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Abstract
Purpose This article concentrates on the oscillating movement of an auto-parametric dynamical system comprising of a damped 
Duffing oscillator and an associated simple pendulum in addition to a rigid body as main and secondary systems, respectively.
Methods According to the system generalized coordinates, the controlling equations of motion are derived utilizing Lagrange's 
approach. These equations are solved applying the perturbation methodology of multiple scales up to higher orders of approxi-
mation to achieve further precise unique outcomes. The fourth-order Runge–Kutta algorithm is employed to obtain numerical 
outcomes of the governing system.
Results The comparison between both solutions demonstrates their high level of consistency and highlights the great accuracy 
of the adopted analytical strategy. Despite the conventional nature of the applied methodology, the obtained results for the 
studied dynamical system are considered new.
Conclusions In light of the solvability criteria, all resonance scenarios are classified, in which two of the fundamental exterior 
resonances are examined simultaneously with one of the interior resonances. Therefore, the modulation equations are achieved. 
The conditions of Routh–Hurwitz are employed to inspect the stability/instability regions and to analyze them in accordance with 
the solutions in the steady-state case. For various factors of the examined structure, the temporary history solutions, the curves 
of resonance in terms of the adjusted amplitudes and phases, and the stability zones are graphically presented and discussed.
Applications The results of the current study will be of interest to wide range experts in the fields of mechanical and aerospace 
technology, as well as those working to reduce rotors dynamical vibrations and attenuate vibration caused by swinging structures.

Keywords Auto-parametric systems · Nonlinear dynamics · Perturbation techniques · Fixed points · Stability

Introduction

Several structures used in mechanical engineering, naval, and 
civil applications are highlighted with different mechanisms 
to lessen the dynamic response component brought about by 

either deterministic or random external excitations. Some ver-
tical structures such as masts, chimneys, towers, and bridges 
are subject to powerful excitation as a result of winds and 
earthquakes influences, and other general-purpose systems 
that have been heavily stimulated. Numerous renowned mono-
graphs, e.g. [1–3] and others, devoted substantial treatises to 
these subjects at the level of applied and rational dynamics.

Over the past few periods, a large number of publications 
addressing different types of dynamic dampers and associ-
ated subjects drew the attention of numerous researchers e.g. 
[4–9]. In [4], the author investigated the vibrational motion 
of an absorber with a rotating base to reduce the vertical 
excitations, from which the fundamental frequency has been 
derived. A correlation between the absorber rotational speed 
and its frequency of vertical swings was established. The 
absorber performance such as mass, length, and frequency 
was examined. In [5], a connected longitudinal absorber of a 
nonlinear spring pendulum (SP) was utilized to control and 
stabilize the ship roll movement in the presence of parametric 
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and multi-external excitations. In light of the investigated 
resonance scenario, the equations of frequency response were 
employed to examine the solutions at the steady-state case. 
The requirements of stability of the solutions were deter-
mined. The planar movement of a two degrees-of-freedom 
(2DOF) auto-parametric model, consisting of a movable 
attached main mass through a damped spring coupled to a 
simple pendulum of a rigid arm as a secondary part, was 
discussed in [6]. In [7], the authors replaced the pendulum 
rigid arm with a spring pendulum with linear stiffness to 
constitute a 3DOF model and generalize the work in [6]. 
Recently, the stability of 2DOF auto-parametric systems has 
been analyzed in [8] and [9] for two dynamical models. The 
first one is the vertical movement of a spinning cylinder on a 
connected circular surface with a nonlinear damped spring, 
while the horizontal frictional motion of this surface was 
considered in [9]. The analytic estimated solutions of these 
models up to desired orders of calculation were obtained 
using the approach of multiple scales [10], while the numeri-
cal solutions of the system in [9] were attained by applying 
the Runge–Kutta approach of fourth order [11].

Numerous works, such as [12–17], investigated the primary 
and secondary resonances for the problem of Duffing-pendu-
lum systems, either analytically or numerically. In [12], the 
harmonic balance approach was used to examine the behav-
ior of a damper, spring, and mass, in addition to an exciting 
hinged parametric pendulum. The oscillating zones of the pen-
dulum were determined, and they resemble those described by 
Mathieu's equation. Various parameters of the response equa-
tion were analyzed, and the properties of the system response 
were clarified. A study of the harmonic solutions stabilities 
was conducted. The accuracy of the gained approximation was 
checked in light of the numerical outcomes. The dynamic reac-
tion of the studied scheme was presented in [13].

The motion of an auto-parametric system consisting of a 
nonlinear oscillator with an associated damped elastic pen-
dulum around the region of major resonance was examined 
in [14]. On the basis of the approach of harmonic balance, 
the solutions were obtained. Numerical studies and practi-
cal tests were carried out on a certain constructed experi-
mental rig to confirm the accuracy of the analytical results. 
The effects of all crucial parameters on the localization of 
the instability area and the dynamics of the system have 
been analyzed. In [15], the author investigated the oscillat-
ing movement of a connected nonlinear Duffing oscillator 
to a nonlinear damper. The influence of excited harmonic 
force on the mechanism of an auto-parametric pendulum was 
investigated [16] and [17]. The authors improved the con-
trollable dynamical motion by inserting a nonlinear spring 
and a semi-active magnetic damper into the studied model. 
Near the zones of primary parametric resonance, numerical 
simulations are used to determine the influence of stiffness 
or nonlinear damping on the motion.

Harvesting energy (HE) has become increasingly impor-
tant for many technologies that use mechanical vibration. 
The oscillations can be converted into electrical energy via 
the proper machinery, which can then be used as a power 
source rather than traditional ones. In [18], the authors 
discussed how technologies can reduce harmful vibrations 
while still capturing energy, where the idea of an energy 
harvester is quite related to the idea of a vibration absorber. 
In [19], electromagnetic and piezoelectric devices are con-
nected with a vibrating system to yield two HE models. 
These pieces are coupled to a 2DOF nonlinear damped pen-
dulum whose pivot point moves on a circular trajectory. It 
has been examined how the EH outputs are affected by the 
coefficients of damping, excitation amplitudes, and differ-
ent values of the system frequencies. The curve frequency 
responses were drawn to examine the stability and instabil-
ity zones. Recently, a connected 3DOF oscillating system 
with one of the EH devices has been investigated [20]. This 
system is composed of a nonlinear Duffing oscillator and a 
damping pendulum. The plots of phase portraits and Poin-
caré maps demonstrated the stable and unstable behavior of 
the considered system. The current time histories and output 
power were displayed according to the various amounts of 
the excitation amplitudes, coefficients of damping, and load 
resistance.

