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Abstract
Purpose  Electrical motors are among the most widely used equipment components across many industries. Therefore, 
monitoring electrical motors for the early detection of faults is essential for uninterrupted production and can save time 
and money for manufacturers. Bearing faults are one of the most frequently encountered fault types in induction motors. 
Although standard offline datasets and algorithm designs have been studied extensively in recent years, they lack a full-scale 
IoT-based monitoring system design for data collection and deployment in the field. In this paper, outer race, inner race, 
and ball faults of the bearings of a three-phase (1.5 kW, 6 poles) induction motor are studied using vibration signals and an 
IoT-based monitoring system.
Methods  The vibration signals are collected on a new testbed where the Edge processing units can process the signals and 
also transfer the sensor data over an IoT-based system. Raw data signals, such as vibration, current, and torque, are preproc-
essed at the Edge. Features are transferred to a database with Message Queuing Telemetry Transport (MQTT) for long-term 
storage. Only the vibration signals are analyzed for the detection of bearing faults. The monitoring of vibration signals of 
the motor can be implemented online or offline locally at the Edge with the implemented IoT system. A Convolution Neural 
Network (CNN)-based deep learning algorithm is utilized to establish a data-driven condition monitoring AI model. The 
vibration signals are converted into spectrograms using Short Time Fourier Transform (STFT), and then the CNN model 
is trained.
Results  The proposed IoT-based monitoring system solution, combined with the AI method, can successfully process the 
sensor signals from the motor. The model can distinguish a healthy bearing from three types of faulty bearings with an aver-
age accuracy rate of 95%.
Conclusion  In this study, unlike the majority of the studies in the literature focusing on algorithm development with standard 
datasets for motor faults, a new induction motor condition monitoring system based on IoT technologies is designed and 
implemented. The system is scalable and can be deployed to monitor a fleet of motor equipment in manufacturing. Based 
on the needs, the AI model can run both at the Edge and at the server side with data analytics tools to monitor the condition 
of induction motor faults.
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Introduction

Internet of Things (IoT) technology has been used in many 
applications, including production lines, industrial applica-
tions, energy, telecommunication applications, the automo-
tive industry, and condition monitoring and fault diagno-
sis of electrical machines. Manufacturing industries are 

leveraging this technology to improve the accuracy and qual-
ity of the facility's existing monitoring and control system 
[6]. IoT, a networked system of physical objects, is used to 
write data to a database over the Internet or local networks. 
IoT provides remote sensing and control of things over an 
existing network infrastructure, creating opportunities to 
integrate the physical world into computer-based systems 
directly. Monitoring, detecting, and diagnosing faults of 
induction motors are essential for all applications, espe-
cially in the early state. Early detection, diagnostics, and 
the sign of motor faults allow appropriately timed servicing 
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to avoid expensive motor failures, avoid costly economic 
losses related to process interruption, prevent unexpected 
interruption, and enable maximum production [9].

IoT devices communicate with each other using protocols. 
MQTT is the most widely used protocol for IoT applica-
tions [17]. It is used as an interface layer between users and 
devices. It is an intermediate layer standard for asynchronous 
message transmission based on TCP/IP. It is designed as a 
light broadcast/subscription messaging protocol, ideal for 
connecting remote devices with less code and minimum net-
work bandwidth [4]. The MQTT protocol system has lower 
power consumption and a higher sending rate. MQTT is a 
widely preferred and used protocol due to its higher quality 
of service [17]. Since the client in an MQTT protocol does 
not require a request update which saves bandwidth, the Pub-
lish/Subscribe is more suitable and preferred for IoT applica-
tions. An application of the monitoring system, which writes 
the data to a database with MQTT protocol, is given in [13]. 
The MQTT uses Publish/Subscribe or Request/Response 
architecture.

