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Abstract
Purpose  This paper addresses the optimal design of flexible link manipulators to optimize the dynamic performance subject 
to the effect of the uncertainties quantified by a reliability index.
Methods  The links’ uncertain stiffness and inertial parameters are modeled using the stochastic finite-element method. A 
methodology is proposed to determine the design variables that maximize the performance and simultaneously maximize 
reliability that aims to optimize the flexible manipulators based on reliability-based optimization. This reliability-based 
optimization derives a multi-objective optimization problem that is solved using evolutionary algorithms.
Results  Numerical results illustrate the dynamic modeling of the one-link flexible manipulator using the stochastic finite ele-
ment method in terms of displacement of the manipulator’s tip and the frequency response function subjected to uncertainties. 
Moreover, the optimal design was carried out to maximize the reliability and optimize the elastodynamic performance; thus, 
the reliability of the manipulator is maximized, and several performance criteria such as the actuator power, manipulator 
mass, and the first mode natural frequency are optimized simultaneously.
Conclusions  The proposed methodology permitted optimizing critical operational characteristics of flexible manipulators, 
such as minimizing the elastic deflections, minimizing the power of actuators, and minimizing the mass of the manipulator 
subject to reliability constraints. Thus, the main contributions are (i) the stochastic modeling of flexible-link manipulators, 
(ii) the reliability optimization approach applied to the flexible-link manipulator, and (iii) a case study considering a one-
link flexible manipulator with uncertain structural parameters to determine the optimal inertial parameters and geometric 
parameters.
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Introduction

The application of robotic manipulators demands increas-
ing the operational speed and simultaneously decreasing 
the weight in several areas such as automation manufactur-
ing, hazardous tasks, and medical applications [1]. These 
operational requirements result in lightweight manipula-
tors with thin links subject to residual vibrations during 
the task executions that reduce dynamic performance. On 

the other hand, the unavoidable effect of uncertainties also 
reduces performance. Moreover, robots are designed for 
close human–robot cooperation; these manipulators with 
slender links have compliant links and joints that reduce the 
impact in a potential collision [2]; Nevertheless, they exhibit 
undesired vibration [3]. There is a vast literature about the 
control of robots with flexible elements and uncertainties [4, 
5]; Nevertheless, few contributions have addressed the opti-
mal design. The optimal design has been applied to enhance 
the dynamic performance of manipulators with flexible ele-
ments [6, 7]. These research works have emphasized the 
need to propose novel methodologies to optimize the design 
of flexible manipulators by including the harmful effects of 
uncertain parameters.

The robust optimal design optimizes the system perfor-
mance and simultaneously minimizes the adverse conse-
quences of uncertainties simultaneously [8]. Several works 
have focused on the robust optimal design of manipulators 
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to optimize the kinematic and dynamic performance sub-
ject to dimensional tolerances of geometric parameters, joint 
clearances, noise sensors, and variability of inertia param-
eters. The optimal design of parallel robots was carried out 
based on the robust criteria and elastodynamics [9]. The 
robust multi-objective optimal design to optimize the perfor-
mance of parallel manipulators subject to uncertainties was 
also proposed; this robust optimization consists of a multi-
objective optimization problem that aims at optimizing the 
performance and robustness criterion simultaneously [10]. 
These research studies aim at optimizing the performance 
subject to the unavoidable effect of uncertainties. The reli-
ability-based optimization has been proposed as an alterna-
tive approach to robust design optimization [11]. Thereby, 
the effect of the uncertainty is quantified by a measure of 
reliability. The robotic system’s dynamic performance was 
optimized for high reliability under uncertainty [12].

Several numerical methods have been developed to 
enhance computational cost and accuracy of robust optimal 
design applied to optimize mechanical structures subject 
to uncertain operational conditions. A Hierarchical Model 
Updating Strategy was implemented for Finite Element 
model updating to establish an accurate computational 
model [13]. A synchronous modeling concept is proposed, 
the purpose of which is to realize the transformation from 
single-objective reliability design to multiple objectives reli-
ability design [14]. In the same direction, multilevel nested 
models were developed to effectively perform the reliabil-
ity-based design optimization of the assembly relationship 
[15]. These developments in reliability computation and 
reliability-based design optimization permitted to carry out 
of further engineering applications. Li et al. [16] developed a 
method to identify the modal parameters of damped oscilla-
tion signal in a power system; this application demonstrated 
the potential benefits of the numerical methods to improve 
the efficiency of reliability computation. Moreover, Fei et al. 
[17] evaluated the motion reliability of flexible mechanism; 
they demonstrated that the enhancement of the network 
learning model with an intelligent operator ameliorated the 
reliability computation in terms of simulation efficiency to 
design procedures.

Several studies have been developed to evaluate the reli-
ability of the flexible mechanisms. In [18], the kinematic reli-
ability of robotic manipulators based on the fuzzy theory was 
proposed without considering the link flexibility. To improve 
the computational efficiency of the reliability-based design 
optimization of flexible manipulators in [19], particle swarm 
optimization together with an advanced extremum response 
surface method was used with better results. In [20], a genetic 
algorithm is developed as a reliability model to evaluate the 

flexible mechanisms under operation. The mean-probability 
decomposition-coordination-based extreme support vector 
machine regression method was used in [21] to increase the 
computational efficiency and accuracy in the reliability opti-
mization of flexible mechanisms.

However, few research studies have been reported about 
the optimal design of manipulators with flexible elements. 
The shape optimization of flexible-link manipulators of cir-
cular cross-sections was studied, and the method was permit-
ted to obtain the geometry of the manipulator to optimize 
the dynamic behavior. Shape optimization [6]. The optimal 
design procedure of a symmetrical 2-DOF parallel planar 
robot with flexible joints by considering several performance 
criteria based on the workspace size, dynamic dexterity, and 
control energy was presented in [7]. The design of a piezo-
actuated flexural manipulator was carried out to determine the 
geometric parameters and maximize the sensitivity [22]. The 
structural and control optimization of manipulators have been 
optimized considering the elastic deformation of the manipula-
tor elements [23]. Several works are aimed at optimizing the 
trajectory planning of flexible manipulators [24, 25]. Never-
theless, no research studies have studied the optimal design of 
flexible manipulators considering the unavoidable effect of the 
uncertainties in their physical parameters.

