0.5, it can be noticed that both orientation 
and shape of the orbits are varied with changing the shape 
factor β which indicates corresponding change in the ampli-
tude and phase of the vibration response. The loops appear-
ing in the orbits clearly indicate the presence of higher har-
monics in the crack response which is a well-known crack 
signature [10, 26, 52]. At higher crack depth, μ = 0.8, it 
can be observed that the change in the orbit becomes less 
pronounced.

Figure 14 shows the evolution of whirl orbits at half 
the first critical speed for different crack depths and shape 
factors. The inner loop indicating the presence of second 
harmonic component is observed clearly which is a known 
crack indicator at this speed. However, the shape factor has 
an obvious effect on the shape of the orbits. For μ = 0.2, the 
inner loop is getting smaller with the increase of the shape 
factor and it disappears for β = 1. It is also noticed that at 
a constant shape factor, the orbit experiences a change in 
its orientation by about π rad as the crack propagates (see 
Fig. 14f, i) which agrees well with previous literature as 
[26]. All these changes demonstrate the variations that 
occur in the amplitude and phase of the vibration response 
of the cracked rotor when the crack shape is taken into 
consideration.

Whirl Orbits During Passage Through Subcritical 
Resonances

The whirl orbits of the system while passing through the 
subcritical speeds are plotted in Figs. 15 and 16 at crack 
depth μ = 0.3 for two shape factors β = 0.5 and β = 1 respec-
tively. The orbit plots corresponding to the straight crack 
front (β = 0) are plotted on the same axes of other shape 
factor values for comparison. The stiffness variation due 
to breathing of the elliptical crack in the rotating coordi-
nate system gives rise to higher harmonics in the nonlinear 
system response as can be seen in the orbit shapes in both 
Figs. 15 and 16. This stiffness variation affects the frequency 
content of the response during passage through the sub-crit-
ical speeds [9, 26]. For example, the forward whirl orbits 
at μ = 0.3, β = 0.5 while crossing 1/5th of the first critical 
speed Ωcr1 (in this case 1/5 Ωcr1 ≈ 1480.6 rpm) shown in 
Fig. 15a–c, the 5X harmonic component dominates the sys-
tem response. This is also indicated by formation of the four 
inner loops in the orbits. It can be noticed that the size of the 
inner loops gets larger as the speed approaches the subcriti-
cal speed, and then gets smaller as the speed increases away 
from the subcritical speed. Orbit orientation change can be 
observed while crossing the subcritical speed. Meanwhile, 
significant different orbit shape, size and direction is noticed 
in case of the assumed straight crack front. Here the orbit 
has five outer loops whose size decays earlier as the speed 
increases.

Similar observations can be seen in case of 1/3rd the 
first critical speed as in Fig. 15d–f. Here, the response is 
dominated by the 3X frequency component. The orbit has 
two inner loops and rotates by about π/2 rad as it crosses 
the subcritical speed. In this case, the difference between 
the elliptical and straight crack is less noticeable compared 
with the previous case. In Fig. 15g–i, orbits during passage 
through 1/2 the first critical speed where the response is 
dominated by the 2X component. The forward whirl orbit is 
characterized by the inner loop and rotates by about π/2 rad 
as it crosses the subcritical speed. In this case, difference 
between the models is less noticeable compared with the 
previous two cases except that the orbit rotates by a smaller 
amount (≈ π/4 rad). It can be noticed that the orbit size of 
the elliptical crack is smaller than that of the straight crack 
before the subcritical speed zone as shown in Fig. 15a, d, g; 
and larger at the subcritical speed zone (Fig. 15b, e, h); then 
slightly larger after the subcritical speed zone (Fig. 15c, f, i).

Figure 16 shows the whirl orbits during passage through 
the 1/5th and 1/4th of the first critical speed at μ = 0.3 for the 
case β = 1 (i.e. circular front). The orbits in Fig. 16a–c show 
similar observations as those in Fig. 15a–c in case of β = 0.5 
except for the relative orientation of the orbit loops among 
the two cases. Figure 16d–f presents forward whirl orbits 

Fig. 12   Peaks of subcritical speeds at different values of crack depths 
and shape factors: a μ = 0.3, b μ = 0.5, c μ = 0.8. at m.e = 1 × 10

−6 
kg m
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while passage through 1/4th of the first critical speed. Here 
the 4X component is dominant but on a narrow range of rota-
tional speeds as evident by the three inner loops. In addition, 
the relative orientation of the orbit inner loops gets distorted 
to some extent while crossing the subcritical speed. Mean-
while, for the straight front model, different whirl direction 
is observed. In this case, the orbit is backward with five outer 
loops with decreasing size with the speed.

Conclusions

In this paper, the finite element model of a rotor system 
with a transverse elliptical breathing crack is developed 
to investigate the system’s steady state response using the 
harmonic balance method. Crack breathing mechanism is 
modeled through the time varying area moments of inertia 
approach taking into account the neutral axis inclination 

Fig. 13   Evolution of the system whirl orbits at different values of crack depths and shape factors at Ω = 1847.4 rpm, m.e = 2.5 × 10
−4 kg m
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change. The major findings of this work are summarized 
as follows. Presence of the breathing elliptical crack can be 
tracked using the super harmonic frequency components in 
the system subcritical response. Whirl orbits in the vicin-
ity of the subcritical speeds introduced unique shapes and 

orientation and in turn serve as a key detector of crack 
presence. Compared to the assumed straight crack front, 
shape factors can affect the whirl orbit characteristics such 
as the size of the inner or outer loops and the amount 

Fig. 14   Evolution of the system whirl orbits at different values of crack depths and shape factors at Ω = 3694 rpm, m.e = 2.5 × 10
−4 kg m
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by which the orbits rotate while crossing the subcritical 
speeds. The present breathing model that considers the 
effects of the elliptical crack shape, the non-symmetric 
cracked cross section and the neutral axis inclination angle 

provides closer simulation of real cracked rotors. Hence, 
consideration of these effects may help in earlier crack 
diagnosis and better modelling of crack effects on the 
vibration response.

Fig. 15   Whirl orbits at μ = 0.3, β = 0.5 during passage through the subcritical speeds, a–c through 1/5 Ωcr1  ≈  1480.6  rpm, d–f through 
1/3Ωcr1 ≈ 2468 rpm, g–i through 1/2Ωcr1 ≈ 3702 rpm. for m.e = 2.5 × 10

−4 kg m
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