Electrical machines are used in many applications, includ-
ing developing and automating modern industrial applica-
tions. Induction motors are among the most used electrical 
machines. Their faults can lead to undesirable consequences 
like production line fault, process interruption, high main-
tenance costs, and safety hazards. Therefore, maintaining 
induction motors' good physical condition is essential for 
most industries. In most practices, induction motors are 
used in severe conditions and are subject to several faults 
because of thermal, mechanical, and other ambient stress 
conditions [10]. The induction motor faults can be catego-
rized as mechanical faults and electrical faults. Mechanical 
faults contain misalignment, air gap eccentricity, and bear-
ing faults, while electrical faults of induction motors involve 
rotor and stator faults.

It has been reported in [10] that 41% of the total faults 
of induction motors are due to bearing faults, 36% to stator 
faults, 9% to rotor faults, and 14% to other motor faults. In 
[19], the bearing faults are responsible for approximately 
40% and 50% of the total faults of induction motors. In [25], 
the bearing faults accounted for 30% and 40% of motor 
faults. Bearings are the most significant parts of induction 
motors. An unexpected fault in a bearing may cause the 
motor's corruption, damage, and consequently economic 
losses [22]. Bearing faults are accounted for 40% of break-
downs in large rotating machinery systems and 90% in small 
rotating machinery systems [9]. Bearing faults are among 
the most common reasons for electrical machine faults [20]. 
Therefore, this study focuses on bearing faults.

Industrial maintenance practice has been changed paral-
lel to the improvement of technology. The earliest form of 
maintenance is breakdown maintenance, where no actions 
are taken for maintenance until the equipment breaks down 

and, as a result, needs a repair or replacement. Then preven-
tive maintenance was used, which requires maintenance for a 
period notwithstanding the equipment's physical condition. 
In recent years, predictive maintenance programs have been 
used [5]. Predictive maintenance is a condition-based pre-
ventive maintenance program comprising physical condition 
rating, detection, and lifetime prognostics. Therefore, this 
study contributes to predictive maintenance by assessing the 
health of bearings of induction motors. The implemented 
IoT data pipeline and long-term historical data storage can 
also be expanded to prognostic analytics and models.

The detection, diagnostics, and prognostics studies may 
detect and isolate faults, predict the future health condi-
tion, estimate the remaining useful life (RUL) of induction 
motors, and prevent performance deterioration, malfunction, 
and sudden failures [23].

In this study, an implemented IoT-based system is used to 
monitor the condition of the bearings of a three-phase induc-
tion motor. Bearing faults can be monitored and detected 
remotely using IoT technologies. The monitoring system 
enables sensor data processing and detecting bearing faults 
both locally at the Edge and remotely. This study selected 
vibration signals to process and detect bearing faults. The 
data pipeline can help transfer raw data and preprocessed 
data at the Edge. The proposed IoT-based system can be used 
to monitor multiple induction motors in real time by record-
ing, processing, and transferring vibration signals.

The single-row bearings with two rings, specifically the 
inner and outer rings, are utilized in induction motors. A set 
of balls rotate between the inner and outer ring, as illustrated 
in Fig. 1. The bearing faults may be caused by attrition, tear, 
aging, overloads, imbalances, and overheating [11]. Bearing 
faults appear in the inner race, outer race, and ball. Each 
bearing fault has its characteristic frequency in the vibration 
and stator current signals of the induction motor depend-
ing on the construction and mechanical dimensions of the 
bearing.

The fault diagnosis methods of induction motor faults 
can be categorized as model-based, signature-extraction-
based, and knowledge-based. The model-based methods use 

Fig. 1   Components of a single-row bearing
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a mathematical model of induction motors to detect faults. 
In the signature-extraction-based approaches, specific fault 
signatures are extracted from the monitored signals, such 
as motor drive current. The knowledge-based methods use 
signal processing and machine learning (ML) techniques to 
build a data-driven model instead of a specific mathematical 
model of an induction motor [2, 3].

Signal processing methods can be implemented in the fre-
quency domain, time domain, and time–frequency domain 
[8]. The Wavelet Transformation (WT), Empirical Mode 
Decomposition (EMD), Fast Fourier Transform (FFT) [21], 
Wavelet Packet Transform (WPT), and Discrete Wavelet 
Transform [15] are the widely used methods for the process-
ing of vibration signals both in time domain and frequency.