Consequently, a design procedure of flexible manipulators 
based on reliability-based optimization is introduced in the 
present contribution to determine the design variables that 
maximize the elastodynamic performance and reliability by 
solving a multi-objective optimization problem using multi-
objective genetic algorithms. Several methods proposed in 
the literature have been concerned with the accuracy, and 
computational cost of reliability-based optimization [13–15]. 
Nonetheless, the method proposed in this research study is 
inspired by the work of [26] that solved the reliability opti-
mization problem as a multi-objective optimization problem 
using evolutionary algorithms. The manuscript presents the 
following contributions: (i) the stochastic modeling of flex-
ible-link manipulators based on the stochastic finite-element 
method, (ii) the reliability optimization approach applied to 
the flexible-link manipulator, (iii) a case study to illustrate the 
proposed approach applied to a one-link flexible manipulator 
with uncertain structural parameters to determine the inertial 
parameters and cross-section dimensions of the link.

The paper is structured as follows: Sect. 2 provides the 
modeling of flexible-link manipulators with uncertainties by 
using the stochastic finite-element method. Next, Sect. 3 pre-
sents the reliability-based optimization applied to the flexi-
ble-link manipulator. Section 4 presents the numerical results. 
Finally, key conclusions and recommendations are drawn in 
Sect. 5.
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Modeling of Flexible‑Link Manipulators 
with Uncertainties

This paper studies a single-link flexible manipulator with 
uncertain proprieties within the links. The modeling of the 
flexible-link manipulator with uncertainties (of Sect. 2.2) 
was developed as an extension of the modeling of the flex-
ible manipulator based on the Lagrange principle and finite-
element model of Sect. 2.1.

The one-link flexible manipulator is presented in Fig. 1a. 
The manipulator has one revolute joint ( �1 ), the inertia of the 
hub is defined as Im1 , and a flexible link with length l1 . Moreo-
ver, the mass ( mp1 ) is concentrated at the tip of the link.

Modeling of Flexible‑Link Manipulator Based 
on Finite Element Method

The modeling of the one flexible-link manipulator was pre-
sented by Usoro et al. [27]. This section presents the main 
points and results of the modeling using the Lagrange princi-
ple and the finite-element method.

The one-link flexible manipulator with length l1 and n1j ele-
ments is presented in Fig. 1a. Initially, the Cartesian position 
�1j of each element 1j of the link with reference to the inertial 
reference O is defined as:

with �(�1, z1) being the rotation matrix of the joint angle 
�1 around the z1 axis of O1 ; l1j = l1∕n1j is the element 
length; �j is the Cartesian position of the element 1j with 
reference to the frame O1 ; �j is defined for 0 ≤ x1j ≤ l1j and 
j = 1, 2,… , n1j . It is worth mentioning that y1j corresponds 
to the transversal displacement that is defined by the shape 
functions Φ(x1j)k for k = 1,… , 4 [28] according to the fol-
lowing definition:

(1)

�1j =�(�1, z1)�j

=

[
cos (�1) − sin (�1)

sin (�1) cos (�1)

] [
(j − 1)l1j + x1j

y1j

]

(2)y1j(x, t) =

4∑
k=1

Φk(x1j)ui,2(j−1)+k

Moreover, the generalized coordinates of the ele-
men t  1 j  a r e  de f ined  a s  �1j =

[
�1 �1j

]
 w i t h 

�1j =
[
u1,2(j−1)+1 u1,2(j−1)+2 u1,2(j−1)+3 u1,2(j−1)+4

]
 ( s e e 

Fig. 1b).
The kinematic energy considers the link elements ( T1j ), the 

tip mass ( Tmp1
 ), and the hub inertia ( TIm1 ). In addition, the 

potential energy considers the transversal elastic deformation 
of the link elements ( V1j ). The definition of the kinematic and 
potential energies is presented in Eq.  (3).

where � is the mass density, E is Young’s modulus, A and I 
are the area and cross-section moment of the inertia of the 
link.

The energy of the hub inertia TIm1 affects only the elements 
related to the joint �1 . The elementary mass matrices �1j , 
�mp1

 and the stiffness matrix �1j are obtained by solving the 
expressions of Eq. (3):

w i t h  m11 = 120(3j2 − 3j + 1) + �T
1j
�

�1j�1j

ij
�1j  ,  w i t h 

�1j =
[
u1,2(j−1)+1 u1,2(j−1)+2 u1,2(j−1)+3 u1,2(j−1)+4

]
  , 

m12 = 21(10j − 7) , m13 = 7l1j(5j − 3) , m14 = 21(10j − 3) , 
m15 = −7l1j(5j − 2) . ��1j�1j

ij
 is defined in the following form:

(3)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

T1j =
1

2

l1j∫
0

𝜌A

�
𝜕�T

1j

𝜕t

𝜕�1j

𝜕t

�
dx1j =

1

2
�̇T
1j
�1j �̇1j

Tmp1
=

1

2
mp1

�
�̇1j ∣j=n1j,x1j=l1j

�T�
�̇1j ∣j=n1j,x1j=l1j

�
=

1

2
�̇T
1j
�mp1

�̇1j

TIm1 =
1

2
Im1𝜙̇1

2

V1j =
1

2

l1j∫
0

EI

�
𝜕2y1j

𝜕x2
1j

�T�
𝜕2y1j

𝜕x2
1j

�
dx1j =

1

2
�T
1j
�1j �1j

(4)

�1j =

l1j

∫
0

�A

�
��T

1j

��1j

��1j

��1j

�
dx1j

=
�Al1j

420

⎡⎢⎢⎢⎢⎢⎣

m11 m12 m13 m14 m15

m12

m13

m14

m15

�
�1j�1j

ij

⎤⎥⎥⎥⎥⎥⎦

Fig. 1   Model of the one-link 
flexible manipulator
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An alternative definition of the elementary mass matrix of 
the first link ( �1j ) of Eq. (4) can be written as:

with m�1�1 = m11 ,  ��1�1j =
[
m12 m13 m14 m15

]
 ,  and 

��1j�1 =
[
m12 m13 m14 m15

]T . Moreover:

Thus, the total kinematic and potential energy is defined as:

Then, the global mass matrix and the global stiffness matrix 
( �1 and �1 ) are assembled based on the elementary matrices 
�1j , �mp1

 , and �1j for j = 1, 2,… , n1j as described in [28, 
29].

