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Abstract
Objective  In this paper, the dynamic characteristics of a miniature shock absorber by electrostatic excitation are studied. 
The 3 degrees of freedom (DOF) nonlinear forced vibration equations were established by Hamiltonian variational principle. 
The approximate analytical solution of the nonlinear differential equation is calculated. The nonlinear vibration behavior of 
the shock absorber under primary resonance was investigated.
Methods  The amplitude-frequency response equation and the relational expression of the component system with two damp-
ers (Tuned Mass Damper and Nonlinear Energy Sink passive vibration absorbers) were obtained using the multiscale method.
Results  It is found that the amplitudes of main component and dampers may be in the same or opposite direction by adjusting 
the parameter values. Furthermore, the energy absorbed by the dampers results in decrease of the main component amplitude 
magically. Meanwhile, it is also concluded that the increase of the damping ratio and/or mass ratio of the two dampers on 
the system caused a decrease in the amplitude of the main components.
Conclusions  TMD and/or NES play an important role in the shock absorption system which can kill the amplitude of the 
main component magically. The vibration amplitude of the main components can be largely decreased by increasing the 
mass ratio and damping ratio of TMD and NES. The association of external and internal resonances causes the energy of 
the external excitation moves to the TMD or NES, thus reducing the amplitude of main component. The amplitudes of main 
component and dampers may be in the same or opposite direction by adjusting the parameter values.

Keywords  Shock absorber · Tuned mass damper · Nonlinear energy sink · Multiscale method · Energy absorption

Introduction

Vibration is an unavoidable phenomenon in people's pro-
duction and life. The existence of vibration makes fatigue 
in industrial production equipment damage, affect the accu-
racy of equipment and even shorten the life of the equip-
ment. In general, vibration-damping and vibration-isolating 
equipment are installed in the forced components to reduce 

the vibration [1–6] and ensure the normal operation of the 
components. Tuned mass damper is a device that uses the 
tuned resonance effect between the damping device and the 
component to achieve energy absorption, energy dissipation 
and vibration reduction. This classic method of vibration 
reduction is not only applicable to macro-scale projects, but 
it is still a great advantage compared to other methods of 
vibration reduction in micro-precision instruments, espe-
cially in electromechanical devices [7–10]. Roberson [11] 
studied the dynamic response of a TMD and an un-damped 
Duffing spring system. Studies have shown that the con-
trollable frequency bandwidth of the nonlinear absorber is 
much wider than the linear TMD. Srinivasan [12] researched 
the parallel damping TMD and found that when the damp-
ing frequency coincides with the excitation frequency, the 
main system remains stationary, but the control bandwidth 
of TMD becomes narrower. However, sometimes the input 
energy of the vibration device is too large, and the TMD 
cannot absorb so much energy to ensure the normal work 
of the main component. Then, another vibration-damping 
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device, nonlinear energy sink (NES) passive vibration 
absorbers are needed to consume the excess energy of the 
main component. NES extracts unwanted vibrations from the 
system to reduce component amplitude by moving energy 
from the directly excited primary system to the ancillary 
system. Thus, a wide variety of NES designs have been pro-
posed. Some scholars aimed at choosing the different types 
of nonlinear stiffness, for example, non-smooth [13, 14], 
non-polynomial [15], cubic [16], vibro-impact [17–19] to 
optimize of NES system. Ohtori et al. [20] and Nucera et al. 
[17, 21] studied NES contribution to the overall system and 
found that it can reduce the time of energy dissipation or 
energy decay, and mitigate the lateral reaction force applied 
on the tank wall. Gendelman et al. [22] and Sapsis et al. 
[23] researched the effect of a NES with relatively small 
mass on the dynamics of a coupled system under periodic 
forcing in the vicinity of a main resonance theoretically and 
experimentally. They pointed that the quasi-periodic regime 
response provide efficient vibration suppression. Kerschen 
et al. [24] studied a two-degree-of-freedom master system 
with an attached NES, and found that this system may have 
more sequences of resonance transitions possible due to 
initial conditions than the single-degree-of-freedom case. 
Though the phenomenon of NES has been extensively stud-
ied in the references, the parameter selection and optimiza-
tion problem for multiple-degree-of-freedom systems are 
still a challenge [25–27].