The study of the movement of the pendulum suspension 
point, whether on a certain curve or even if the point is fixed, 
has captured the attention of various scientists [21–28]. 
The nonlinear motion of a vibrating pendulum was inves-
tigated in [21] under the impact of exterior harmonic force 
and moment in the spring path and at the suspension point, 
respectively. At a certain order of the obtained approximate 
solutions, all relevant resonance scenarios were classified. 
Two analytic approaches were employed [22] to attain the 
solutions to this problem when the pendulum is damped, and 
the resistance force was taken into consideration. A com-
parison of analytical and numerical outcomes revealed that 
both approaches yielded satisfactory results for non-resonant 
oscillation. In [23] and [24], the fourth-order approach of 
Runge–Kutta is used to explore the numerical solutions of a 
vibrating pendulum connected to a rigid body near the posi-
tions of equilibrium, whereas the approaches of small and 
large parameters are employed in [25] and [26], to get the 
analytical solutions of a linked rigid body with a pendulum.

The multiple scales technique was employed to achieve 
the estimated solutions of a pendulum in [27] when its 
pivot point is restricted to vertical swinging. These solu-
tions are compared with the solutions of previous works 
when an external force is considered to act on the motion. 
Works [28–34] restricted the pendulum pivot point to be 
in elliptic or Lissajous routes. In [28], the elliptic path 
was considered for the motion of this point with constant 
angular velocity, when the pendulum was acted upon by 
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an excitation harmonic force and moment. The obtained 
results were generalized in [29] and [30] when a rigid 
body is attached to linear and nonlinear spring, respec-
tively. The approximate solutions were obtained using 
the method of multiple scales and evaluated through the 
numerical ones to expose their uniformity. The resulting 
resonance cases were extracted, and two of them were 
examined simultaneously. In [31], the authors considered 
the motion of the pendulum suspension point to be on a 
Lissajous curve. The obtained solutions were generalized 
in [32] for the case of a spring rigid body pendulum. In 
[32], a nonlinear stiffness of the spring was considered, 
and the stability zones were examined according to the 
nonlinear stability of Routh–Hurwitz. A combination of 
the homotopy and multiple scales methodologies is pre-
sented in [35] to yield He's approach of multiple scales, 
in which it was examined through the solution of a variety 
nonlinear equations, and for a forced nonlinear oscillators.

In this paper, a 3DOF auto-parametric vibrating dynami-
cal system is examined as a novel model. It consists of a 
damped Duffing oscillator as the main part and an attached 
rigid body to a simple pendulum as a secondary part. The 
controlling system of movement is achieved, employing the 
second type of equations of Lagrange and analyzed ana-
lytically utilizing the multiple scales method. The analytical 
obtained outcomes are matched with the numerical ones, 
which are obtained by applying the Runge–Kutta approach, 
to explore the great agreement between them and the preci-
sion of the attained estimated solutions. The requirements 
of solutions are achieved in light of the emerging reso-
nance cases. Three cases are investigated simultaneously; 

two of them are from the fundamental external resonances 
and the third is from the internal resonances. The criteria 
of Routh–Hurwitz are applied to the modulation equations 
of the examined system to evaluate the stability/instability 
regions of the response frequency curves at the steady-state 
solutions. Moreover, the stability analysis of the system 
under consideration is examined using the nonlinear stability 
approach of Routh–Hurwitz according to the characteristics 
of the nonlinear amplitudes of the modulation equations. 
The outcomes of this study may be used to control the harm-
ful vibrations in moving structures and to decrease the rotor 
dynamics vibration.

Description of the Dynamical Model

In the current section, we present a comprehensive explana-
tion of the investigated auto-parametric dynamical system. 
It consists of a connected linear spring of stiffness k with 
a movable mass m1 in a vertical direction as the main part. 
Whereas the second part is a rigid body pendulum of mass 
m2 with arm length l , which is attached to the mass m1 at 
the origin point o of the Cartesian plane oxy , see Fig. 1. Let 
C signify the center of mass of the body, UA symbolize the 
body inertia moment around a perpendicular axis across the 
point A , Y  be the spring elongation, � be the angle between 
the arm oA and the downward vertical axis oy , and � be the 
angle between the vertical and the line passes through the 
rigid body eccentricity p = AC . It is claimed that the system 
movement is influenced by an excitation external harmonic 

Fig. 1  Portrays the model 
dynamical structure
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force F(t) = F1 cosΩ1t , besides a rotational moment 
M(t) = Mo cosΩot at o . Here, M0,F1 and Ωo,Ω1 are the 
amplitudes and frequencies of M(t),F(t).

Consequently, the kinetic and potential energies T  and V  
of the system are

where Yst is the spring static elongations, and g is the accel-
eration of gravitational, while the derivatives, in relation to 
time t , are expressed by the prime.

Referring to Eqs. (1), the Lagrangian L = T − V of the system 
can be calculated, and then the regulating system of motion can be 
originated using the subsequent Lagrange approach [33]

Here, (Y ,�, �) , (Y �,��, � �) , and (QY ,Q�,Q� ) are the system 
generalized coordinates, velocities, and forces, correspond-
ingly. Based on the system configuration and the applied force 
and moment, one can write QY ,Q�, and Q� as follows

To obtain the systems governing in its dimensionless 
form, let us consider the below dimensionless parameters

Substituting Eqs. of (1), (3), and (4) into (2) yields

(1)

T =
1

2
(m1 + m2)Y

�2 +
1

2
m2[l

2��2 + p2� �2 + 2lp��� � cos(� − �)

−2Y �(l�� sin� + p� � sin �)] +
1

2
UA�

�2,

V =
1

2
k(Y + Yst)

2 − m1gY − m2g(Y + l cos� + p cos �),

(2)

d

dt

(

�L

�Y �

)

−
�L

�Y
= QY ,

d

dt

(

�L

���

)

−
�L

��
= Q�,

d

dt

(

�L

�� �

)

−
�L

��
= Q� .

(3)

QY = F1 cos(Ω1t) − C1Y
�,

Q� = M0 cos(Ω0t) − C2�
�,

Q� = −C3�
�.

(4)

� = �1t, y =
Y

l
, yst =

Yst

l
, � =

m2

(m1 + m2)
, h =

p

l
, �1 =

√

k

m1 + m2

, �2 =

√

g

l
,

�3 =

√

m2pg

UA

, w1 =
�2

�1

, w2 =
�2

�3

, c1 =
C1

(m1 + m2)�1

, c2 =
C2

m2l
2�1

, c3 =
C3

m2pl�1

,

f1 =
F1

(m1 + m2)l�
2

1

, m0 =
M0

m2l
2�2

1

, p1 =
Ω1

�1

, p0 =
Ω0

�1

.

(5)
ÿ − 𝛽(h�̈� sin 𝛾 + h�̇�2 cos 𝛾 + �̈� sin𝜑) + �̇�2 cos𝜑) − w2

1
+ y + yst = f1 cos(p1𝜏) − c1ẏ,

�̈� + w2

1
sin𝜑 − h�̇�2 sin(𝛾 − 𝜑) − ÿ sin𝜑 + h�̈� cos(𝛾 − 𝜑) = m0 cos(p0𝜏) − c2�̇�,

(h + w2

2
)�̈� + w2

1
sin 𝛾 + �̇�2 sin(𝛾 − 𝜑) − ÿ sin 𝛾 + �̈� cos(𝛾 − 𝜑) = −c3�̇� .

The dimensionless governing system (5) consists of three 
second-order nonlinear differential equations. The dots here 
denote the derivatives regarding �.