The Lagrangian is defined as L1 = T1 − V1 . The dynamic 
equation of the manipulator is derived by applying the 
Lagrange principle of Eq. (8), thus:

where �1 is the vector of the generalized non-conservative 
forces or moments. The development of the Lagrange equa-
tion (Eq. (8)) lead to the dynamic equation of the manipula-
tor in the following form [30]:

where �1 =
[
�1 �1,2(nj1−1)+2

]T
 means that the input torque �1 

is applied only on the joint �1 . Moreover, �1(�) is the total 
inertia matrix, �1(�1, �̇1) is the Coriolis/centripetal vector, 
and �1 is the total stiffness matrix.

The total mass matrix and the total stiffness matrix of 
Eq. (9) can be written in the following form:

�
�1j�1j

ij
=

⎡
⎢⎢⎢⎢⎢⎢⎣

156 22l
1j 54 − 13l

1j

22l
1j 4l2

1j
13l

1j − 3l2
1j

54 13l2
1j

156 − 22l
1j

−13l
1j − 3l2

1j
− 22l

1j 4l2
1j

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(5)�1j =

[
m�1�1 ��1�1j

��1j�1 �
�1j�1j

ij

]

(6)�
1j =

E I

l3
1j

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 12 6l
1j − 12 6l

1j

0 6l
1j 4l2

1j
− 6l

1j 2l2
1j

0 − 12 − 6l
1j 12 − 6l

1j

0 6l
1j 2l2

1j
− 6l

1j 4l2
1j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)
{
T1 =

1

2
�̇T
1
�1�̇1 V1 =

1

2
�T
1
�1�1

(8)
d

dt

[
𝜕L1

𝜕�̇1

]
−

𝜕L1

𝜕�1
= �1

(9)�1(�1)�̈1 + �1(�1, �̇1) +�1�1 = �1

where ��1�1
 is related to the transverse displacements or the 

elastic degrees of freedom of the links that correspond to �1 ; 
��1�1

 indicates the coupling between the joint �1 and these 
elastic degrees of freedom �1 , and ��1�1

= �T
�1�1

 ; m�1�1
 

takes into account the dynamics of the joint. Moreover, 
��1�1

 of the total stiffness matrix is the elementary stiffness 
matrix of the link; the total stiffness matrix does not have a 
coupling between the joint motion and the elastic degrees of 
freedom.

Moreover, the frequency domain response is also ana-
lyzed. The steady-state harmonic responses in the frequency 
domain can be used based on Eq. (9) by assuming harmonic 
inputs and outputs: �1 = �1(�)e

i�t and �1 = �1(�)e
i�t , with 

� being the excitation frequency. It is worth mentioning 
that the total inertia matrix �1(�1) depends only on joint 
variables �1 and the generalized velocities �̇1j are zero in 
the steady-state harmonic response. Thus, the Coriolis/cen-
tripetal �1

(
�1, �̇1

)
 that depends on the generalized velocity 

is null. The following relationship between the amplitudes 
of the generalized forces and the amplitudes of the harmonic 
responses is obtained:

where �(�) is the receptance frequency response function 
matrix that is defined by:

Stochastic Modeling

The uncertainty modeling is derived as an extension of the 
previously presented deterministic model. The uncertainties 
are considered on the dynamic parameters of the manip-
ulator. Thus, the uncertainties are introduced first on the 
elementary matrices of mass ��1�1

 and stiffness ��1�1
 that 

affect the elastic degrees of freedom of the links ( �1 ). The 
stochastic finite-element method proposed by [31] based on 
the spectral representation of the stochastic fields is used 
in the present contribution. Moreover, the lumped param-
eters, such as the tip mass, are modeled as random variables. 
Finally, the total mass and stiffness matrices with uncertain-
ties are computed.

(10)

⎧
⎪⎪⎨⎪⎪⎩

�1(�1) =

�
m�1�1 ��1�1

��1�1 ��1�1

�

�1 =

�
0 �

� ��1�1

�

(11)�1(�) = �(�)�1(�)

(12)�(�) =
[
�1 − �2�1(�1)

]−1
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In the present contribution, the well-known Kar-
hunen–Loéve (KL) expansion is used to model uncertainties 
of the mass and stiffness along with the links as stochastic 
fields. The Karhunen–Loéve (KL) decomposition is a spec-
tral representation of the random fields that superposes the 
orthogonal random variables weighted by deterministic spa-
tial functions [31]. A one-dimensional random field H(x, �) 
is defined by its mean value, E[H(x, �)] , and its covariance 
function C(x1, x2) = E{[H(x1, �) − E(x1)][H(x2, �) − E(x2)]} , 
where x denotes the spatial dependence of the random field, 
E[.] represents the expectation operator, and � represents a 
random process. The one-dimensional homogeneous Gauss-
ian random field H(x, �) can be projected on an orthonormal 
truncated random function according to [31]:

where fr(x) and �r correspond to the deterministic eigenfunc-
tions and the scalar eigenvalues of the covariance function 
C(x1, x2) , respectively. Moreover, it is worth defining that 
the eigenfunctions fr(x) and the random variables �r(�) are 
orthonormal.

The KL expansion is defined within the one-dimensional 
domain of the element where Ωx = (x1, x2) ∈ xij to model 
the uncertain parameters of the element as random fields. 
Moreover, the analytical solution of the eigenproblem of 
the one-dimensional homogeneous Gaussian random field 
H(x, �) was presented by [31] considering the exponential 
covariance function of Eq. (14).

where (x1, x2) ∈ [0, lj] , lj is the element length, and lcor,y is 
the correlation length that defines the decreasing behavior 
of the covariance with the distance between the points x1 and 
x2 in the x direction.

By considering the covariance function of Eq. (14), the solu-
tion of the eigenproblem lead to eigenfunctions fr(x) and the 
eigenvalues �r for r = 1, 2,… , nKL . These eigenfunctions and 
eigenvalues depend on the r roots �r(r ≥ 1) of two transcenden-
tal equations, as the following procedure summarizes:

•	 For the r odd, with r ≥ 1 , and 0 ≤ x ≤ lj : 

 where �r = 1∕
√

lj∕2 + sin(�rlj)∕2�r  and the roots �r 
are obtained from the solution of the following transcen-
dental equation: 

(13)H(x, �) = E(x) +

nKL�
r=1

√
�rfr(x)�r(�)

(14)C(x1, x2) = exp
(
− ∣ x1 − x2 ∣ ∕lcor,x

)

(15)�r =
2lcor,x

l2
cor,x

�2
r
+ 1

, fr(x) = �r cos(�rx)

1 + lcor,x�r tan(�rlj) = 0

 defined into the domain 
[
(r − 1)

�

lj
,
(
r −

1

2

)
�

lj

]
.

