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Abstract
Purpose  Lamb wave is widely used in damage detection and structural health monitoring of plate-like structures. In the 
current stage, the propagation of non-axisymmetric circular crested Lamb has not been theoretically solved. Therefore, it 
is essential to find its exact solutions.
Methods  The displacement expressions and frequency equations are derived through three-dimensional elastic theory using 
Helmholtz conversion. Numerical simulations and experiments are conducted on plates for verification of theoretical results.
Results  Both axisymmetric and non-axisymmetric waves are obtained from the governing equation with free boundary 
conditions. Lamb wave travels along the radial direction and holds as a standing wave in circumferential and longitudinal 
directions. The displacement field is expressed with Bessel functions in the radial direction and trigonometric functions in 
circumferential and longitudinal directions. Two families of Lamb wave modes are generated, which are identified by radial 
wavenumber and circumferential order. The amplitudes of displacements decrease with the propagation distance increases, 
and the circumferential distributions of displacements are affected by the circumferential order. Results obtained from simu-
lation and experiment provide good verification for theoretical predictions.
Conclusions  The analytic solutions are presented in non-axisymmetric problems for circular crested Lamb wave in this paper, 
which provides a theoretical foundation for further investigation of Lamb wave propagation in plates.

Keywords  Circular crested Lamb wave · Non-axisymmetric Lamb wave · Frequency equation · Wavenumber

Introduction

Non-destructive and structural health monitoring systems 
(SHM) have been widely used in various fields for the abil-
ity to increase reliability and safety [1–7]. Lamb wave-
based non-destructive and SHM techniques attract increas-
ing attention and have been investigated in many aspects 
[8–13]. The analytical prediction is a simple and effective 
method for the propagation of Lamb wave. Characteristics 
like phase velocity, group velocity and dispersion can be 
obtained through the theoretical method [14], which play 

important roles in the application of different situations 
[15–18] of SHM.

The propagation of Lamb wave in plate-like structures 
has been discussed since the end of the nineteenth century, 
Rayleigh [19] and Lamb [20] first established the frequency 
equations, i.e., the well-known Rayleigh-Lamb equation. 
The plane Lamb wave is considered with the plane strain 
assumption in their derivation. As a consequence, the wave-
front is assumed as an infinite plane normal to the propaga-
tion direction. Such results of the Lamb wave have been 
extended to anisotropic and viscoelastic media in the fol-
lowing investigation [21–23].

The theory of wave propagation in media including arbi-
trary amounts of parallel plates with different materials and 
thicknesses was proposed by Thomson in 1950 [24]. The 
stress of each layer is derived from the coupling conditions 
at interfaces and free boundary at the top as well as the bot-
tom surface. The matrix method is adopted to produce fre-
quency equations in a form suitable for understanding and 
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computing. Following Thomson’s work, some researchers 
investigated the Lamb wave in multilayered media [25–27].

The above research work is based on the assumption of 
the plane wavefront, in which the size of excitation loading 
must be infinite. The reason is that the vibration normal to 
the propagation direction (but not through the plate thick-
ness) is neglected in the plane wavefront assumption [28]. 
For this reason, the plane wave model (with plane wave-
front assumption) is not exact in practice. In fact, almost 
all Lamb waves that existed in plates are circular crested 
waves [29, 30] whose wavefront travel as a circular from the 
origin. Goodman derived the circular crested Lamb wave in 
isotropic plates excited by axisymmetric loading [31]. The 
axisymmetric case is considered which implies with the 
same propagation distance, the vibration is constant along 
different propagation directions. Similarities and discrepan-
cies between circular crested Lamb wave and plane Lamb 
wave are revealed. The frequency equation and across thick-
ness displacements are proved to be the same as that of plane 
Lamb wave in the same plates [32, 33].

Besides the axisymmetric case of circular crested Lamb 
wave, the non-axisymmetric solutions are also of great sig-
nificance for most of the excitation in practice is not axisym-
metric. In this work, the complete solutions of both axisym-
metric and non-axisymmetric Lamb wave in isotropic plates 
are derived and presented with the cylindrical coordinate 
system. The solution of the circular crested Lamb wave 
based on the governing equation is demonstrated in detail. 
The Helmholtz conversion concerning displacements is 
adopted for clarity of presentation. The displacement expres-
sions and frequency equations are obtained by satisfying 
free boundary conditions at the surfaces of the plate, and 
characteristics of circular crested Lamb wave displacements 
are discussed. Simulations as well as experiments are con-
ducted on plates to verify the results predicted by theoretical 
formulations.