Formulation of the Analytic Solutions

In the current section, we employ the multiple scales approach 
to achieve the analytic estimated solutions of the system (5) up 
to higher approximation, classify the various cases of resonance, 
and deduce the equations of modulation in view of the solvabil-
ity conditions. Therefore, we examine the system vibrations near 
the region of static equilibrium [34]. To achieve this purpose, we 
estimate the trigonometric sin�, sin � , cos�, and cos � up to the 
third-order approximations using Taylor series.

The amplitude of force, coefficients of damping, moment, 
and others can be exemplified in regard with a tiny parameter 
0 < 𝜀 << 1 as below

As before, let us consider new functions ỹ, �̃�, and �̃� which 
can be used to define the functions y,�, and � in terms of � , 
as follows

Based on the used method, one looks for the solutions of 
ỹ, �̃�, and �̃� as follows

(6)
f1 = 𝜀3 f̃1, cj = 𝜀2c̃j (j = 1, 2, 3), m0 = 𝜀3m̃0, h = 𝜀2h̃.

(7)y = 𝜀ỹ, 𝜑 = 𝜀 �̃�, 𝛾 = 𝜀 �̃� .

(8)

ỹ(𝜏, 𝜀) =

3
∑

k=1

𝜀k−1ỹk(𝜏0,𝜏1, 𝜏2) + O(𝜀3),

�̃�(𝜏, 𝜀) =

3
∑

k=1

𝜀k−1�̃�k(𝜏0,𝜏1, 𝜏2) + O(𝜀3),

�̃�(𝜏, 𝜀) =

3
∑

k=1

𝜀k−1�̃�k(𝜏0,𝜏1, 𝜏2) + O(𝜀3),
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wherever �n = �n� (n = 0, 1, 2) are new various time scales 
on � , where �0 and �k (k = 1, 2) are referred to as the fast and 
slow time scales, correspondingly.

From the perspective of the suggested solutions (8), we 
must convert the time derivatives with respect to � into other 
ones regarding the scales �n = �n� . Consequently, we con-
sider the subsequent differential operators [10]

The substitution of (6)–(9) into (5) yields three partial 
differential equations (PDE) regarding to � . Comparing the 
coefficients of various powers of � in each side to acquire the 
next sets of PDEs, one gets.

Order of �

Order of �2

Order of �3

The nine PDE (10)–(12) can be solved consecutively. 
Considering this, the solutions of the system (10) will be

(9)

d

d�
= D0 + �D1 + �2D2,

d
2

d�2
= D

2

0
+ 2�D0D1 + �2(D2

1
+ 2D0D2);

D
n
=

�

��
n

(n = 0, 1, 2).

(10)

D2

0
ỹ1 + ỹ1 = 0,

D2

0
�̃�1 + w2

1
�̃�1 = 0,

D2

0
�̃�1 +

w2

1

w2

2

�̃�1 = −
1

w2

2

D2

0
�̃�1,

(11)

D2

0
ỹ2 + ỹ2 = 𝛽(D0�̃�1)

2 − 2D0D1ỹ1 + 𝛽�̃�1D
2

0
�̃�1,

D2

0
�̃�2 + w2

1
�̃�2 = �̃�1D

2

0
ỹ1 − 2D0D1�̃�1,

D2

0
�̃�2 +

w2

1

w2

2

�̃�2 =
1

w2

2

(�̃�1D
2

0
ỹ1 − 2D0D1�̃�1 − D2

0
�̃�2) − 2D0D1�̃�1,

(12)

D2

0
ỹ3 + ỹ3 = f̃1 cos(p1𝜏0) − D2

1
ỹ1 − c̃1D0ỹ1 + 2𝛽D0�̃�1(D1�̃�1 + D0�̃�2) − 2(D0D2ỹ1

+ D0D1ỹ2) + 𝛽(2�̃�1D0D1�̃�1 + �̃�1D
2

0
�̃�2 + �̃�2D

2

0
�̃�1),

D2

0
�̃�3 + w2

1
�̃�3 = m̃0 cos(p0𝜏0) +

w2

1

6
�̃�3

1
− c̃2D0�̃�1 − D2

1
�̃�1 + �̃�2D

2

0
ỹ1 − 2(D0D2�̃�1

− �̃�1D0D1ỹ1 + D0D1�̃�2) + �̃�1D
2

0
ỹ2 − h̃D2

0
�̃�1,

w2

2
D2

0
�̃�3 + w2

1
�̃�3 =

w2

1

6
�̃�3
1
− w2

2
(D2

1
�̃�1 + 2D0D2�̃�1 + 2D0D1�̃�2) − D2

1
�̃�1 − c̃3D0�̃�1

− �̃�1[(D0�̃�1)
2 − 2D0D1ỹ1 − D2

0
ỹ2 + �̃�1D

2

0
�̃�1] +

1

2
D2

0
�̃�1(�̃�

2

1
+ �̃�2

1
)

+ �̃�1(D0�̃�1)
2 − 2(D0D2�̃�1 + D0D1�̃�2) + �̃�2D

2

0
ỹ1 − h̃D2

0
�̃�1 − D2

0
�̃�3.

Here, Bj (j = 1, 2, 3) denote the unknown complex func-
tions of �k (k = 1, 2) and Bj refer to their complex conjugates.

Substituting the first-order solutions (13) into the second 
sets of PDE (11), and then removing the produced secular 
terms, one obtains:

Therefore, the solutions of second-order become

Here, the abbreviation c.c. refers for the complex conjugate 
of the previous terms.

To satisfy the conditions for solvability corresponding to 
the approximation of third-order, one must substitute (13)–(15) 

into the last PDE (12) and eliminate terms that generate the 
secular ones. Then, we have

(13)

ỹ1 = B1 e
i𝜏0 + B1 e

−i𝜏0 ,

�̃�1 = B2 e
iw1𝜏0 + B2 e

−iw1𝜏0 ,

�̃�1 = B3 e
i
w1

w2
𝜏0 + B3 e

−i
w1

w2
𝜏0

+
1

(1 − w
2

2
)
(B2 e

iw1𝜏0 + B2 e
−iw1𝜏0);

i =
√

−1 .

(14)D1Bj = 0 (j = 1, 2, 3).

(15)

ỹ2 = −
2𝛽w2

1
B
2

2

(1 − 4w2

1
)
e
2iw1𝜏0 + c.c.,

�̃�2 =
B1B2

1 + 2w1

e
i(1+w1)𝜏0 +

B1B2

1 − 2w1

e
i(1−w1)𝜏0 + c.c.,

�̃�2 =
B1B2

(1 + 2w1)(1 − w
2

2
)
e
i(1+w1)𝜏0 +

B1B2

(1 − 2w1)(1 − w
2

2
)
e
i(1−w1)𝜏0

+
B1B3

w2(2w1 + w2)
e
i(1+

w1

w2
)𝜏0 −

B1B3

w2(2w1 − w2)
e
i(1−

w1

w2
)𝜏0 + c.c.