•	 For the r even, with r ≥ 1 , and 0 ≤ x ≤ lj : 

 where �r = 1∕
√

lj∕2 − sin(�rlj)∕2�r  and the roots �r 
are obtained from the solution of the transcendental 
equation: 

 defined into the domain 
[(

r −
1

2

)
�

lj
, r

�

lj

]
.

The KL expansion presented in Eqs. (13)–(16) has been used 
to model the random elementary random matrices of mass 
and stiffness; the uncertainties of the link are considered in the 
mass density ( �(�) ) and Young’s modulus ( E(�)):

where ��1j�1j and ��1j�1j are the elementary mass matrix 
and stiffness matrix of Eqs. (5) and (6). Moreover, the ran-
dom matrices �

(s)

r
(�) and �

(s)

r
(�) are calculated by using the 

following compact expression:

with �(x) =
[
Φ1 Φ2 Φ3 Φ4

]
 based on the shape functions 

of Eq. (2), and �(x) = �2�(x)∕�x2.
Furthermore, the tip mass mp1 is typically affected by uncer-

tainties. The uncertainty of mp1(�) , �(�) and E(�) (of Eq. (17)) 
can be modeled as random variables. The uncertainties of 
these parameters can be defined as:

(16)�r =
2lcor,x

l2
cor,x

�2
r
+ 1

, fr(x) = �r sin(�rx)

lcor,x �r + tan(�rlj) = 0

(17)

⎧⎪⎨⎪⎩

�(�)�1j�1j = ��1j�1j
+
∑nKL

r=1
�

(s)

r
�(�)

�(�)�1j�1j = ��1j�1j
+
∑nKL

r=1
�

(s)

r
E(�)

(18)

�
(s)

r
=

lj

∫
x=0

√
�rfr(x)�(x)

T�(x)dx

�
(s)

r
=

lj

∫
x=0

√
�rfr(x)�(x)

T�(x)dx

Fig. 2   Reliability-based optimization procedure, adapted from [26]
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where mp1 , E and � are the mean of these parameters, �mp1
 , 

�E and �� represents the dispersion level and �(�) is the nor-
mal distributed random variable with � being a random pro-
cess that is governed by the normal distribution. The 
dynamic equation and the frequency response function are 
obtained:

with:

�1(�, �̇, 𝜃) is obtained from �1(�, �).
Finally, the so-called Monte–Carlo Simulation (MCS) com-

bined with the Latin Hypercube sampling [32] is the numerical 
method applied to obtain the dynamic response of the flexible 
manipulator with random parameters presented in Eq. (20).

Methodology for the Optimization Based 
on Reliability

The theoretical basis of reliability-based optimization (RBO) 
was introduced by Moses et al. [33]. The robust-based opti-
mization (RBO) is presented in Eqs. (22)–(25) according 
to [26] where f(.) represents the objective function, �d is 
the vector of the determinist design variables, �u(�) are 
the uncertain inputs modeled as random variables, and � 

(19)

mp1(�) = mp1 + mp1�mp1
�(�)

�(�) = � + ����(�)

E(�) = E + E�E�(�)

(20)
{

�(�, 𝜃)�̈ + �(�, �̇, 𝜃) +�(𝜃)� = �

�(𝜔, 𝜃)�(𝜔) = �(𝜔)

(21)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�(�, �) =
[

m(�)�1�1 �(�)�1�1

�(�)�1�1 �(�)�1�1

]

�(�) =
[

0 �
� �(�)�1�1

]

represents a stochastic process. This optimization problem 
is subject to the ng reliability constraints of Eq. (23) where 
P(.) denotes the joint probability of the solution being fea-
sible for every j constraint by considering the uncertainties 
�u(�) , i.e., the reliability express the probability of obtaining 
a feasible solution under the uncertain inputs. R ∈ [0, 1] is 
the desired reliability for all jth constraints. The more reli-
able solution implies that R is close to one. hk(�d) of Eq. (24) 
denotes the deterministic inequality constraints, and Eq. (25) 
defines the constraints of the design variables.

Let us consider the optimization problem with two inequal-
ity constraints shown in Fig. 2. The deterministic optimal 
solution without uncertainty ( �u = 0 ) is obtained by solving 
Eq. (22) and neglecting the reliability constraints of Eq. 23); 
one can observe that deterministic optimum is located at 
the intersection of the constraints. On the other hand, the 
reliability-based optimization problem considers the effect 
of uncertain inputs; these uncertain inputs produce variation 
around the optimal solution making this solution infeasible 
in many instances. Consequently, the reliable solution will 
be penalized by considering the reliability constraints of 
Eq. (23). A reliable solution will imply a small probability of 
obtaining an infeasible solution. The feasible solution with 
the desired reliability R will guarantee that the probability 
of obtaining an infeasible solution due to uncertainties is 
defined as (1 − R).

(22)min
�d

f (�d, �u(�))

(23)subject to P(gj(�d, �u(�)) ≤ 0) ≥ R, j = 1,… , ng

(24)hk(�d) ≤ 0, k = 1,… , nk

(25)�
(l)

d
≤ �d ≤ �

(u)

d

Table 1   Objective functions and 
constraints

a �(u) bounds to assess the reliability. y(u) , and �(l) are defined as bounds for the constraints
b ���(.) represents the variance of a random variable

Definition Description

f1 = Pot = max
(
𝜏1(t)𝜙̇1(t)

)
Maximum power of joint actuator during the motion

f2 = m = �l1A + 2Im1�∕r
2
m1

Mass of manipulator rm1 = 0.01m.

f3 = ��1
=
√
���(�1(�)) Standard deviation of the first mode natural frequencyb

f4 = Rf = P
(
�(�) − �(u) ≤ 0

)
Reliability for the residual vibration (see Fig. 4c)a

f5 = yt =
ft l

3
1

3EI

Static tip deflection, for force of magnitude ft = 1N.

f6 = �1 , for ∣ −�2� +� ∣= 0 First mode natural frequency

h1 = yt − y(u) =
ft l

3
1

3EI
− y(u) Constraint for static tip deflectiona

h2 = �(l) − �1 , for ∣ −�2� +� ∣= 0 Constraint for the first mode natural frequencya

g1 = �(�) Amplitude of residual vibration (see Fig. 7a).
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The flexible manipulator’s reliability-based optimization 
aims to optimize the performance under uncertainties. The 
geometric parameters can be considered design variables, 
and the uncertainties in the inertia and stiffness proprieties 
are considered. Several optimal criteria can be considered, 
e.g., maximizes the first mode natural frequency, minimizes 
the weight, or minimizes the elastic deflection at the tip. 
The effect of the uncertainties is quantified by a reliability 
index that expresses the probability of elastic deflection at 
the tip exceeding an imposed limit. The reliability should be 
maximized or constrained to the desired minimum bound.