The Fundamental Problem

Consider an isotropic plate in Fig. 1. A cylindrical coordi-
nate system (r, θ, z) is adopted to describe the field of wave 
motion. The plate is infinite in the r–θ plane and has a finite 
thickness 2h in the longitudinal (z) direction. The upper and 
lower surfaces of the plate are located at z = h and z = − h, 
respectively.

The time-harmonic waves are considered by means of 
a time dependence factor e−iωt, which is omitted for brev-
ity in the following derivation, where ω = 2πf denotes the 
angular frequency, and f denotes the frequency. Based on 
the continuity conditions g(θ0) = g(θ0 + 2π) for an arbi-
trary field variable g (displacement, strain, stress et al.) 
with an arbitrary θ0, the angle dependence factor can be 

described as einθ (n = 0, 1, 2, …). The governing equations 
are expressed in an invariant form

where λ and μ are Lame’s constants, ρ is the mass density, 
u = (u, v, w)T is the displacement vector in (r, θ, z) direc-
tion. Equation (1) includes three partial differential equa-
tions with difficult to solve. A convenient method of dealing 
with this problem is through Helmholtz conversion [34]. The 
displacement vector is expressed in terms of a dilatational 
scalar potential φ and an equivoluminal vector potential ψ

with

In a cylindrical coordinate system, the displacement can 
be expressed as

where ψ = (ψ1, ψ2, ψ3)T. And the potentials φ and ψ satisfy 
the wave equations

where

The scalar potential φ describes a longitudinal wave with 
the velocity cl , while the vector potential ψ describes a shear 
wave with the velocity cs . Equation (5) can be rewritten as
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Fig. 1   An isotropic plate in a cylindrical coordinate system
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It should be noticed that the second and third equations 
in Eq. (7) include both the potentials ψ1 and ψ2. Therefore, 
we introduce the transformation of variables

The corresponding inverse transformation is

Equation (7) can be rewritten as

Equation (10) includes four partial differential equa-
tions, each of which only contains one unknown function. 
The part concerning variable r in Eq. (10) is the Bessel 
equation, the solution of which can be expressed by the 
Bessel function.

The Fundamental Solutions

The solution of Eq. (10) can be expressed as
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(11)
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,

where Jn is the Bessel function of order n satisfying

Substitution of Eq. (11) into Eq. (10) yields

The general solution of Eq. (13) can be written as

where Ai (i = 1, 2, …, 8) is arbitrary coefficients, and

The coefficients in Eq. (14) are dependently caused by Eq. 
(3) which can be expanded as

Considering the transformation in Eq. (9) and using the 
properties of Bessel functions, the relation between different 
coefficients can be obtained

Substitution of Eq. (9) into Eq. (11) gives

The displacement in Eq. (4) can be expressed as
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Taking advantage of the properties existing in Bessel 
functions

the displacement can be expressed as

where

Free Boundary Conditions

The expression of stresses can be derived from the stress 
and displacement relations
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where σ represents the stress. The stresses can be described 
as

where

and

It should be remarked that the stress components σrz and 
σθz include two parts described by different orders of Bessel 
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functions Jn+1(kr) and Jn−1(kr), which affect the analysis and 
processing of boundary conditions. To avoid this problem, the 
conversion

is introduced. The boundary conditions of free motion at the 
surfaces of the plate are

The corresponding and equivalent conditions of Eq. (28) 
are

Substitution of Eq. (29) into Eq. (27) yields

Equation (30) can be written as its equivalent expression
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for anti-symmetric (A) motion. The frequency equations of 
both S motion and A motion can be derived from Eqs. (32) 
and (33) with the requirement of a nontrivial solution for 
each set of equations as

for S motion, and

for A motion. Both Eqs. (34) and (35) include shear horizon-
tal (SH) wave and Lamb wave. For Lamb wave, frequency 
equations are expressed as
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equation (km) and n (n = 0, 1, 2, …) indicates the circumfer-
ential order.