4156 Journal of Vibration Engineering & Technologies (2023) 11:4151–4186

1 3

According to the above conditions, we may write the third-
order solutions as follows

where qs (s = 1, 2,… , 5) are provided in Appendix (I).
The functions Bj (j = 1, 2, 3) can be calculated in accord-

ance with the previous restrictions (14) and (16), besides the 
initial conditions

With the help of the assumptions (7), the suggested series 
(8), and the achieved approximate solutions (13), (15), 
and (17), we may simply obtain the appropriate approxi-
mate expressions of y,�, and � up to the third-order of 
approximation.

(16)

2iD2B1 +

(

2𝛽B2B2

1 − 4w2

1

+ ic̃1

)

B1 = 0,

2iw1D2B2 + ic̃2w1B2 +
B2

2(1 − 2w1)(1 + 2w1)(1 − w2

2
)
{2h̃w2

1
(4w2

1
− 1) − (w2

2
− 1){4B1B1

+ w2

1
[4(1 − 4𝛽)w2

1
− 1]B2B2}} = 0,

2iw1w2D2B3 +
iw1

w2

c̃3B3 −
B3

2(4w2

1
− w2

2
)(w2

2
− 1)2

{2h̃w2

1
(4w2

1
− w2

2
)(w2

2
− 1)

+ 4(w2

2
− 1)2B1B1 + w(4w2

1
− w2

2
)[2(2w2

2
− 1)B2B2 + (w2

2
− 1)2B3B3]} = 0.

(17)

ỹ3 =
f̃1

2(1 − p2
1
)
eip1𝜏0 +

𝛽B1

4w1

{

(1 + 2w1)

(1 + w1)
B2

2
ei(1+2w1)𝜏0 −

(1 − 2w1)

(1 − w1)
B
2

2
ei(1−2w1)𝜏0

}

+ c.c,

�̃�3 =
m̃0

2(w2

1
− p2

0
)
eip0𝜏0 −

[1 − 4(1 − 12𝛽)w2

1
]

48(1 − 4w2

1
)

B3

2
e3iw1𝜏0 −

h̃

1 − w2

2

B3 e
i
w1

w2
𝜏0

+
B2

1

4

{

B2

(1 + w1)(1 + 2w1)
ei(2+w1)𝜏0 +

B2

(1 − w1)(1 − 2w1)
ei(2−w1)𝜏0

}

+ c.c,

�̃�3 =
m̃0p

2

0

2w2

2
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0
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1
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+ q5B
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B3e
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1
B3
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2
(w1 − w2)(2w1 − w2)

e
i(
(

2−
w1

w2

)

)𝜏0 −
B3

3

48
e
3i

w1

w2
𝜏0 + c.c,

y(0) = y0, 𝜑(0) = 𝜑0, 𝛾(0) = 𝛾0,

ẏ(0) = 0, �̇�(0) = 0, �̇�(0) = 0.

Resonance’s Classifications and Modulation 
Equations

In the current section, numerous resonance scenarios will be 
classified using the achieved approximate solutions, which 
are considered acceptable in so much as the denominators 
are not equal to nothing [36].

Resonance cases become more noticeable when these 
dominators approach zero. Therefore, these scenarios can 
be classified into: the primary exterior resonance case which 
is fulfilled at p1 = 1, p0 = w1, p0 = w1∕w2 ; the case of 
internal resonance which is discovered at w1 = 1∕2, w2 = 1,
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w1∕w2 = 1∕2,w1 = 1, w2 = 1∕3,w2 = 3,w2 = −3,w1∕w2 = 1, 
w1 = 0,w1∕w2 = 0 ; the case of combined resonance which is 
seen at w1∕w2 = 2 + w1, w1∕w2 = 2 − w1,w1∕w2 = 1 + w1, 
w1∕w2 = 1 − w1.

In this context, we simultaneously examine the following 
three primary external resonances

These resonances demonstrate, respectively, the close-
ness of p1, p0, and w2 to 1 , w1, and 3 . To accomplish this, 
the dimensionless detuning parameters �j (j = 1, 2, 3) can be 
presented as seen below

(18)p1 ≈ 1, p0 ≈ w1, w2 ≈ 3.

Since these parameters describe how far the oscillations 
are from the strict resonance, then one can express them in 
terms of � as follows:

Making use of (19) and (20) into (11) and (12), and then 
eliminating the resulted secular terms, one obtains the fol-
lowing criteria of solvability

(19)p1 = 1 + �1, p0 = w1 + �2, w1

(

1 −
3

w2

)

= �3.

(20)𝜎j = 𝜀2�̃�j (j = 1, 2, 3).

Fig. 2  Presents the behavior of bj(�) (j = 1, 2, 3) and �j(�) at c2 = 0.001,c3 = 0.002,�1 = 1.24,�2 = 2.556, and �3 = 1.058 at 
c1 = (0.009, 0.005, 0.001),
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A further examination of the solvability criteria 
reveals six nonlinear PDE regarding to the functions 
Bj = Bj(�1, �2), (j = 1, 2, 3) . Consequently, one writes 
them in their below polar forms

Here, b̃j and �j represent the real functions of amplitudes 
and phases of ỹ, �̃�, and �̃� , while bj denote the amplitudes of 
y, �, and � as indicated in the hypotheses (7).

In light of the above preceding analysis, the first-order deriva-
tives of operators Bj (j = 1, 2, 3) can be expressed as follows

(21)

D1B1 = 0, D1B2 = 0, D1B3 = 0,
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(
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)
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2
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2
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2
− 1)2
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1
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2
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2
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2
− 1)2B3B3]} +

w2

1
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2
B2B

2

3

2(1 − w2

2
)
ei𝜎3𝜏0 = 0.

(22)Bj =
b̃j(𝜏1, 𝜏2)

2
ei𝜓j(𝜏1,𝜏2), bj = 𝜀b̃j (j = 1, 2, 3).

(23)
dBj

d�
= �D1Bj + �2D2Bj.

Equations (22), (23), and the following modified phases 
[10] are used

to covert the PDE (21) of the solvability criteria into 
ordinary differential equations (ODE). Separating the 
system real and imagined components produces the 
below first-order ODE regarding the amplitudes bj and 
phases �j

(24)

𝜃1(𝜏2) = �̃�1𝜏2 − 𝜓1(𝜏2),

𝜃2(𝜏2) = �̃�2𝜏2 − 𝜓2(𝜏2),

𝜃3(𝜏2) = �̃�3𝜏2 − 𝜓2(𝜏2) + 𝜓3(𝜏2),

(25)
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It must be noted that the preceding system is known as the 
system for the investigated cases of resonances. A closer exam-
ination of the equations of this system shows that the waves 
illustrating the behavior of (b1, �1), (b2, �2), and (b3, �3) will 
be influenced by the change of the damping coefficients c1, c2, 
and c3 , respectively. These equations can be solved numerically 
according to the following amounts of the used system factors

�1 = −0.1, �2 = 0.01, p = 0.2 m, g = 9.8 m∕ sec2, m1 = 25 kg, UA = 70 kg.m2

f1 = 0.0004, m0 = 0.0003, p1 = 1 + �1, p0 = w1 + �2, w1

(

1 −
3

w2

)

= �3.