In addition, many researchers have conducted dynamic 
research on different micro shock absorbers. For example, 
Malhotra et al. [28] showed that mass-spring damping sys-
tems are more common in engineering design regulations. 
Nagurka and Huang [29] compared the vertical drop ball 
to the mass-spring-damping system and studied its physi-
cal properties. Hamamoto et al. [30] conducted a controller 
design study on a mass-spring system with two degrees of 
freedom.

Motivated by these ideas, in this paper, we describe the 
TMD and NES system coupled to the equivalent model 
of the micro-electro-mechanical damping component. To 

study the dynamic characteristics of the micro-damper, 
we use the Hamiltonian variational principle to derive 
the nonlinear vibration equations of 3 freedom degrees 
(3-DOF) of a spring-mass-damping system. Moreover, the 
multiscale method [31–36] is used to obtain an approxi-
mate analytical solution to the derived nonlinear set of 
differential equations and the corresponding numerical 
results and discussion of the nonlinear dynamics are 
presented. Through the analysis of the parameters of 
the micro-damper, the dynamical behaviors of the shock 
absorber were examined.

Mathematical Model

Micro-electro-mechanical damping component, as shown 
in Fig. 1, with cylindrical tank with height, radius and 
wall thickness of H, R and tw on the left side of the micro 
device is an electrostatic excitation ug = A cos (�t).

Here the excitation frequency is �1 . The component 
L and the main component are connected by a spring K  . 
There is a damping symbol C between the component L 
and the main component M . The mass of the main compo-
nent is denoted by M , and the length of the inner hollow 
part of M is 2R . Place a coordinated damping element 
of mass m1 inside the main component. It is connected 
with the main component using spring k1 , m1 and k1 form 
TMD, and the inter-component damping parameter is c1 . 
The right side of the main component has a mass block of 
mass m2 . Springs k2 and k3 connect with the main com-
ponent. m2 and springs k2 , k3 work together to form NES 
for absorbing the excess energy of the main component. 
There are no displacement changes in the vertical direction 
and the elongation and compression of the springs k1 , k2 
and k3 are all in the horizontal direction. All the micro-
components except the spring in the Fig. 1 are considered 
to be rigid materials and do not deform. In addition, for the 

Fig. 1   Micro-electro-mechan-
ical damping component 
schematic
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sake of generality, we assume that K , k1 , k2 , k3 are stiffness 
of springs and C , c1 , c2 are damping.

The system Lagrangian is written as follows [37]:

where x , y , z are horizontal displacements of M , m1 and m2 , 
respectively.

There are 7 items in Eq. (1). Among them, the first three 
items are the kinetic energy of the main component, the kinetic 
energy of the mass damper, the kinetic energy of the mass 
damper, and the kinetic energy of the mass damper of the pas-
sive energy absorber. The last four items are spring elastic 
energy. K

2
x2 is the elastic potential energy between the main 

component and the excitation part, k1
2
(y − x)2 is the elastic 

potential energy between the main component and TMD, 
k2

2
(z − x)2 and k3

4
(z − x)4 is the elastic potential energy between 

the main component and NES.
The energy consumed by the system can be expressed by 

the following equation:

where C
2
ẋ2 represents the energy consumption of the damp-

ing between the main component and the excitation portion, 
c1

2
(ẏ − ẋ)2 represents the energy consumed by the damping 

between the main component and TMD, c2
2
(ż − ẋ)2 repre-

sents the energy consumed by the damping between the 
main component and NES. Excitation item ug is A cos (�t) . 
The dimensional system dynamics equations obtained from 
Eqs. (1, 2) using the Hamiltonian variational principle are 
as follows:

Introduce dimensionless parameters: tN = Ωt , here 
Ω2 =

K

M
 , Ω is the natural frequency of main component sys-

tem. Dimensionless parameters are: x = x

R
 , y = y

R
 , z = z

R
 , 

�2
1
=

k1

m1

 , �2
2
=

k2

m2

 , �1 =
�1

Ω
 , �2 =

�2

Ω
 , k2 =

k3R
2

m2Ω
2
 , �1 =

m1

M
 , 

�2 =
m2

M
 , Z =

C

2MΩ
 , �1 =

c1

2m1�1

 , �2 =
c2

2m2�2

.
Simplification Eqs. (3–5) gives the system dimensionless 

equation of motion as:

(1)
L =

M

2

(
u̇g + ẋ

)2
+

m1

2

(
u̇g + ẏ

)2
+

m2

2

(
u̇g + ż

)2

−
K

2
x2 −

k1

2
(y − x)2 −

k2

2
(z − x)2 −

k3

2
(z − x)4,

(2)D =
C

2
ẋ2 +

c1

2
(ẏ − ẋ)2 +

c2

2
(ż − ẋ)2,

(3)
M
(

üg + ẍ
)

+ Kx − k2(z − x) − k3(z − x)3 − k1(y − x)

+ Cẋ − c1(ẏ − ẋ) − c2(ż − ẋ) = 0,

(4)m1

(
üg + ÿ

)
+ k1(y − x) + c1(ẏ − ẋ) = 0,

(5)m2

(
üg + z̈

)
+ k2(z − x) + k3(z − x)3 + c2(ż − ẋ) = 0.

()�� denote the differentiation of tN.
In the above equations, parameters such as �2 , �2 and k2 

can be determined based on the properties of TMD and NES.
Next, we simplify the calculation of the Eqs. (6–8). 

Le t :  u = x + �1y  ,  v = x − y  and  w = z − x  ,  t hen 
x =

(
u + �1v

)
∕
(
1 + �1

)
  ,  y = (u − v)∕

(
1 + �1

)
  , 

z =
(
u + �1v

)
∕
(
1 + �1

)
+ w.

To simplify the calculation, we introduce a new time 
parameter � for conversion. Here � =

tN√
1+�1

.
The transformation of the Eqs. (6–8) into the following 

equation can be achieved by the parameter transformation:

Among them, dimensionless parameters are: Z =
2Z√
1+�1

 , 

�1 =
√
1 + �1�1  ,  �2 =

√
1 + �1�2  ,  k2 =

(
1 + �1

)
k2,

�∗ =
�
√
1+�1

Ω
.

Multiscale Method

In this section, to obtain numerical solution of the micro 
shock absorbers model by the multiscale method, we trans-
form the Eq. (9). Let the system (9) except for ü and u be 
multiplied by the small parameter �:

(6)

x′′ + 2Zx′ + x − �1�
2
1
(

y − x
)

− 2�1�1�1
(

y′ − x′
)

− �2�
2
2
(

z − x
)

− �2k2
(

z − x
)3

− 2�2�2�2
(

z′ − x′
)

= − 1
RΩ2 üg(t),

(7)y
��
+ 𝛽2

1

(
y − x

)
+ 2𝛽1𝜍1

(
y
�
− x

�)
= −

1

RΩ2
üg(t),

(8)

z
��
+ 𝛽2

2

(
z − x

)
+ k2

(
z − x

)3
+ 2𝛽2𝜍2

(
z
�
− x

�)
= −

1

RΩ2
üg(t),

(9)
ü + u + �1v + Zu̇ + �1Zv̇ − �2

(

1 + �1
)

�22w − �2k2w3

− 2�2�2�2ẇ =
1 + �1
R

A cos (�∗�),

(10)
v̈ + u +

(

�1 +
(

1 + �1
)2�21

)

v + Zu̇ +
(

�1Z + 2
(

1 + �1
)

�1�1
)

v̇

− �2
(

1 + �1
)

�22w − �2k2w3 − 2�2�2�2ẇ = 0,

(11)

ẅ − u − �1
(

1 +
(

1 + �1
)

�21
)

v +
(

1 + �1
)(

1 + �2
)

�22w +
(

1 + �2
)

k2w3 − Zu̇ − �1
(

Z + 2�1�1
)

v̇
+ 2

(

1 + �2
)

�2�2ẇ = 0.
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In the same way, the same transformations can be made 
for Eqs. (10) and (11). Equations (10) and (11) can be 
rewritten as follows:

Next, apply the multiscale method. Let:

Substituting the Eqs.  (15–20) into (12)–(14) yields 
Eq. (21)–(23):

(12)
ü + u + � ⋅ �1v + � ⋅ Zu̇ + � ⋅ �1Zv̇ − � ⋅ �2

(

1 + �1
)

�22w

− � ⋅ �2k2w3 − 2� ⋅ �2�2�2ẇ =
1 + �1
R

�A cos (�∗�).