Initially, the design variables are defined in the vector 
�d =

[
Im1 h b

]
 with Im1 being the inertia of the cylindrical 

hub, and its mass is defined as mm1 = 2Im1�∕r
2
m1

 where rm1 is 
the radius; h and b are the dimensions of the rectangle cross-
section area of the link. The uncertain inputs parameters are 
defined in the vector �u(�) =

[
E(�) �(�) mp1(�)

]
 . The link 

length ( l1 ) is defined according to the kinematic criterion.

Objective Functions and Constraints

The objective functions and constraints for the reliability-
based optimization of the flexible manipulator are defined in 
Table 1. It is worth mentioning that these objective functions 
and constraints were defined based on the dynamic response 
of the flexible link manipulator with uncertain parameters 
using the stochastic finite element (see Sect. 2).

According to Table 1, fi , for i = 1,… , 6 , defines the 
objective functions. The objective function f3 = ��1

 is the 
standard deviation of the first mode natural frequency �1 
that quantifies the effects of the uncertain parameters, i.e., 
it expresses how the dynamics vary by the uncertain param-
eters. f4 = Rf  quantifies the reliability that consists of the 

probability of obtaining a vibration amplitude more minor 
than the limit �(u).

The constraints to y(u) , h1 , the static deflection at the tip 
link ( yt ) are subjected to the transversal tip force ft , i.e., 
𝜔1 > 𝜔(l) yt ≤ y(u) . Moreover, the constraint, h2 , imposes 
the minimum bound of �(l) for the first mode frequency �1 , 
i.e., 𝜔1 > 𝜔(l) . Finally, the function g1 denotes the residual 
vibration amplitude subject to uncertainties (see Fig. 7a), g1 
is used to assess the system reliability.

Assessment of the Reliability

The reliability-based optimization requires the efficient 
assessment of the system reliability defined in Eq. (23). 
For this particular application, the reliability quantifies 
the probability of amplitude of the residual vibration �(�) 
(see Fig. 4d and Table 1) to be fewer than the desired limit 
defined as �(u) . The mathematical definition of reliability 
expresses the probability of a given solution �d to be safe 
under the jth constraint; the reliability can be written as 
R = (1 − Pj):

with Pj being the failure probability, and f��d
,��d

 is the joint 
probability density function of (�d, �u) . There is not an ana-
lytical solution for the expression of Eq. (26) to obtain Pj.

Therefore, the First-Order Reliability Method (FORM) 
is used to estimate the failure probability Pj of Eq. (26). 
This method determines the point closest to the solution; 
this point is designated as the most probable point (MMP) 
of failure. First, the � coordinates systems are transformed 
into an independent standard normal coordinate system � 
using the Rosenblatt transformation [34].Then, the function 
gj(�d, �u) = 0 or correspondingly Gj(�) = 0 is approximated 
by a first-order Taylor at the MPP that corresponds to �j . The 
reliability coefficient � is computed by solving the following 
optimization problem:

where ∣∣ . ∣∣ represents the magnitude of the vector. Finally, 
the probability of failure Pj is estimated according to the fol-
lowing expression: Pj = Φ[−�j] , where Φ[.] represents the 
standard normal cumulative distribution. The optimization 
problem to find the reliability coefficient �j was solved by 
using the algorithm proposed by Rackwitz [35].

(26)Pj(�d, �u) = ∫
gj(�d ,�u)<0

f𝜇�d
,𝜇�d

(�d, �u)d�dd�u

(27)
min
�

Gj(�)

subject to: �j =∣∣ �
T� ∣∣

Fig. 3   Reliability optimization method
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Definition of the Reliability Optimization Problem

The reliability-based optimization of the flexible manipu-
lator consists of maximizing the objective functions sub-
ject to reliability constraints. Consequently, three types 
of reliability-based optimizations were proposed: (I) sin-
gle-objective RBO (see Eq. (28a)): maximizes one single 
objective function by imposing reliability constraints and 
operational constraints; (II) multi-objective RBO to maxi-
mize reliability (see Eq. (28b)): optimizes simultaneously 
one objective function and maximizes the reliability, and 
(III) multi-objective RBO with reliability constraints (see 
Eq. (28c)): optimization of two objectives simultaneously 

Fig. 4   Dynamic response

(a) (b)

(c) (d)

Fig. 5   Eigenvalues and eigen-
function for the exponential 
covariance C(x

1
, x

2
)

(a) (b)

0 100 200 300 400 500
2

2.5

3

3.5 10-6

Upper Line
Lower Line

Fig. 6   Convergence of the maximum error for the numbers of sam-
ples ( n

s
 ) used in the MCS
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with reliability constraints. The presented RBO demands 
the solution of multi-objective optimization problems; for 
this end, evolutionary algorithms have been integrated into 
RBO [26]. The single-objective optimization of Eq. (28a) 
serves as a baseline to compare the reliability optimization 
of Eqs. (28b) and (28c); this optimization is solved using 
the genetic algorithm [36]. 