The Displacement Expressions

The frequency equations have been divided into two parts: 
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The displacements of this case can be obtained by sub-
stituting Eq. (38) into displacement expression in Eq. (21)

For A motion, Eq. (33) can be written as

A fundamental solution of Eq. (40) is

The displacements of this case are derived by substituting 
the coefficients into displacement expressions

The displacement field of circular crested Lamb wave has 
been exactly solved by using a theoretical method. Lamb 
wave travels along the radial direction from the origin and 
holds as a standing wave in circumferential and longitudinal 
directions. Two cases of solution are obtained for one S case 
as well as one A case with respect to the z-axis.

(39)

u =
1

2

[
Jn+1(kr) − Jn−1(kr)

][
−2�k2 cos �h cos �z + �

(
k2 − �2

)
cos �h cos �z

]
ein�

v =
1

2i

[
Jn+1(kr) + Jn−1(kr)

][
−2�k2 cos �h cos �z + �

(
k2 − �2

)
cos �h cos �z

]
ein�

w = Jn(kr)
[
−2��k cos �h sin �z − k

(
k2 − �2

)
cos �h sin �z

]
ein� .

(40)

⎛
⎜⎜⎝

2�k cos �h k2 cos �h −�2 cos �h

−2�k cos �h �2 cos �h −k2 cos �h�
�2 − k2

�
sin �h �k sin �h �k sin �h

⎞
⎟⎟⎠

⎛
⎜⎜⎝

iA2

A3

A5

⎞
⎟⎟⎠
=

⎛
⎜⎜⎝

0

0

0

⎞
⎟⎟⎠
.

(41)

⎧⎪⎨⎪⎩

A2 = 2i�k sin �h

A3 =
�
�2 − k2

�
sin �h

A5 =
�
�2 − k2

�
sin �h

.

(42)

u =
1

2

[
Jn+1(kr) − Jn−1(kr)

][
−2�k2 sin �h sin �z + �

(
k2 − �2

)
sin �h sin �z

]
ein�

v =
1

2i

[
Jn+1(kr) + Jn−1(kr)

][
−2�k2 sin �h sin �z + �

(
k2 − �2

)
sin �h sin �z

]
ein�

w = Jn(kr)
[
2��k sin �h cos �z + k

(
k2 − �2

)
sin �h cos �z

]
ein� .

Results and Discussions

The displacements of Lamb wave can be described as

Lamb wave displacements depend on the radial distance, 
circumferential direction, and frequency et al. It is necessary 
to investigate the effect of these parameters on the Lamb 
wave displacement field.

Characteristics Lamb Wave Displacements in Radial 
Direction

The displacements of the Lamb wave are governed by the 

Bessel function in the radial direction. For a large value of r, 
the Bessel functions converge to the asymptotic expression

Therefore, the radial components of displacements in the 
far field satisfy

(43)u =

⎛
⎜⎜⎝

u

v

w

⎞
⎟⎟⎠
=

⎛
⎜⎜⎝

Ru�uZu
Rv�vZv
Rw�wZw

⎞
⎟⎟⎠
.

(44)Js(kr) →

√
2

�kr
cos

(
kr −

s

2
� −

1

4
�

)
(kr → ∞).

Fig. 2   Radial components of 
displacements: a n = 0 and b 
n = 2
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In the far field, only radial and longitudinal displacements 
exist in the Lamb wave. Caused by the sine and cosine func-
tions, the radial and longitudinal displacements have phase 
differences in the time domain. The asymptotic functions 
can be divided into two parts, one of which describes the 
attenuation in amplitude and the other one describes the fluc-
tuation in the time domain. The amplitudes of displacements 
decrease with the radial distance r following O(1∕

√
r ) power 

rule as they propagate away from the origin [36]. Caused by 
the trigonometric functions contained in asymptotic func-
tions, the displacement patterns become periodic at large 
radial distances.

(45)

⎧⎪⎪⎨⎪⎪⎩

R(m,n)
u

(r) =
1

2

�
Jn+1

�
kmr

�
− Jn−1

�
kmr

��
→

�
2

�kmr
sin

�
kmr −

n

2
� −

1

4
�

�

R(m,n)
v

(r) =
1

2

�
Jn+1

�
kmr

�
+ Jn−1

�
kmr

��
→ 0

R(m,n)
w

(r) = Jn
�
kmr

�
→

�
2

�kmr
cos

�
kmr −

n

2
� −

1

4
�

� (kmr → ∞).