(13)

v̈ + 𝜀u +
(
𝜀1 +

(
1 + 𝜀1

)2
𝛽2
1

)
v + 𝜀 ⋅ Zu̇ + 𝜀 ⋅

(
𝜀1Z + 2

(
1 + 𝜀1

)
𝛽1𝜍1

)
v̇

− 𝜀 ⋅ 𝜀2
(
1 + 𝜀1

)
𝛽2
2
w − 𝜀 ⋅ 𝜀2k2w

3 − 2𝜀 ⋅ 𝜀2𝛽2𝜍2ẇ = 0,

(14)

ẅ − �u − � ⋅ �1
(

1 +
(

1 + �1
)

�21
)

v
+
(

1 + �1
)(

1 + �2
)

�22w + � ⋅
(

1 + �2
)

k2w3 − � ⋅ Zu̇
− � ⋅ �1

(

Z + 2�1�1
)

v̇ + 2� ⋅
(

1 + �2
)

�2�2ẇ = 0.

(15)u = x11
(
T0, T1

)
+ �x12

(
T0, T1

)
,

(16)v = x21
(
T0, T1

)
+ �x22

(
T0, T1

)
,

(17)w = x31
(
T0, T1

)
+ �x32

(
T0, T1

)
,

(18)
u̇ =

(
D0 + 𝜀D1

)(
x11 + 𝜀x12

)
= D0x11 + 𝜀

(
D0x12 + D1x11

)
,

(19)
v̇ =

(
D0 + 𝜀D1

)(
x21 + 𝜀x22

)
= D0x21 + 𝜀

(
D0x22 + D1x21

)
,

(20)
ẇ =

(
D0 + 𝜀D1

)(
x31 + 𝜀x32

)
= D0x31 + 𝜀

(
D0x32 + D1x31

)
.

(21)

D2
0
x11 + �

�
D2

0
x12 + 2D0D1x11

�
+
�
x11 + �x12

�

+ �

⎡⎢⎢⎢⎢⎢⎣

�1
�
x21 + �x22

�
+ Z

�
D0x11 + �

�
D0x12 + D1x11

��
+�1Z

�
D0x21 + �

�
D0x22 + D1x21

��

−�2
�
1 + �1

�
�2
2

�
x31 + �x32

�
− �2k2

�
x31 + �x31

�3
−2�2�2�2

�
D0x31 + �

�
D0x32 + D1x31

��

⎤⎥⎥⎥⎥⎥⎦
=

1 + �1

R
�A cos (�∗�),

Considered the Eq. (21), let �2
10

= 1 and equating the 
coefficients of � , we have:

Considered the Eq.  (22), let �2
20

= (�1 +
(
1 + �1

)2
)�2

1
 

and equating the coefficients of � , we have:

Considered the Eq. (23), let �2
30

=
(
1 + �1

)(
1 + �2

)
�2
2
 

and equating the coefficients of � , we have:

According to (24), (26), and (28), we can get (30):

(22)

D2
0
x21 + �

�
D2

0
x22 + 2D0D1x21

�
+
�
�1+

�
1 + �1

�2
�2
1

��
x21 + �x22

�

+ �

⎡⎢⎢⎢⎢⎢⎣

�
x11 + �x12

�
+ Z

�
D0x11 + �

�
D0x12 + D1x11

��
+�

�1Z + 2
�
1 + �1

�
�1�1

��
D0x21 + �

�
D0x22 + D1x21

��

−�2
�
1 + �1

�
�2
2

�
x31 + �x21

�
− �2k2

�
x31 + �x32

�3
−2�2�2�2

�
D0x31 + �

�
D0x32 + D1x31

��

⎤⎥⎥⎥⎥⎥⎦

= 0,

(23)

D2
0x31 + �

(

D2
0x32 + 2D0D1x31

)

+
(

1 + �1
)(

1 + �2
)

�22
(

x31 + �x32
)

+ �

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−
(

x11 + �x12
)

− �1
(

1 +
(

1 + �1
)

�21
)(

x21 + �x22
)

+
(

1 + �2
)

k2
(

x31 + �x32
)3 − Z

(

D0x11 + �
(

D0x12 + D1x11
))

−�1
(

Z + 2�1�1
)(

D0x21 + �
(

D0x22 + D1x21
))

+2
(

1 + �2
)

�2�2
(

D0x31 + �
(

D0x32 + D1x31
))

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 0.