In the time domain analysis, statistical features like peak-
to-peak value, root-mean-square, skewness, crest factor, 
mean, and kurtosis are used to determine the condition of 
bearings [7]. In the frequency domain analysis, monitor-
ing signals are transferred from the time domain to the fre-
quency domain using FFT and discrete Fourier transform 
(DFT). The characteristic frequencies are easily detected in 
the frequency domain. The frequency domain analysis is 
restricted to non-stationary signals and can be more effective 
in analyzing stationary signals. Since the vibration signals 
(also used in this study) are non-stationary, time–frequency 
analysis methods are preferably used. The commonly used 
transformation methods for time–frequency analysis include 
Wavelet Transform and Short Time Fourier Transform 
(STFT) [8]. If the peak amplitudes of the vibrations signal 
are not high, FFT-based methods are ineffective. Selection 
of the proper mother wavelet in a Wavelet Transform, the 
selection of separation level, and frequency band require 
professional knowledge.

Another challenge in fault detection is determining appro-
priate rule-based alarm conditions from features after time 
and frequency domain analysis. This is since the equip-
ment baseline drifts over time. ML-based methods are an 
alternative solution to overcome this limitation by building 
a more sophisticated data-driven model that can generate 
the rules. ML-based classification algorithms are used in a 
wide range of studies, including determining faults of elec-
trical machines with the development of high-performance/
speed computers [2, 3]. ML algorithms can be classified into 
supervised ML and unsupervised ML. Classification is one 
of the supervised ML tasks. An ML model, once trained, 
works in three stages [14]: It takes the data, learns patterns 
in the data, and predicts the patterns for the unseen data. 
Artificial Neural Networks (ANN) [1], Decision Tree (DT), 
k-Nearest Neighbors (k-NN), and Support Vector Machines 
(SVM) are among the frequently encountered supervised 
ML algorithm examples [24]. A deep learning algorithm 
is an ML algorithm that uses Artificial Neural Networks 
with one or more hidden layers. In most ML methods, data 

preprocessing is required, and features are extracted from 
the raw data and given as input to the algorithm. However, 
deep learning algorithms extract the features themselves. 
Generally having a higher model capacity, deep learning 
methods can model complex operating conditions and give 
accurate predictions [18].

A Convolutional Neural Network (CNN) is a deep learn-
ing algorithm that can extract various features from an 
input image by convolution operations and create a power-
ful image recognition model. Although commonly used for 
image pattern recognition tasks, CNNs and their variations 
gain attention in time series analysis and parallel to diagnose 
equipment faults [16]. They can learn hierarchical represen-
tations from the input images via multiple hidden layers [9, 
18, 20]. CNN can successfully obtain spatial attributes in 
an image due to the application of the corresponding filters. 
The network can be trained to understand the complex pat-
tern perfectly. This can be successfully adapted for recogniz-
ing time–frequency patterns from a spectrogram obtained by 
STFT operations.

The main contributions of this study can be listed as 
follows:

•	 An end-to-end motor monitoring system was designed by 
LabVIEW at the Edge and IoT technologies, including 
a new middleware platform for this use case for the first 
time.

•	 Using deep learning algorithms, standalone processing 
was applied by importing LabVIEW modules on a PC 
and on the CompactRio (Edge).

•	 A robust data pipeline was established to record and pro-
cess vibration signals of an induction motor for condi-
tion monitoring by extracting characteristic features for 
diagnosing bearing faults in the short term and long term 
by analyzing the recorded data historically later.

The remainder of this paper is organized as follows. 
The proposed method and experimental setup are given in 
Sect. 2. The experimental results are given in Sect. 3, and 
finally, conclusions are presented in Sect. 4.

The Proposed Method

Each bearing fault is artificially created by drilling holes 
with a diameter of 2.5 mm in the outer race, inner race, and 
bearing ball using the electroplating method. Every bearing 
fault is studied independently. Figure 2 shows the imple-
mented bearing faults.