(28a)

Type I:

min
�d

fi(�d,�u)

subject to P(g1(�d, �u(�)) − �u ≤ 0) ≥ R

hk(�d) ≤ 0, k = 1, 2

�
(l)

d
≤ �d ≤ �

(u)

d

(28b)

Type II:

min
�d

fi(�d,�u) max
�d

f4(�d, �u(�))

subject to hk(�d) ≤ 0, k = 1, 2

�
(l)

d
≤ �d ≤ �

(u)

d

The multi-objective optimizations derived from the reli-
ability optimization of Eqs. (28b) and (28c) are solved using 
the NSGA-II multi-objective genetic algorithm [37], because 
this optimization technique has been successfully applied to 
optimize robotic systems [7, 38]. The reliability optimization 
methodology works in the following way (see Fig. 3): (i) an 
initial population that is a set of solutions is generated ran-
domly within the design space. (ii) evaluates the objective 
functions based on the performance criteria and reliability 
(see Table 1); (iii) a child population is generated by rank-
ing, selecting and applying the genetic operators (crossover 
and mutation); (iv) evaluates the stop criteria to determine 
if the optimization process converges; if the stop criteria are 
not met, the process is repeated since step (ii).

(28c)

Type III:

min
�d

fi(�d,�u) min
�d

fj(�d,�u) with i ≠ j

subject to P(gj(�d, �u(�)) − �max ≤ 0) ≥ R, j = 1,… , ng

�
(l)

d
≤ �d ≤ �

(u)

d

Fig. 7   Dynamic response with 
uncertainties
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-0.01

0

0.01

0.02

0.03

0.04

0.05 Envelopes
Mean
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Table 2   Reliability outputs 
using MCS and FORM methods �

d
=
[
I
m1

h b
]

R
f
 (MCS) R

f
(FORM) n

f
 (MCS) n

f
 (FORM)

[
2 × 10−5 0.0025 0.0290

]
0.7113 0.7268 15000 73[

2 × 10−5 0.0020 0.0290
]

0.3121 0.3212 15000 74[
2 × 10−5 0.0010 0.0290

]
0.0181 0.0178 15000 57[

5 × 10−5 0.0025 0.0290
]

0.6913 0.6870 15000 55[
5 × 10−5 0.0020 0.0290

]
0.3120 0.3212 15000 75[

5 × 10−5 0.0010 0.0290
]

0.0219 0.0178 15000 58[
5 × 10−5 0.0025 0.0250

]
0.0928 0.0934 15000 127[

5 × 10−5 0.0010 0.0250
]

0.0008 0.0000 15000 72[
5 × 10−6 0.0025 0.0270

]
0.2965 0.2978 15000 95[

5 × 10−6 0.0010 0.0270
]

0.0010 0.0000 15000 79
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Numerical Results

The results of the flexible manipulator illustrate the dynam-
ics of Sect. 2.1, the modeling with uncertainties of Sect. 2.2, 
and the reliability optimization methodology of Sect. 3.

Flexible Manipulator Dynamics

The parameters considered for the one link-flexible manipu-
lator are presented in Table 5. The link length is defined 
as li =1m. It is worth mentioning that the cross-section 
area of the link is defined as a rectangle with dimensions 

(a) (b)

(c) (d)

Fig. 8   Reliability as a function of design variables h and b 

Table 3   Reliability-based optimization (RBO) of the flexible manipulator

y(u) = 0.002  m, and �(l) = 70  rad/s are the as bounds for the constraints. �(u) = 0.001  m is the maximum limit to assess the reliability of 
Eqs. (28a) and (28c).
Rf  is defined according to each optimization

RBO Type Optimization Problem Description Constraints

I (a) minPot Minimization of actuator power Rf ≥ R(l) yt − y(u) ≤ 0 �(l) − �1 ≤ 0

(b) minm Minimization of manipulator mass
(c) min ��1

Minimization of first mode frequency standard deviation
II (d) minPotmaxRf Minimization of actuator power and maximization of reliability yt − y(u) ≤ 0 �(l) − �1 ≤ 0

(e) minmmaxRf Minimization of mass and maximization of reliability
(f) min ��1

maxRf Minimization of first mode frequency variation and maximiza-
tion of reliability

III (g) minPotmin yt Minimization of actuator power and minimization of link deflec-
tion

Rf ≥ R(l)

(h) minPotmax�1 Minimization of mass and maximization of first mode frequency
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h = 0.003 m by b = 0.02 m; the area is defined as A = bh , 
and the moment of inertia I = bh(b2 + h2)∕12.

Initially, the number of elements ( n1j ) necessary to com-
pute the dynamic response using the finite-element method 
is verified by evaluating the convergence of the first mode 
natural frequency ( �1 ). Figure 4a shows the first mode natu-
ral frequency ( �1 ) as a function of the number of elements 
( n1j ). The convergence is obtained for n1j ≥ 4 since �1 does 
not exhibit an expressive variation.

The dynamic response of the manipulator is evaluated 
without considering the uncertainties. The displacement 
of the tip (see Fig. 4c) is obtained by integrating the total 
dynamic equation of Eq.  (9); the manipulator starts its 
motion at the rest, the initial joint position is �1 = 0 , and 

the torque �1 is applied (see Fig. 4b). The motion of the tip 
produced by �1 exhibits a vibration that persists. This resid-
ual vibration of the tip arises from the link flexibility, and 
its amplitude is characterized as � (see Fig. 4c). Moreover, 
the amplitude of the frequency response function (FRF) is 
presented in Fig. 4d by following the expression presented in 
Eq. (12). The first and second natural frequency corresponds 
to 69.06 and 599.41 rad/s, respectively.

Flexible Manipulator Dynamics with Uncertainties

As an example to illustrate the KL expansion, Fig. 5 shows 
the eigenfunctions fr(x) and �r eigenvalues (see Eqs. (15) 

Fig. 9   Pareto Fronts for type I 
and type II optimization

(a) (b)

(c)

Fig. 10   Pareto Fronts for the 
Type III optimization

(a) (b)
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and (16)) of the exponential covariance function in Eq. (14). 
Initially, the first ten eigenvalues were computed for 
Ωx = (0, 0.25) m, and three different correlation lengths: 
lcor,x =2.5, 0.25 and 0.025 m. It observed that the KL expan-
sion could approximate the random field by considering the 
four first eigenvalues (see Fig. 5a) since the eigenvalues are 
negligible for nKL > 4 . Moreover, the first four eigenfunc-
tions (for nKL = 4) are presented in Fig. 5b by considering 
Ωx = 0, 0.25 m and lcor,x =0.25 m.