Curves depicted in Figs.  2, 3, 4 and (5)–(7) reveal 
the variations of the amplitudes bj (j = 1, 2, 3) and the 
improved phases �j versus the dimensionless time � 
when the damping parameters cj and frequencies �j have 
various values. Figure 2 is calculated when c2 = 0.001,

c3 = 0.002 ,�1 = 1.24,�2 = 2.556,  �3 = 1.058,  a n d 
c1 = (0.009, 0.005, 0.001) . It is noted that the standing 

Fig. 3  Describes the variation of bj and �j(�) versus � at, c1=0.001, c3 = 0.002,�1 = 1.24,�2 = 2.556, and �3 = 1.058 when 
c2 = (0.008, 0.006, 0.004)
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waves describing b1 and �1 have been affected with the 
change of the values of c1 as indicated in portions (a) 
and (d) of Fig. 2. Moreover, the amplitudes of the waves 
decrease with the rise of c1 amounts, while the oscilla-
tions number remains steady. In other words, the decay-
ing behavior increases according to the increase of the 
damping values, which is expected before. On the other 
hand, the influence of c1 values on the waves of (b2, �2) and 
(b3, �3) seems to be slight, as graphed in portions (b,e) and 
(c,f), respectively. As the values of c1 increase, the time 
behavior of b3 and �3 steadily decreases till the end of the 
examined interval of time, as graphed in Fig. 3c, f. As the 
values of c1 increase, the time behavior of b3 and �3 stead-
ily decreases till the end of the examined time interval, 

as graphed in Fig. 3c, f. This conclusion agrees with the 
mathematical formulation of system (25).  

The effectiveness of the damping parameters c2 to the 
temporary time of bj and �j are drawn, respectively, in parts 
(a), (b), (c) and (d), (e), (f) of Fig. 3. These portions are cal-
culated when c2 = (0.008, 0.006, 0.004) varies at c1 = 0.001, 
c3 = 0.002, �1 = 1.24, �2 = 2.556, and �3 = 1.058 . Curves 
of Fig. 3a, b, d, e have a decay procedure. The good influence 
of c2 on the waves illustrating b2 and �2 is graphed in Fig. 3a, 
c, in which the plotted waves decrease with the increase of 
c2 values. The time behavior of b3 and �3 decreases gradually 
till the end of the studied interval of time with increase of 
the values of c2 , as seen in Fig. 3c, f.

Fig. 4  Explores the functions bj(�) and �j(�) when c3 has different values at c1 = 0.001, c2 = 0.005, �1 = 1.24, �2 = 2.556, and �3 = 1.058
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Analyses of the plotted curves in Fig.  4 allow us to 
say that part (c) has been influenced more clearly by the 
change of c3 than the other parts. This is because the explicit 
dependence of the fifth equation in the system (25) on c3 . 
As predicted above, the included curves of the other parts 
don’t have a visible change, which agrees with the other five 
equations of the same system.

The time histories of both amplitudes bj and the modi-
fied phases �j are graphed in Figs. 5, 6, 7 for various val-
ues of �j . These graphs are calculated when c1 = 0.001,

c2 = 0.005, and c3 = 0.002 besides the different values of 
�1 = (1.24, 1.176, 1.109) , �2 = (2.556, 2.213, 1.979), and 
�3 = (1.183, 1.122, 1.058) as in Figs. 5, 6, and 7, respec-
tively. The presented curves in portions [(a), (d)] and [(b), 
(e)] of these figures have decaying forms, while the gradient 

acceleration in the decaying waves in parts (b) and (e) is 
greater than those in parts (a) and (d). The reason goes backs 
to the in/dependence of the first four equations of system 
(25) on the values of �j . The first one doesn’t depend on �j , 
the dependency of the second one on �1 only seems slight, 
while the third and fourth equations are directly dependent 
on �j ; see the dimensionless parameters (4) and the system 
(25). Therefore, we expected that the curves in portions (a) 
and (d) don’t vary with the change of �j , whereas the behav-
iors of the waves describing b2 and �2 will vary with the 
change of �j , as drawn in portions (b) and (e) of Figs. 5, 6, 
7. Given that system (25) final two equations are dependent 
on �j explicitly, we expect that their graphs are influenced 
by their changes, see portions (c) and (f) of the same figures.

Fig. 5  Represents the temporary histories of bj and �j when �2 = 2.556, �3 = 1.058,c1 = 0.001,c2 = 0.005, and c3 = 0.002 at 
�1 = (1.24, 1.176, 1.109)
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The diagrams of phase plane for the time dependent solu-
tions of the equations of system (25) are depicted in Figs. 8, 
9, 10, 11, 12, 13, while cj and �j have various amounts, 
respectively. Looking at the plotted curves, in parts (a) and 
(b), reveals that they have directed spiral forms toward a 
single point, which conveys the idea that these phases and 
amplitudes move steadily. On the other hand, the curves 
drawn in portion (c) of these figures decrease gradually with 
time to give stable indications of their behaviors.

The curves graphed in parts Figs. 8a, 9b, and 10c are 
impacted, respectively, by the change of the values c1, c2, and 
c3 , while the variation in the curves of other parts can’t be 
observed to some extent. As aforementioned stated, the first 
two equations in system (25) don’t depend on �j directly, 
then we can expect that the behavior of the plotted curves 
in planes �1b1 is not affected by the change of �j amounts, 
as found in Figs. 11a, 12a, and 13a. On the other hand, the 
last four equations of the same system are influenced by the 

Fig. 6  Depicts the variation of bj and �j via � at �1 = 1.24,�3 = 1.058,c1 = 0.001,c2 = 0.005, and c3 = 0.002 at �2 = (2.556, 2.213, 1.979)
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change of �j values. Then we can predict that the curves of 
in the planes �2b2 and �3b3 will be influenced by this change. 
This prediction is highly consistent with the plotted curves 
in portions (b) and (c) of Figs. 11, 12.

It is vital to bear in mind that the achieved approximate 
solutions y(�),�(�), and �(�) characterize, respectively, the 
spring elongation on the one hand, and the rotating angles 
at the points o and A , on the other hand. The variations of 
these solutions are shown in Figs. 14, 15, 16, 17, 18, 19 when 

cj (j = 1, 2, 3) and �j have various amounts in addition to the 
above used data. We can infer from the depicted curves in 
these graphs that they include periodic forms of wave packets 
or quasi-periodic ones. The amplitude of the waves describ-
ing y and � decreases with the increase of c1 , as displayed in 
Figs. 14a, c, whereas the waves drawn in Fig.  14b show that 
the solution � is not impacted by the variation of c1 . The good 
influence of various values of c2 and c3 can be seen, respec-
tively, in Figs. 15b, c, , 16c, while the waves in Figs. 15a, 16a, 

Fig. 7  Illustrates the behavior of bj(�) and �j(�) at various values of �3 = (1.183, 1.122, 1.058) when �1 = 1.24, �2 = 2.556, c1 = 0.001, 
c2 = 0.005, and c3 = 0.002
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c, don’t display any variation with the change of c2 and c3 . In 
the same context, one can observe that the drawn waves of 
the solutions �(�) and �(�) have been affected by the shift 
of �j amounts, as graphed in Figs. 17b, c, 18b, c, 19b, c. As 
opposed to that, the plotted curves in Fig. 17a, 18a, and 19a 
don’t exhibit any variations with the distinct values of �1,�2, 
and �3 , correspondingly. The cause stems from the mathemati-
cal interpretation of the solution y(�) . The comparison of the 
numerical solutions (NS) and the analytic solutions (AS) at 
c1 = 0.001, c2 = 0.005,c3 = 0.002, �1 = 1.24, �2 = 2.556, 
and �3 = 1.058 has been graphed in Fig. 20a–c. It must be 
noted that these solutions have a high degree of agreement, 
which demonstrates that the perturbation approach has high 
degree of precision.