Figure 2 presents the radial components of Lamb wave 
displacements at various propagation distances. The axisym-
metric case n = 0 and a non-axisymmetric case n = 2 are 
selected as examples, and λ′ is the wavelength. As predicted, 
circumferential displacement vanishes for case n = 0. For 
case n = 2, circumferential displacement exists in the near 
field and decreases rapidly with the propagation distance 
increases, which can be neglected after several wavelengths 
in comparison with the other two displacement components.

Figure 3 presents the radial components of displacement 
and asymptotic amplitudes. The cases n = 0–3 are taken into 
consideration. And the asymptotic amplitude is described as

where k is the wave number. In the far field, as expected, 
asymptotic amplitudes can accurately describe the amplitude 
decrease. Little discrepancy between the displacement com-
ponents and the asymptotic amplitudes appears in the near 
field for the reason that the asymptotic amplitudes of cor-
responding Bessel functions are precise only in the far field.

Characteristics of Lamb Wave Displacements 
in the Circumferential Direction

Lamb wave field versus circumferential component θ is 
also concerned for it affects the amplitude distribution in 
the circumferential direction. Ignoring the effect of the 
initial phase, the circumferential components of displace-
ment can be expressed as

(46)A(kr) =

√
2

�kr
,

(47)
�(m,n)

u
(�) = �(m,n)

w
(�) = Re

(
ein�

)
= cos (n�) = �1

�(m,n)
v

(�) = Re
(
iein�

)
= − sin (n�) = �2.

Fig. 3   Radial component of 
displacement and asymptotic 
amplitude: a the radial displace-
ment u and b the longitudinal 
displacement w 

Fig. 4   Amplitude distributions of displacements in circumferential 
direction: a the radial and longitudinal displacements and b the cir-
cumferential displacement



3300	 Journal of Vibration Engineering & Technologies (2023) 11:3293–3305

1 3

For the case n = 0, the amplitude distributions of dis-
placement are uniform in the circumferential direction, 
representing an axisymmetric wave. For the case, n ≠ 0, 
several maxima as well as minima exist in different cir-
cumferential directions. The maxima of radial and longitu-
dinal displacements occur at θ = Nπ/n (integer N = 0, 1, 2, 
…, 2n − 1), while the maxima of circumferential displace-
ment appear at θ = (N + 1/2)π/n, as presented in Fig. 4.

Characteristics of Lamb Wave Displacement Field

Figure  5 presents the amplitude distributions of the 
across-thickness displacements for Lamb wave at vari-
ous radial distances and circumferential angles by assum-
ing Zu = Zv = Zw = 1. As discussed above, only radial and 

longitudinal displacements exist in the Lamb wave for the 
case n = 0. For n = 1 and n = 2, circumferential displacements 
exist near the origin and almost vanish in the far field. There 
are two and four obvious maxima of amplitude for n = 1 and 
n = 2, respectively. The maxima of radial and longitudinal 
displacements appear at θ = 0°, 180° and θ = 0°, 90°, 180°, 
270°, while those of circumferential displacement appear at 
θ = 90°, 270° and θ = 45°, 135°, 225°, 315°. For each case, 
the amplitude of displacement decreases with the propaga-
tion distance. The results in Fig. 5 show that both propaga-
tion distance and propagation direction have effects on the 
amplitudes of the Lamb wave displacements.

The normalized displacements of A(0,2) mode 
(fh = 0.75 MHz-mm) at various propagation directions with 
different propagation distances are presented in Fig. 6. The 

Fig. 5   Displacement field of Lamb wave: a radial displacement u and b circumferential displacement v and c longitudinal displacement w 
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displacements in Fig. 6b, d are normalized by dividing the 
same coefficients with Fig. 6a, c, respectively. Circumferen-
tial displacement vanishes at the direction θ = 0° and exists 
alone at the direction θ = 45°. All of these displacements 
decrease with the increasing propagation distance, which 
is caused by the amplitude attenuation of Bessel functions. 
In the far field, the circumferential displacement can be 
neglected in comparison with the other two displacements.

Numerical and Experimental Verifications

To verify the theoretical prediction of frequency equations 
and displacement expressions, both the numerical simulation 
and experimental study are carried out here.