The number of samples ( ns ) to obtain an accurate output in 
the Monte–Carlo simulation is verified by evaluating the con-
vergence of the response variability of the stochastic response 
Ĥ(𝜔, 𝜃) . The mean square convergence (RMS) of the FRF 
amplitude is assessed as a function of the number of the reali-
zation of � , i.e., samples ( ns ). The following expression for the 
RMS is considered:

with H(�) being the amplitude of the FRF. The lower and 
upper limits of the envelopes of the random amplitude of the 
RMS are presented in Fig. 6 based on Eq. (29). The conver-
gence is obtained for ns ≥80. Moreover, for this simulation 
the correlation length is equal to the element length, thus 
(lcor,x = l1j) . Therefore, the eigenvalues for �r ≥ 5 are negli-
gible based on the results presented in Fig. 5a by considering 
these definitions.

(29)RMS =

√√√√ 1

ns

ns∑
n=1

∣ Ĥ(𝜔, 𝜃) − H(𝜔) ∣2

Therefore, for the following simulations that consider the 
stochastic finite-element: nKL = 4, lcor,x =0.25m and ns =100.

The uncertainties were introduced in the mass density 
link �(�) and Young’s modulus E(�) and the mass at the tip 
of the link mp1(�) . According to the expression that defined 
the random variable of Eq. (19) the mean of the parameters 
corresponds to the afore defined values; the dispersion level 
of 5% for �� and �E , and 20% for �mp1

.
The dynamic response was also computed considering the 

uncertainties in the mass at the tip mp1 , Young’s modulus E, 
and the links’ mass density � . The envelopes of Fig. 7 repre-
sent the maximum and the minimum limits of the response 
variability produced by the uncertainties. The envelopes of 
displacement of the tip subjected to the same initial condi-
tions and torque inputs are presented in Fig. 7a; one can 
observe that small uncertainty produces a remarkable vari-
ation in the residual vibration amplitude � . Furthermore, the 
frequency response function subjected to uncertainties was 
also analyzed (see Fig. 7b), and one can observe that the 
uncertainties produce significant variation in the vibration 
modes.

Optimal Design Results

The parameters of the flexible manipulator used for the 
numerical simulations are presented in Table 5. The reli-
ability R is assessed within the bounds of the cross-section 

Table 4   Results of the RBO of 
the flexible manipulator

RBO type Decision space �
d
=
[
I
m1

h b
]

Criterion space f
i

Reliability 
constraints 
bounds

I (a)
[
5.4130 × 10−6 0.0011 0.0300

]
Pot = 0.1107 w R(l) = 0.00

(a)
[
2.8435 × 10−5 0.0023 0.0280

]
Pot = 0.1180 w R(l) = 0.33

(a)
[
2.2932 × 10−5 0.0027 0.0284

]
Pot = 0.1209 w R(l) = 0.66

(b)
[
5.1172 × 10−6 0.0011 0.0295

]
m = 0.2903 kg R(l) = 0.00

(b)
[
5.5506 × 10−6 0.0018 0.0301

]
m = 0.3578 kg R(l) = 0.33

(b)
[
5.4070 × 10−6 0.0023 0.0299

]
m = 0.3945 kg R(l) = 0.66

(c)
[
7.9813 × 10−6 0.0017 0.0259

]
��1

= 4.4654 rad/s R(l) = 0.00

(c)
[
4.2563 × 10−5 0.0030 0.0259

]
��1

= 5.4665 rad/s R(l) = 0.33

(c)
[
3.6548 × 10−5 0.0028 0.0280

]
��1

= 5.8974 rad/s R(l) = 0.66

II (d) – Pareto front (Fig 9a) –
(e) – Pareto front (Fig 9c) –
(f) – Pareto front (Fig 9b) –

III

R(l) ≥
⎧⎪⎨⎪⎩

0.00

0.33

0.66

1.00

(g) – Pareto front (Fig 10a)
(h) – Pareto front (Fig 10b)
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area dimensions b and h (see the design variables definition 
of Table 6).

The accuracy of the FORM to estimate the reliability for 
residual vibrations ( Rf  of Table 1) is evaluated considering 
the MCS (Monte–Carlo Simulation) as the reference accord-
ing to [39]. Table 2 presents the outcomes of the reliability 
for residual vibrations, Rf  , in Table 2. One can observe that 
Rf  obtained using FORM and MCS are similar in most cases 
since FORM copes properly with the nonlinearity of the 
dynamic model of the flexible manipulator. Moreover, nf  
represents the number that every method demands the com-
putation of the dynamic model to estimate the reliability 
( Rf  ). One can observe that FORM requires less computation 
cost than MCS, as presented in Table 2.

In Fig. 8a one can observe that the reliability augments 
with the increasing cross-section area of the link, i.e., the 
more cross-section area decreases the amplitude of the resid-
ual vibration at the tip, and thus reliability.

In addition, the objective functions ( f1 , f2 , and f3 ) are also 
assessed as a function of the design variables of Table 1. 
The optimization demands the maximization of the reliabil-
ity ( f4 ), and simultaneously, it minimizes the power of the 
joint actuators ( f1 ), the mass ( f2 ), and the natural frequency 
variation ( f3 ). One can observe that the objective functions 
exhibit an opposite behavior to the reliability f4 , i.e., the 
increase in reliability implies an increase of the power of the 
joint actuators (see Fig. 8b), the mass (see Fig. 8c) and the 
variability of the first mode natural frequency (see Fig. 8d).

Table 3 presents the application of the reliability-based 
optimization (RBO) to the flexible manipulator described 
based on Eqs. (28a)–(28c). The type I RBO aims at minimiz-
ing a single objective (a) actuator power, (b) manipulator 
mass, and (c) variation on the first mode natural frequency) 
subject to the following constraints: minimum desired reli-
ability R(l) , maximum static tip deflection y(u) and minimum 
first mode natural frequency �(l) . The type II RBO maxi-
mizes the reliability and minimizes the (d) actuator power, 
(e) manipulator mass, and (f) variation on the first mode 
natural frequency subject to the following constraints: 
maximum static tip deflection y(u) and minimum first mode 
natural frequency �(l) . Finally, two objective functions are 
optimized simultaneously subject to the minimum desired 
reliability R(l) : (g) minimizes the actuator power and mini-
mizes the static tip deflection, and (h) minimizes the actuator 
power and maximizes the first mode natural frequency.