Steady‑State Solutions

Studying the oscillations of the system under consideration 
in a steady-state case is the main aim of this section. There-
fore, we can calculate both the amplitudes bj (j = 1, 2, 3) and 
adjusted phases �j at this case according to the system of 
Eqs. (25). It is recognized that this situation arises when 
transitory processes vanish owing to the existence of damp-
ing [37]. Afterward, we consider the zero amount of the 
left-hand sides of these equations, i.e., dbj

d�
= 0,

d�j

d�
= 0[38]. 

Consequently, it is easy to obtain the below algebraic system 
regarding the functions �j and bj.

Fig. 8  Shows the diagrams’ curves in the planes bj�j at c2 = 0.001, c3 = 0.002,�1 = 1.24, �2 = 2.556, and �3 = 1.058 when 
c1 = (0.009, 0.005, 0.001)



4165Journal of Vibration Engineering & Technologies (2023) 11:4151–4186 

1 3

(26)

f1 sin �1 − c1b1 = 0,
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Fig. 9  Displays the diagrams’ curves in the planes bj�j when c2 has various values at c1 = 0.001, c3 = 0.002,�1 = 1.24, �2 = 2.556, and 
�3 = 1.058



4166 Journal of Vibration Engineering & Technologies (2023) 11:4151–4186

1 3

If we can get rid of the phases �j , then the following non-
linear algebraic system can be obtained in terms of bj and �j

(27)
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It is regarded that stability evaluation is an important 
aspect of the vibrations at the situation of steady-state. 

Fig. 10  Describes the diagrams’ curves in the planes bj�j when c3 has the values (0.007, 0.005, 0.003) at c1 = 0.001, c2 = 0.005,�1 = 1.24, 
�2 = 2.556, and �3 = 1.058
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Therefore, the system behavior in a domain that is somewhat 
near to fixed points would be examined to analyze such a 
situation. To achieve this goal, let us use the below substitu-
tions in (25)

where bj0 and �j0 are the solutions at steady-state, while bj1 
and �j1 exemplify the corresponding perturbations, which are 
presumably very minimal. Substituting (28) into (25), one 
obtains the next equations

(28)

b1 = b10 + b11, �1 = �10 + �11,

b2 = b20 + b21, �2 = �20 + �21,
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In light of the smallness of bj1 and �j1 (j = 1, 2, 3) , 
we can write the solutions as linear combinations of 
hse

�� (s = 1, 2, 3, 4, 5, 6) , where hs and � are quantities 
and the eigenvalue of the unidentified perturbations, 
correspondingly. If the solutions at the steady-state case 
are asymptotically stable, the real parts of the roots of 
the below typical equation of (29) should be negative 
[39]

Here, Γs (s = 1, 2, ..., 6) represent dependent functions on 
bj0, �j0, and hj(see Appendix 2).

(30)�6 + Γ1�
5 + Γ2�

4 + Γ3�
3 + Γ4�

2 + Γ5� + Γ6 = 0.
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With reference to the foregoing analysis, the Routh–Hur-
witz [40] criterion can be used to write the fundamental 
conditions for the stability of the steady-state solutions as 
follows

(31)

Γ1 > 0, Γ3(Γ1Γ2 − Γ3) − Γ4Γ
2

1
+ Γ1Γ5 > 0, Γ1Γ2 − Γ3 > 0,

Γ3Γ4(Γ1Γ2 − Γ3) − Γ2

1
Γ2

4
− Γ1Γ

2

2
Γ5 + Γ2Γ3Γ5 + 2Γ1Γ4Γ5 − Γ2

5
+ Γ2

1
Γ2Γ6 − Γ1Γ3Γ6 > 0,

Γ1Γ2Γ3Γ4Γ5 − Γ2

3
Γ4Γ5 − Γ2

1
Γ2

4
Γ5 − Γ1Γ

2

2
Γ2

5
+ Γ2Γ3Γ

2

5
+ 2Γ1Γ4Γ

2

5
− Γ3

5
− Γ1Γ2Γ

2

3
Γ6

+ Γ3

3
Γ6 + Γ2

1
Γ3Γ4Γ6 + 2Γ2

1
Γ2Γ5Γ6 − 3Γ1Γ3Γ5Γ6 − Γ3

1
Γ2

6
> 0,

Γ6(Γ1Γ2Γ3Γ4Γ5 − Γ2

3
Γ4Γ5 − Γ2

1
Γ2

4
Γ5 − Γ1Γ

2

2
Γ2

5
+ Γ2Γ3Γ

2

5
+ 2Γ1Γ4Γ

2

5
− Γ3

5
− Γ1Γ2Γ

2

3
Γ6

+ Γ3

3
Γ6 + Γ2

1
Γ3Γ4Γ6 + 2Γ2

1
Γ2Γ5Γ6 − 3Γ1Γ3Γ5Γ6 − Γ3

1
Γ2

6
) > 0.

The Stability Assessment

This section is devoted to examining the stability analysis of 
the dynamical scheme applying the criteria of Routh–Hurwitz. 

Fig. 11  Represents the phase planes diagrams bj�j at �2 = 2.556, �3 = 1.058, c1 = 0.001, c2 = 0.005, and c3 = 0.002 when 
�1 = (1.24, 1.176, 1.109)
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It is to be noted that the motion of this system is considered 
under the action of a damped spring, force F(t) and moment 
M(t) . It has been discovered that some variables, such as 
damping quantities cj , frequencies �j , and the detuning param-
eter �j , have a significant influence on stability procedures. To 
achieve the stability graphs of structure (25), a certain pro-
cess with various factors has been employed. For a variety of 
parametrical locations, the adjusted amplitudes bj have been 
displayed with the detuning parameter �2 , as seen in Figs. 21, 
22, 23, 24, 25, 26, in accordance with the above used data. 
Figures 21, 22, 23, 24, 25, 26 are graphed, respectively, when 
the variations of the damping coefficients cj (j = 1, 2, 3) and 
the frequencies �j are considered.