Numerical Verification

As presented in Fig. 7a, the simulation is conducted on a 
200 × 200 × 3 mm plate using ABAQUS. As an example, 
the aluminum plate is selected. The elasticity modulus, 
Poisson’s ratio and mass density of the aluminum plate 
are adopted as 70 GPa, 0.33 and 2700 kg/m3. Absorbing 

Fig. 6   Displacements of A(0,2) 
mode (fh = 0.75 MHz-mm): a 
θ = 0° and r = λ′ and b θ = 0° and 
r = 10λ′ and c θ = 45° and r = λ′ 
and d θ = 45° and r = 10λ′

Fig. 7   Finite element model of aluminum plate: a the whole model 
and b the actuator and c sensing points at circular and d sensing 
points through thickness

Fig. 8   Displacement field of circular crested Lamb wave
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regions are added at each edge of the plate [37, 38] to 
avoid the reflection waves from the edges of the plate. A 
non-axisymmetric loading is applied at the origin of the 
upper surface of the plate as an actuator to excite a circular 
crested Lamb wave, as presented in Fig. 7b. Two sets of 
sensing points are placed at two circular rings around the 
origin with the radius 10 mm and 80 mm, respectively. 
Each set has 36 sensing points with 10° increments shown 
in Fig. 7c. Moreover, a set of sensing points is placed 
80 mm away from the origin through the longitudinal 
direction to receive the across thickness signals presented 
in Fig. 7d. To obtain the signal at various propagation 
distances, a set of sensing points is placed at a straight line 
through the origin from 10 to 80 mm with a 1 mm incre-
ment. A 5-cycle sinusoid tone-burst signal enclosed in a 
Hanning window with the center frequency fc at 200 kHz is 
chosen as an excitation signal. The N-cycle sinusoid tone-
burst signal S(t) enclosed in the Hanning window with the 
center frequency fc can be described as

(48)S(t) =
1

2

[
1 − cos

(
2�fct

N

)]
sin(2�fct).

The mesh density and time step are sufficiently small to 
resolve the smallest wavelength and simultaneously cap-
ture the highest frequency response, respectively.

By applying non-axisymmetric surface loading, both 
axisymmetric and non-axisymmetric Lamb waves can 
be excited. At the excitation frequency, only S(0,n) and 
A(0,n) can propagate for a long distance. The displace-
ments obtained from sensing points are a linear combina-
tion of both axisymmetric and non-axisymmetric modes, 
denoted as S(0,*) and A(0,*), where

and cn and dn are coefficients.
The displacement field (longitudinal displacement w) 

of the circular crested Lamb wave is presented in Fig. 8. 
The Lamb wave displacement field extends as circumfer-
ences with the center at the actuator center. At any given 
moment, Lamb wave at different propagation directions 
travels for the same distance from the actuator, which is 
consistent with the theoretical formulations.

Circumferential distributions of the excited Lamb wave 
displacement are presented in Fig. 9. As predicted, the 
displacements of both S and A modes are non-axisym-
metric which indicates that non-axisymmetric Lamb wave 

(49)S(0, ∗) =

∞∑
n=0

cnS(0, n), A(0, ∗) =

∞∑
n=0

dnA(0, n)

Fig. 9   Circumferential distributions of Lamb wave displacements: a 
S(0,*) mode after propagating 80 mm and b A(0,*) mode after propa-
gating 80 mm

Fig. 10   Across thickness 
displacements of Lamb waves 
excited by non-axisymmetric 
loading in the far field: a S(0,*) 
mode and b A(0,*) mode

Fig. 11   Displacement amplitudes of A(0,*) mode varying with prop-
agation distance
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exists in plates. The circumferential displacement v can be 
neglected in comparison with other displacements after 
propagating 80 mm. This phenomenon is caused by the 
characteristic of Bessel functions

Figure 10 shows the across-thickness displacements of 
Lamb waves after propagating 80 mm. Circumferential 
displacement is ignored for the amplitude is small enough 
in comparison to other displacements. The across-thick-
ness displacements obtained from simulations compare 
very well with theory, providing verification to theoretical 
formulations.

The displacement amplitudes of A(0,*) mode vary-
ing with propagation distance are presented in Fig. 11. As 

(50)Jn+1(kr) + Jn−1(kr) → 0, kr → ∞

predicted in theory, the amplitudes of both radial and lon-
gitudinal displacements decrease following O(1∕

√
r) in the 

far field [36] (after propagating 20 mm, the wavelength is 
about 10 mm) because the amplitude of all modes decreases 
following the same power rule. Circumferential displace-
ment amplitude rapidly decays to negligible with propaga-
tion distance increasing.