The RBO optimization problems of Table  3 were 
solved by using evolutionary algorithms according to the 
approach presented by Deb et al. [26]. Specifically, the 
genetic algorithms were used for optimizations (a), (b) and 
(c) (see Table 3), and multi-objective genetic algorithm 
NSGA-II [37] for optimizations (d)–(h) (see Table 3). The 
parameters of the flexible manipulator and the constraints 
are defined in Tables 5 and 6, respectively. The following 

parameters were selected for the NSGA-II: population size 
has 45, 100 generations, tournament selection strategy, 
crossover rate is 0.8, the Pareto fraction is 0.35, and the 
migration factor is 0.1.

The solutions of single-objective optimization (Type I) 
and multi-objective (Type II) are presented in Fig.9. As pre-
sented in Fig. 8 the reliability Rf  and the actuator power 
Pot, manipulator mass m are opposite objectives. Thereby, 
the multi-objective optimization Type II solution derives 
the Pareto Front, which expresses a set of optimal solutions 
for these contradictory objectives. The designer can select a 
single solution to minimize the objective function with the 
desired reliability; e.g., the design variables to minimize the 
actuator power for the desired reliability can be selected. 
Moreover, one can observe that the solution of Type I opti-
mization attains results closed to the Pareto front for several 
minimum desired reliabilities: R(l) = 0.00 , R(l) = 0.33 and 
R(l) = 0.66 . Type I optimization leads to a single solution 
instead of type II optimization establishes a set of solutions 
that optimally balances the opposite objective functions. For 
type II, one can observe the actuator power and reliability 
(see Fig. 9a), mass, and reliability (see Fig. 9b), and varia-
tion of the first mode frequency and reliability (see Fig. 9c). 
These optimizations allowed us to obtain the dimensions 
of the cross-section area and hub inertia to minimize the 
effects of the link flexibility and increase the reliability 
simultaneously.

The set of the optimal solutions corresponding to Type 
III optimization are presented in Fig. 10 for the following 
minimum desired reliabilities: R(l) = 0.00 , R(l) = 0.33 and 
R(l) = 0.66 . These optimizations minimize the power of the 
joint actuator and maximize the first mode frequency (see 
Fig. 10a), and minimizes the static deflection of the tip (see 
Fig. 10a) subject to the desired reliability ( Rf  ). The optimal 
solutions are superposed over the Pareto front. Increasing 
the minimum reliability ( Rf  ) decreases the number of ele-
ments of the optimal solution set. Thus results are obtained 
because the reliability definition for this application imposes 
constraints on the dynamic behavior of the manipulator, i.e., 
the reliability depends on the amplitude of residual vibration 
subject to uncertainties. This optimization approach can also 
be applied to the other objective functions considered in 
Table 1, such as the mass of the manipulator or the variation 
of the first mode natural frequency.

The definition of the design variables �d obtained by 
applying the reliability-based optimization is presented in 
Table 4. Moreover, the definition of the objective function 
for the corresponding reliability constraint is also presented. 
The design variables define the dimensions of the cross-
section area and the inertia of the hub. by selecting these 
parameters, the dynamic response of the manipulator can be 
optimized, and the reliability of vibration amplitude at the 
tip can also be constrained.
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Conclusion

This contribution presents an optimal design procedure for a 
flexible-link manipulator subject to uncertainty parameters 
to optimize dynamic performance and reliability. The pro-
posed approach permits optimizing the main characteristics 
of the flexible link manipulator, such as the actuator’s power, 
mass, and tip deflection based on the elastic dynamic model. 
The objective functions consider the dynamic response 
of the manipulator in the frequency domain and the time 
domain.

The proposed modeling of the flexible-link manipulator 
permitted includes the uncertainties on the links’ param-
eters mass, stiffness, and damping parameters by apply-
ing the stochastic finite-element method. Moreover, the 
dynamic response subjected to uncertainties is obtained 
using the Monte–Carlo simulation. The reliability was 
efficiently computed based on the uncertain model of the 
manipulator and the first-order reliability method. The pro-
posed modeling approach to the uncertainties of the links 
can also be extended to manipulators with multiple degrees 
of freedom.

The proposed optimization aims to optimize key 
operational characteristics of f lexible manipulators, 
such as minimizing the elastic deflections, the power 
of actuators, and the mass of the manipulator subject 
to reliability constraints. Therefore, these operational 
characteristics are optimized subject to uncertainties by 
including reliability as a measure of robustness, i.e., the 
manipulator is less sensitive to uncertainties by maxi-
mizing the reliability criterion. Unlike the single-objec-
tive optimization procedure, the multi-objective genetic 
algorithm to solve the optimization problem lets solve 
two opposite objectives subject to constraints. The set 
of the optimal solutions and its corresponding defini-
tions of the design variables are obtained to optimize 
the dynamic performance. Moreover, the optimization 
procedure can also include operational constraints based 
on the elastodynamic performance.

Consequently, the novel contributions of the proposed 
method can be summarized in two main points based 
on the results. First, the stochastic modeling of flexible-
link manipulators allows including the uncertain struc-
tural parameters and computing the dynamical response. 
Finally, the reliability optimization approach applied to 
the one-link flexible manipulator with uncertain structural 
parameters permitted to obtain the inertial and geometric 
parameters to optimize the elastodynamic performance 
subjected to uncertainties.

Future works will encompass the optimization of multi-
degrees of freedom flexible-link manipulators considering 
control system criteria.

Appendix A Parameters of Flexible‑Link 
Manipulator

See Tables 5, 6.

Table 5   Physical and geometric parameters of flexible-link manipula-
tor

Properties Nomenclature Unit Values

Young’s modulus E N/m2 7×1010

Mass density � kg/m3 2700
Dimension of rectangular cross-

section
h m 0.02

Dimension of rectangular cross-
section

b m 0.003

Cross-section area A m2 bh
Cross-section inertia I m4

bh
b2+h2

12

Hub inertia Im1 kg m2 0.1
Radius of the cylindrical hub rm1 m 0.01
Link length l1 m 1
Number of elements n1j - 4
Tip mass mp1 kg 0.1

Table 6   Definition bounds of 
optimization constraits

Properties Nomenclature Unit Values

Maximum residual vibration amplitude to 
assess the reliability

�(u) m 0.001

Maximum static tip deflection y(u) m 0.002
Minimum fist mode natural frequency �(l) rad/s 70
Minimum bound of the design variables �

(l)

d

[
kgm2 m m

] [
5 × 10−6 0.001 0.025

]
Maximum bound of the design variables �

(u)

d

[
kgm2 m m

] [
5 × 10−5 0.003 0.030

]
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