An examination of the depicted resonance curves in 
parts (a), (b), and (c) of Fig. 21 shows that they are plot-
ted when c2 = 0.001, c3 = 0.002, �1 = 1.24, �2 = 2.556, 
and �3 = 1.058 at c1 = (0.009, 0.005, 0.001) . It is evident 
that the curves in part (a) rather than of parts (b) and (c) 

have been influenced by the change of the damping param-
eter c1 = (0.009, 0.005, 0.001) . The origin of the issue dates 
to how the system of equations was created. It should be 
emphasized that there is just single critical fixed point, which 
is the separating point between the stable and the unstable 
area, for each frequency response curve. Accordingly, there 
are one stability/instability zone. In areas �2 ≤ 0.07 and 
0.07 < 𝜎2 , the stable and unstable fixed points have been 
discovered, correspondingly, which are depicted by solid and 
dashed curves.

The positive effects of various values of the parameter 
c2 = (0.008, 0.006, 0.004) on the performance of response 
curves in the planes �2bj are presented graphically in por-
tions of Fig. 22. These portions are plotted at c1 = 0.001,

c3 = 0.002, �1 = 1.24, �2 = 2.556, �3 = 1.058,�1 = −0.1, 
and �3 = −0.49 . As to the stability/instability regions 
which are found, respectively, at �2 ≤ 0.06 and 0.06 < 𝜎2 , 
one crucial fixed point has been identified.

Fig. 12  Describes the phase planes diagrams bj�j at �2 = (2.556, 2.213, 1.979) when �1 = 1.24, �3 = 1.058, c1 = 0.001, c2 = 0.005, and 
c3 = 0.002
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To follow the discussion on the influence of distinct 
values of c3 = (0.007, 0.005, 0.003) , Fig.  23 has been 
drawn when �1 = 1.24, �2 = 2.556,�3 = 1.058c1 = 0.001, 
c2 = 0.005, �1 = −0.1, and �3 = −0.49 are considered. It is 
noted that the frequency response curves aren’t influenced 
by the change of c3 values, which is owing to the independ-
ency of Eqs. (25) from it. Furthermore, each curve has one 
potential critical point with two areas; stable and unstable 
ones are observed at the ranges �2 ≤ 0.06 and 0.06 < 𝜎2 , 
respectively.

With various values of the frequencies �j , the response 
curves in the planes �2bj are displayed in Figs. 24, 25, 
26 when c1 = 0.001, c2 = 0.005,c3 = 0.002,�1 = −0.1, 
and �3 = −0.49 . It is noted that the different values of 

�1 = (1.24, 1.176, 1.109), �2 = (2.556, 2.213, 1.979), and 
�3 = (1.183, 1.122, 1.058), play positive influences on the 
included curves of the plane �2bj , as pictured in Figs. 24, 
25, and 26, respectively. Each curve includes only one 
critical fixed point of its own. According to the displayed 
curves in Fig.  24, one can conclude that at �1 = 1.24, 
�1 = 1.176, �1 = 1.109 , the stability/instability areas are 
found, respectively, in the ranges �2 ≤ 0.06, �2 ≤ 0.07,

�2 ≤ 0.08 and 0.06 < 𝜎2,0.07 < 𝜎2,0.08 < 𝜎2.
Portions (a), (b), and (c) of Fig. 25 explore various 

stability/instability ranges in the planes bj�2 when �2 has 
the values 2.556,2.213, and 1.979 . At 2.556 , the stability 
zone is found at the range �2 ≤ 0.06 and the instability one 
is 0.06 < 𝜎2 , while the other two values 2.213 and 1.979 

Fig. 13  Sketches the phase planes diagrams bj�j at �3 = (1.183, 1.122, 1.058) when �1 = 1.24, �2 = 2.556, c1 = 0.001, c2 = 0.005, and 
c3 = 0.002
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Fig. 14  Expresses the behavior of y(�),�(�), and �(�) when c1 = (0.009, 0.005, 0.001) at c2 = 0.001,c3 = 0.002,�1 = 1.24, �2 = 2.556, and 
�3 = 1.058

Fig. 15  Expresses the behavior of y(�),�(�), and �(�) when c2 = (0.008, 0.006, 0.004) at c1 = 0.001, c3 = 0.002,�1 = 1.24, �2 = 2.556, and 
�3 = 1.058
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Fig. 16  Portrays the time histories of y,�, and � when c3 = (0.007, 0.005, 0.003) at c1 = 0.001, c2 = 0.005,�1 = 1.24, �2 = 2.556, and 
�3 = 1.058

Fig. 17  Portrays the time histories of y,�, and � when �1 = (1.24, 1.176, 1.109),�2 = 2.556, �3 = 1.058, c1 = 0.001, c2 = 0.005, and c3 = 0.002
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Fig. 18  Shows the solutions time histories when �2 = (2.556, 2.213, 1.979), �1 = 1.24, �3 = 1.058, c1 = 0.001, c2 = 0.005, and c3 = 0.002

Fig. 19  Shows the solutions’ time histories when �3 = (1.183, 1.122, 1.058),�1 = 1.24, �2 = 2.556,c1 = 0.001, c2 = 0.005, and c3 = 0.002
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Fig. 20  Portrays the comparison between the AS and the NS at c1 = 0.001, c2 = 0.005,c3 = 0.002, �1 = 1.24, �2 = 2.556, and �3 = 1.058

Fig. 21  Depicts the response curves in �2bj (j = 1, 2, 3) when c2 = 0.001, c3 = 0.002,�1 = 1.24, �2 = 2.556, �3 = 1.058,�1 = −0.1, and 
�3 = −0.49 at c1 = (0.009, 0.005, 0.001)
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have the same stability/instability zones at �2 ≤ 0.05 and 
0.05 < 𝜎2 , respectively. The drawn curves have different 
critical points according to the values of �2.

A careful analysis of the parts of Fig.  26 indi-
cates that the drawn curves are calculated when 
�3 = (1.183, 1.122, 1.058)  a t  �1 = 1.24,�2 = 2.556,

c1 = 0.001,  c2 = 0.005, c3 = 0.002,�1 = −0.1,  a n d 
�3 = −0.86 at �3 = (1.183, 1.122, 1.058) . Each part has 
three distinct critical points in addition to three sta-
ble and unstable ranges. At �3 = 1.183, �3 = 1.122, and 
�3 = 1.058 , the stability areas are found in the domains 
�2 ≤ 0.09,�2 ≤ 0.08, and �2 ≤ 0.06 , respectively. Conse-
quently, at the mentioned values of �3 , the instability areas 
can be discovered at 0.09 < 𝜎2, 0.08 < 𝜎2, and 0.06 < 𝜎2.

Nonlinear Interpretations

We take into consideration the below transformations to 
explicate the characteristics of the nonlinear amplitudes of 
structure (25) and to examine their stabilities [41]

where

Inserting (32) into (25), and then distinguishing the real 
portions and imaginary ones yields

(32)

B1 =
1

2
[U1(𝜏2) + iV1(𝜏2)] e

i�̃�1𝜏2 ,

B2 =
1

2
[U2(𝜏2) + iV2(𝜏2)] e

i�̃�2𝜏2 ,

B3 =
1

2
[U3(𝜏2) + iV3(𝜏2)] e

i(�̃�2−�̃�3)𝜏2 ,

Uj = �2 uj, Vj = �2 vj; (j = 1, 2, 3).