The induction motor was tested under four cases: healthy 
bearing, outer-race faulty bearing, inner-race faulty bearing, 
and faulty ball bearing. The vibration signals of the induc-
tion motor with healthy and faulty bearings were recorded 
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with a sampling frequency of 6400 Hz and a duration of 
40 s. The recorded vibration signals were converted into 
spectrograms using Short Time Fourier Transform (STFT) 
and then used to train the proposed CNN model. The trained 
model is used to detect the faulty bearings in real time.

Experimental Setup

A schematic diagram representing the testbed design is 
given in Fig. 3. The experimental setup consists of a 1.5 kW 
6-poles induction motor loaded with an electromagnetic 
powder brake (Merobel Frat 650). The brake is controlled 
with current signals through a brake control circuit and can 
generate linear torque values up to 65Nm. A snail fan blower 
housing is designed and placed around the brake to remove 
excess heat generated by the brake.

A National Instrument (NI) data acquisition system 
(CompactRio with 8-Slot, 1.33 GHz CPU, 1 GB Ram, and 
4 GB Hard disk) is used for data acquisition in the test-
bed. A three-axis accelerometer sensor (PCB triaxial Model 
356A15) measures the vibration through a NI 9230 mod-
ule. The induction motor's torque information is acquired 
through a torque sensor (ETH DRBK 50) and transferred 
into the DAQ system through a NI 9209 module.

Figure 4 shows the realized testbed located in a lab envi-
ronment. The entire testbed sits on a metal table with sup-
porting antivibration shock observers underneath to elimi-
nate the noise caused by the other parts. The testbed design 
is highly configurable by the holes created on the metal sheet 
to adapt to different motor test case scenarios.

The LabVIEW software tool [12] is used for signal 
processing. A LabVIEW interface with three modules is 
designed for recording and processing vibrations signals. 
The block diagram of the interface is given in Fig. 5.

In module 1, vibration data are read and written to a CSV 
file on CompactRio as a buffer for temporary storage. Mod-
ule 1 also includes MQTT client code blocks enabling the 
edge unit, if configured to send only the raw data in these 
files through the data pipeline. Module 2 consists of code 
blocks mainly configured for edge processing. The CSV 
data files are processed to extract various statistical fea-
tures, which can be posted through the data pipeline using 
the MQTT client program. Especially for signals that are 
necessary to collect at high sampling rates, it is more desired 
to send preprocessed signals over the network using the data 
pipeline. Module 3 consists of our DL-based fault detection 
models at the Edge.

The end-to-end data pipeline and the middleware sys-
tem architecture implemented in this study are presented 
in Fig. 6. The middleware software system acts as a data 
distributor and forwards the data to other subscribed ser-
vices. The middleware software stack mainly utilizes an 
open-source framework called FIWARE, and its components 
are reprogrammed according to our specific needs in this 
study. The Orion Context Broker acts as a data distributor. 
It holds the latest state of the virtual entities subscribed to 
it and sends updates to other services, such as databases 
with subscriptions. Many different entities can simultane-
ously subscribe to it and send updates, like our motor testbed 
entity. Orion Context Broker controls subscribed entities' 
context records' complete lifecycle and allows queries and 
updates for current subscriptions. The context broker uti-
lizes a NoSQL database called MongoDB to hold a record 
of context information. The second principal component of 
the data pipeline is called Draco. It is an Apache NiFi-based 

Fig. 2   Bearing fault classes including a outer race, b inner race, and c 
ball defects (left to right)

Fig. 3   Schematic diagram testbed Fig. 4   Testbed
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service that helps to transform data into data streams with-
out packet loss. The data format forwarded from the context 
broker should be transformed into a tabular structure to be 
persisted into a third-party relational SQL storage called 
PostgreSQL. It converts context broker-specific message 
format to required types for a PostgreSQL columnar format. 
In the case of a high throughput data stream burst, Draco is 
configured to queue messages and process them gradually 
so that the data loss is prevented.

The accumulated data in the queue in Draco are trans-
ferred to the respective fields in SQL tables created in the 
database. At the same time, the pipeline's data transfer can 
be instantly monitored by any subscribed computer into 
the edge unit via the designed graphical user interfaces and 
the charts created for visualizing sensor data processing, as 
illustrated in the following sections.