Fig. 12   Layout and location of actuator and sensors

Fig. 13   Arrival times of S(0,*) mode and A(0,*) mode

Fig. 14   Circumferential distributions of the excited Lamb wave 
modes: a S(0,*) mode at 150 kHz and b S(0,*) mode at 200 kHz and 
c A(0,*) mode at 150 kHz and d A(0,*) mode at 200 kHz

Fig. 15   Comparison of the arrival time of experiment and theory
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Experimental Verification

The experiment is carried out on a 1250 × 1250 × 3 mm 
aluminum plate. Three 6 × 6 × 0.5 mm square transducers 
(American Piezo Ceramics, APC-851) are mounted on the 
top surface of the plate as an actuator. These thin transducers 
can reduce the effect of induced bending moment applied 
to the plate. Seven 8 mm(diameter) × 0.45 mm(thickness) 
circular transducers (American Piezo Ceramics, APC-851) 
are placed around the actuators at θ = 0°–90° with 15° incre-
ments numbered #1–#7 as sensors. The distance between the 
actuator and the sensors is 300 mm. The layout and loca-
tion of the actuator and sensors are presented in Fig. 12. A 
5-cycle Hanning window modulated sinusoidal tone burst 
waveforms with a center frequency at 150–250 kHz with 
10 kHz increment is generated as the input signal to each 
actuator to excite Lamb waves. Signals are generated and 
received by a damage diagnostic system at a sampling rate 
of 12 MHz and a sampling point of 8000.

Similar to the simulation, signals obtained from the 
experiment are also the linear combination of axisymmet-
ric and non-axisymmetric modes as described in Eq. (49). 
Figure 13 shows the comparison of signals received by dif-
ferent sensors. The blue solid lines represent the Lamb wave 
signals received by different sensors, and the red dotted lines 
represent the start and end times of corresponding Lamb 
modes. The first arrival waveforms in Fig. 13 are cross talks, 
which are produced by the coupling effect of the circuit. 
As shown in Fig. 13, the arrival times of both S(0,*) and 
A(0,*) modes at different propagation directions with the 
same propagation distance are about the same, which dem-
onstrates that Lamb wave propagates as a circle with the 
center at the actuator center.

Figure 14 shows the circumferential distributions of the 
excited Lamb wave. The points represent the amplitudes of 
signals received by different sensors, and the lines represent 
the connection lines of points. Both S and A modes have 
non-uniform distributions at different propagation directions, 
which proves the existence of non-axisymmetric Lamb wave 
in plates.

A comparison of the arrival time for circular crested 
Lamb wave is presented in Fig. 15. The blue lines rep-
resent the Lamb wave signals received by sensor #1 at 
different frequencies in the experiment, and the red lines 
represent the theoretical arrival times of Lamb modes. 
The theoretical arrival times of S(0,*) and A(0,*) modes 
are calculated based on group velocity obtained from 
frequency equations in Eq. (36). Excellent agreements 
are observed, which proves the frequency equations of 
circular crested Lamb wave.

Conclusions

The complete and exact solutions of circular crested Lamb 
waves in isotropic plates are obtained and presented with 
the cylindrical coordinate system. The solutions repre-
sent a traveling wave in the radial direction and a standing 
wave in the other two orthogonal coordinate directions. 
The displacement field of a circular crested Lamb wave 
is governed by the Bessel function in the radial direction 
and harmonic functions in the circumferential direction. 
Similar to plane Lamb wave, circular crested Lamb wave is 
divided into two motion types, i.e., S motion and A motion. 
Two families of circular crested Lamb modes are gener-
ated and identified by wavenumber in the radial direction 
(k) and circumferential direction (n). Characteristics of 
circular crested Lamb wave displacements are discussed 
in detail. Governed by Bessel functions, the radial com-
ponent describes the amplitude attenuation of displace-
ment. And the circumferential component affects the dis-
tribution of amplitude in different propagation directions. 
Some numerical and experimental results are presented 
to provide verification for the theoretical formulations. 
Characteristics of Lamb wave including circular crested 
wave field, non-axisymmetric property, across thickness 
displacements and group velocity obtained from simula-
tion and experiment are compared with those of theory. 
The good agreement between numerical or experimental 
and theoretical results verifies the theoretical formulations.
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