Fig. 22  Displays the curves of frequency response in the planes �2bj at c1 = 0.001,c3 = 0.002, �1 = 1.24, �2 = 2.556, �3 = 1.058,�1 = −0.1, and 
�3 = −0.49 when c2 = (0.008, 0.006, 0.004)
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Fig. 23  Shows the amplitudes bj and via �2 when c1 = 0.001,c2 = 0.005, �1 = 1.24, �2 = 2.556,�3 = 1.058,�1 = −0.1, and �3 = −0.49 at 
c3 = (0.007, 0.005, 0.003)
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Figures 27, 28, 29, 30, 31, 32 display the temporal his-
tories of the newly adjusted phases uj (j = 1, 2, 3) and vj 
as well as the projections of the trajectories ujvj . Curves 
of Figs. 27, 28, and 29 are graphed, respectively, when 
c1 = (0.009, 0.005, 0.001),  c2 = (0.008, 0.006, 0.004), 
and c3 = (0.007, 0.005, 0.003) at �1 = 1.24,�2 = 2.556,

�3 = 1.058,�1 = −0.1, and �2 = 0.01 . These indicated 
curves of these figures show that the functions (u1(�), v1(�)) 
(u2(�), v2(�)) and (u3(�), v3(�)) have decay behaviors, as 
found in parts (a), (b), (d), and (e) of these figures. Moreo-
ver, the variations of c1, c2, and c3 values, have excellent 
impact on the waves manner, as seen in Figs. 27a, b, 28d, 
e, and 29g, h, respectively. It is noted in these parts that 
the amplitudes of the plotted waves decrease, and that the 
decay of the waves is noted to be faster with the increase 
of damping terms c1, c2, and c3 . The paths projections in 

planes u1v1, u2v2, and u3v3 have the forms of directed spiral 
curves towards one point, as seen in portions (c), (f), and (i) 
of Figs. 27, 28, 29. This means that the dynamical behavior 
of the system (33) is stable and free of chaos.

Parts of Figs. 30, 31, 32 have demonstrated the influence 
of various values of the frequencies �1,�2, and �3 on the 
behaviors of the newly adjusted phases uj, vj, and trajectory 
projections in the planes ujvj . These parts are drawn when 
c1 = 0.001,c2 = 0.005,c3 = 0.002,�1 = −0.1, and �2 = 0.01 
at �1 = (1.24, 1.176, 1.109),�2 = (2.556, 2.213, 1.979), and 
�3 = (1.183, 1.122, 1.058) are taken into account. Portions 
(a), (d), (g) and (b), (e), (h) show time history curves for the 
new parameters uj (j = 1, 2, 3) and vj , respectively. On the 
other hand, portions (c), (f), and (i) have the plane curves 
ujvj . It must be noted that the time histories of the functions 

Fig. 24  Displays the curves in �2bj when �2 = 2.556,�3 = 1.058,c1 = 0.001, c2 = 0.005,c3 = 0.002,�1 = −0.1, and �3 = −0.49 at 
�1 = (1.24, 1.176, 1.109)
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u1 and v1 besides the corresponding phase plane plots u1v1 
don't change with the variation of �j , as seen in (a), (b), and 
(c) of Figs. 30, 31, 32. On the other hand, the behaviors of 
u2(�), v2(�), and u2v2 have been influenced with the change 
of �j , in which decay behaviors have been noted. Moreover, 
the curves of u3(�), v3(�), and u3v3 are influenced, to some 
extent, by the change of �j values. The cause stems from the 
mathematical form of the structure of Eqs. (33).

Conclusions

A 3DOF auto-parametric vibrating dynamical system has 
been examined as a new prototype. The second kind of 
Lagrange equations is applied to derive the motion-con-
trolling system, which is then solved analytically using the 
multiple scales technique. Considering the emerging reso-
nance cases, the solvability requirements of the solutions 
are obtained. These solutions have been matched with the 
numerical solutions of the original system that have been 
obtained using the fourth-order Runge–Kutta approach, to 

reveal their good agreement. Three cases have been investi-
gated concurrently, two of them are the fundamental external 
resonances and the third one is selected from the internal 
resonances. The stability/instability areas are investigated 
using the Routh–Hurwitz conditions, and they are analyzed 
considering the solutions in the steady-state case. The tem-
porary histories of the accomplished solutions, the reso-
nance curves regarding the modified amplitudes and phases, 
and the stability zones are graphically displayed and inter-
preted for different amounts of the analyzed system factors. 
The nonlinear stability analysis of the modulation equations 
is investigated and examined in terms of the new adjusted 
phases. The phase plane projections of these phases have 
spiral forms and directed towards one point, which confirms 
that the behavior of the investigated system is free of chaos. 
Although the used technique is conventional, the obtained 
outcomes for the dynamical system are considered novel. 
The attained results will be of interest to a broad variety of 
experts in the fields of space engineering and mechanics, as 
well as those concerned with attenuating vibration caused 
by swaying structures and rotor dynamics.

Fig. 25  Explores the variations of the functions bj versus �2 at �2 = (2.556, 2.213, 1.979) when �1 = 1.24,�3 = 1.058, c1 = 0.001, c2 = 0.005,

c3 = 0.002,�1 = −0.1, and �3 = −0.49
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Appendix (1)
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Appendix (2)
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Fig. 26  Describes bj versus �2 when �1 = 1.24,�2 = 2.556,c1 = 0.001, c2 = 0.005,c3 = 0.002,�1 = −0.1, and �3 = −0.86 at 
�3 = (1.183, 1.122, 1.058)
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Fig. 27  Displays the functions uj(�) (j = 1, 2, 3) , vj(�) , and the tracks of phase planes ujvj when c1 = (0.009, 0.005, 0.001),

c2 = 0.001, c3 = 0.002, �1 = 1.24, �2 = 2.556, �3 = 1.058,�1 = −0.1, and �2 = 0.01
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Fig. 28  Portrays the time temporal histories of uj , vj and the phase planes projections ujvj when c2 = (0.008, 0.006, 0.004),c1 = 0.001,c3 = 0.002, , 
�1 = 1.24, �2 = 2.556,�3 = 1.058,�1 = −0.1, and �2 = 0.01
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Fig. 29  Shows the behaviors of uj(�) , vj(�) , and the planes ujvj when c3 = (0.007, 0.005, 0.003),c1 = 0.001, c2 = 0.005,�1 = 1.24, �2 = 2.556,

�3 = 1.058,�1 = −0.1, and �2 = 0.01
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Fig. 30  Illustrates the influence of �1 = (1.24, 1.176, 1.109), on uj(�),vj, and ujvj when �2 = 2.556,�3 = 1.058,c1 = 0.001, c2 = 0.005, 
c3 = 0.002,�1 = −0.1, and �2 = 0.01
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Fig. 31  Presents the influence of �2 = (2.556, 2.213, 1.979) on uj(�),vj, and ujvj when �1 = 1.24,�3 = 1.058,c1 = 0.001, c2 = 0.005,c3 = 0.002,

�1 = −0.1, and �2 = 0.01
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