To perform data analytics and advanced visualization of 
persisted data in PostgreSQL, an open-source data analytics 
tool called Grafana is employed. Grafana is a multi-plat-
form open-source interactive visualization and alert-enabled 
web application that can be customized to visualize data. 
Figure 7 demonstrates an example data segment of motor 
vibration data's statistical features extracted at the edge unit 

and transferred into the database utilizing the data pipeline. 
These features are x-vibrational axis statistical descriptors 
over time, including min, max, skewness, and kurtosis.

It is possible to set custom alarm threshold values based 
on the monitored data in the data analytics tool. For exam-
ple, a specific threshold value for the max of x-vibration 
signals is set in the Grafana. If the monitored value exceeds 
a predetermined threshold, warning messages are sent via 
various channels, such as emails or mobile text messages. 
The platform is designed to interact with the electrical motor 
in two ways such that an automated halt message can be 
pushed down to an internet-based control relay circuitry to 
trigger a halt action for the motor and cut the power. Uti-
lizing this proposed middleware system, it is possible to 
scale the pipeline to many induction motor fleets to monitor 
centrally for the health assessment of bearings. If desired, 
the induction motor with faulty bearings can be stopped 
remotely to prevent undesirable consequences. The online 
system can be programmed by placing business rules such 
that if an amplitude anomaly is detected, the edge AI model 
can be triggered for inference, and fault diagnosis can be 
performed to diagnose the anomaly from a set of predefined 
motor faults.

Fig. 5   LabVIEW interface 
modules

Fig. 6   IoT Middleware system
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Module 3 of our edge software design includes addi-
tional data preprocessing modules and the modules that can 
run our trained DL-based fault detection and classification 
models. In module 3, the raw vibration signal (offline or 
real time) is read and processed through a wavelet denoise 
filter. Then the STFT of the filtered signal is implemented to 
obtain spectrograms. The resulting spectrogram file is input 
for real-time inference of the trained CNN deep learning 
model at the Edge. The detection and diagnosis decisions of 
the bearing faults are performed in this module.

Data Preprocessing

The vibration signals at the edge unit are recorded with a 
sampling frequency of 6400 Hz and a length of 40 s into 

CSV files. After the preprocessing steps detailed in this sec-
tion are finished, the data are transferred out of the edge 
unit for the offline training of the DL algorithm. The experi-
mental data collected during this phase include four classes: 
healthy, inner race fault, outer race fault, and ball fault. The 
data with a full motor load (100%) for each class are utilized 
in the DL algorithm training.

Wavelet denoising is a popular tool for eliminating noise 
from signals. This step helps filter the possible noise artifacts 
in the vibration and enhances data quality for the upcoming 
steps. The fundamental purpose is to regulate the wavelet 
coefficients withinside the new basis, and in this way, the 
noise may be eliminated from the data. The details of Wave-
let denoise filtering parameters and the GUI designed to con-
figure this preprocessing step are shown in Fig. 8.

Fig. 7   An example dashboard created using the data analytics tool Grafana

Fig. 8   Wavelet denoise
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After the raw data are passed through the denoising 
step, STFT transformation is applied at the Edge. As 
shown in a representative signal in Fig. 9, the fundamental 
concept of STFT is to use a fixed-size sliding window into 
a time-varying signal in the time domain and acquire vary-
ing frequency spectral components within this window. As 
a result of the transformation, a spectrogram image can be 
used in pattern recognition tasks with a DL algorithm such 
as CNN. A rectangular shape of a window having a size of 
128 (WL) samples is utilized to extract the STFT images. 
Figure 9 illustrates the STFT window taken over a single 
x-axis vibration signal. The time step between each sliding 
window is taken as 40 samples.

Classification Methods

A training dataset is built after the raw signal is denoised, 
and spectrogram images are obtained through STFT opera-
tions. Note that only x-vibrational axis data are utilized to 
classify fault classes in this study for fault classification 
tasks. The final dataset consists of 6400 samples from each 
fault class. Example spectrograms belonging to four classes 
are presented in Fig. 10.

The CNN model is trained with 70% of the training 
dataset, and the remaining 30% is utilized for validation. 
As illustrated in Fig. 11, specific CNN network parameters 
include three layers of varying combinations of convolution 
and max pooling operations with kernel sizes, as indicated 
in the figure. A flattening operation is applied at the end of 
the convolution layer, and the resulting vector is transferred 
through a dense layer. Since there are four classes, the output 
layer includes a dense layer of four neurons with a softmax 
activation at the end.

During the network training, Categorical_crossentropy 
is used as the loss function. Adam algorithm is used as the 
optimization algorithm, and accuracy is selected as a specific 
metric. The hyperparameters used for the training model 
are given in Table 1. The batch_size of 32 which provides 
the highest training and validation accuracies is used in the 
model. During the training, a 0.25 dropout rate is applied to 
avoid the overfitting of the model.

Experimental Results

This section presents the performance results of training 
and testing the DL model. The initial training and testing 
phases are first experimented on a PC connected to the edge 
unit and by processing the offline collected data on different 
days and sessions. The confusion matrixes of training and 

Fig. 9   A rectangular STFT window sliding over a vibrational data

Healthy Outer Inner Ball

Fig. 10   Input samples of the four cases

Fig. 11   Deep learning model
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validation are given in Fig. 12. The performance of training 
and validation is shown in Table 2.

The training and validation accuracy of the model is 
given in Fig. 13. As observed in Fig. 13, the gap between 
the model's training and validation accuracy rate closes 

at around 95%. Therefore the model training is stopped 
after this point to avoid overfitting. Training operation 
is repeated ten times with a randomly selected batch of 
the training set each time, and the model with the highest 
accuracy rate was saved and used in the testing process. 
The final model with the highest offline testing perfor-
mance is transferred to run on the edge unit for real-time 
inference.

Offline testing of the model is performed on randomly 
collected data sets over different days with independent 
experiments to investigate the robustness of diagnostic 
accuracy and reproducibility.

Table 3 summarizes the testing accuracies where the 
best model out of the training phase is transferred to run 
multiple times for each test belonging to a single class 
label. Each induvial test is repeated ten times, and the 
average and standard deviations of accuracies are pre-
sented in the corresponding row.

Table 1   Hyperparameters for training model

Hyperparameters Value Best fit

Optimization function Adam –
Learning rate 0.1–0.001 0.001
Loss function categorical_crossentropy –
Activation function Relu(conv layer), 

softmax(output layer)
–

Dropout rate 0–0.25 0.25
Number of epochs 1–20 20
Batch_size 8, 32, 128 32

Fig. 12   Confusion matrix a training, b validation (0: healthy bearing, 1:outer race bearing fault, 2:inner race bearing fault, 3:ball bearing fault)

Table 2   Training and validation 
performance

Training Validation

Precision Recall f1 Support Precision Recall f1 Support

0 1.00 1.00 1.00 13,375 1.00 0.99 1.00 5827
1 0.96 0.94 0.95 31,391 0.94 0.92 0.93 13,411
2 0.98 0.97 0.98 31,442 0.97 0.96 0.97 13,360
3 0.93 0.96 0.94 31,317 0.92 0.94 0.93 13,485
Accuracy 0.96 107,525 0.95 46,083
Macro avg 0.97 0.97 0.97 107,525 0.96 0.96 0.96 46,083
Weighted avg 0.96 0.96 0.96 107,525 0.95 0.95 0.95 46,083
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Figure 14 presents a confusion matrix for test data where 
the model is applied to predict the four classes simultane-
ously. A total of 6400 test data belonging to four classes 
were applied to the model. 1599 of 1625 data belonging 
to healthy bearing were determined correctly. Three were 
predicted as outer race fault, ten as inner race fault, and 13 
as ball fault. Of the 1548 data belonging to the outer race 
faulty bearing, 1508 were determined correctly. Four were 
predicted as healthy, one as inner race fault, and 35 as ball 
fault. 1504 out of 1584 data of bearing with inner race faulty 
bearing have been determined correctly. Five were predicted 
as healthy, 19 as outer race fault, and 56 as ball fault. 1479 of 
1643 data belonging to faulty ball bearings were determined 
correctly. Forty-three of them were found to be healthy, 104 
of them as outer race fault, and 17 of them as inner race 
fault.

The results show that the model can have significantly 
high true positive rates, indicating a satisfactory model per-
formance. As the last step, the final model is transferred to 
run on the edge device and observed to show successful 
behavior in detecting bearing faults.

Discussion

During experimental studies, each test is repeated ten 
times to ensure reproducibility of the model classifica-
tion performance. The tests were carried out during motor 
operations under four different loading conditions. These 
conditions are 25%, 50%, 75%, and 100%. One-hundred 
percent loading condition corresponds to where the 
motor is operated under maximum load. Loading condi-
tions are repeated for each class type, including healthy, 
outer, inner, and faulty ball bearings. The varying loading 
conditions of the motor under the same bearing type are 
expected to cause slight deviations in the vibrational signal 
characteristics. Therefore, we consider that this might con-
tribute to the varying standard deviations given in Table 3.

The confusion matrix (belonging to four classes) with 
an accuracy rate of 95.16% is given in Fig. 14. 1479 of 
1643 data belonging to faulty ball bearings were deter-
mined correctly. One hundred four of them were predicted 
as outer race fault. This is an expected result. The faulty 
bearing ball rolling inside the bearing physically con-
tacts both the inner and outer races, simultaneously. This 
might cause the two classes to become slightly convoluted. 
Therefore the accuracy rate of the prediction of ball fault 
is observed to be comparatively lower.

Fig. 13   Training performance of the DL model

Table 3   Test data accuracy and standard deviations (STD)

Test no Class label Accuracy % (avg) f1 STD

1 Healthy (0) 87.21 0.87 1.7394
2 Healthy (0) 90.92 0.91 1.7606
3 Healthy (0) 90.29 0.90 0.2050
4 Healthy (0) 92.20 0.92 5.9043
5 Outer (1) 93.05 0.93 0.3959
6 Outer (1) 95.15 0.95 0.4737
7 Inner (2) 95.34 0.95 0.1555
8 Inner (2) 91.49 0.91 0.8768
9 Ball (3) 83.57 0.83 4.9426
10 Ball (3) 89.69 0.90 0.1979

Fig. 14   Test confusion matrix
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Conclusion

In this study, unlike the majority of the studies in the lit-
erature focusing on algorithm development with standard 
datasets for motor faults, a new induction motor condition 
monitoring system based on IoT technologies is designed 
and implemented. An end-to-end data pipeline is experi-
mentally tested on transferring multiple time-series sensor 
data from the Edge to database storage for long-term data 
persistence. The monitoring system is demonstrated on a use 
case to detect and classify induction motors' bearing faults 
by mainly focusing on processing vibration signals and uti-
lizing DL-based models that can be deployed and executed 
at the Edge units.

The Edge unit consists of an industrial-grade data acquisi-
tion NI CompactRIO hardware and is programmed to pro-
cess monitoring signals in LabVIEW. A new custom-made 
testbed design is introduced to generate artificially induced 
fault scenarios and develop DL-based fault detection and 
diagnosis models. It is experimentally verified that a CNN-
based DL algorithm can be successfully integrated into the 
presented monitoring system to detect and diagnose various 
bearing faults.

In future, this monitoring system can easily be scaled to 
monitor fleets of induction motors in the field. The vibration 
signals may be recorded for longer periods of time. Utilizing 
longer-term historical data collection, prognostics studies 
can be easily implemented to estimate the remaining useful 
times of each piece of equipment. With the help of the data 
analytics module's highly customizable features, dashboards 
can be realized to monitor subscribed equipment motor sta-
tus over the internet remotely. By creating rule-based trig-
gering mechanisms based on monitored signals and the 
Edge-AI model's inference results, warning notifications can 
be delivered to system stakeholders. If a critical level of fault 
is detected, a halt signal can be sent to the control relay cir-
cuitry to cut the malfunctioning motor's power immediately.
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