(24)�0 ∶ D2
0
x11 + �2

10
x11 = 0,

(25)

�1:D2
0x12 + 2D0D1x11 + �2

10x12 + �1x21 + ZD0x11 + �1ZD0x21

− �2k2x331 − �2
(

1 + �1
)

�22x31 − 2�2�2�2D0x31 =
1 + �1
R

A cos (�∗�).

(26)�0 ∶ D2
0
x21 + �2

20
x21 = 0,

(27)

�1:D2
0x22 + 2D0D1x21 + �2

20
x22 + x11 + ZD0x11

+
(

�1Z + 2
(

1 + �1
)

�1�1
)

D0x21 − �2k2x331
− �2

(

1 + �1
)

�22x31 − 2�2�2�2D0x31 = 0.

(28)�0 ∶ D2
0
x31 + �2

30
x31 = 0,

(29)

�1D2
0x32 + 2D0D1x31 + �2

30
x32 − x11 − ZD0x11

− �1
(

1 +
(

1 + �1
)

�21
)

x21 − �1
(

Z + 2�1�1
)

D0x21
+
(

1 + �2
)

k2x331 + 2
(

1 + �2
)

�2�2D0x31 = 0.

x11 = A1

(
T1
)
ei�10T0 + A1

(
T1
)
e−i�10T0 ,

(30)x21 = A2

(
T1
)
ei�20T0 + A2

(
T1
)
e−i�20T0 ,
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Substituting Eq. (30) into Eqs. (25), (27), and (29), we 
get Eqs. (31), (32), and (33), as follows:

In the following, we discuss the primary resonance with 
the frequency of external excitation approaches the main 
component, in other words, �∗ = �10 + �� , where � is the 
nonlinear detuning parameter.

x31 = A3

(
T1
)
ei�30T0 + A3

(
T1
)
e−i�30T0 .

(31)

D2
0
x12 + �2

10
x12 = −2

(
�10D1A1ie

i�10T0 − �10D1A1ie
−i�10T0

)

− �1

(
A2e

i�20T0 + A2e
−i�20T0

)

− Z
(
�10A1ie

i�10T0 − �10A1ie
−i�10T0

)

− �1Z
(
�20A2ie

i�20T0 − �20A2ie
−i�20T0

)

+ �2
(
1 + �1

)
�2
2

(
A3e

i�30T0 + A3e
−i�30T0

)

+ �2k2

(
A3e

i�30T0 + A3e
−i�30T0

)3

+ 2�2�2�2

(
�30A3ie

i�30T0 − �30A3ie
−i�30T0

)

+
1 + �1

2R
Aei�

∗T0 ,

(32)

D2
0x22 + �2

20
x22 = −2

(

�20D1A2iei�20T0 − �20D1A2ie−i�20T0
)

−
(

A1ei�10T0 + A1e−i�10T0
)

− Z
(

�10A1iei�10T0 − �10A1ie−i�10T0
)

−
(

�1Z + 2
(

1 + �1
)

�1�1
)

(

�20iA2ei�20T0 − �20iA2e−i�20T0
)

+ �2
(

1 + �1
)

�22
(

A3ei�30T0 + A3e−i�30T0
)

+ �2k2
(

A3ei�30T0 + A3e−i�30T0
)3

+ 2�2�2�2
(

�30iA3ei�30T0 − �30iA3e−i�30T0
)

,

(33)

D2
0
x32 + �2

30
x32 = −2

(
�30D1A3ie

i�30T0 − �30D1A3ie
−i�30T0

)

+
(
A1e

i�10T0 + A1e
−i�10T0

)

+ �1
(
1 +

(
1 + �1

)
�2
1

)(
A2e

i�20T0 + A2e
−i�20T0

)

−
(
1 + �2

)
k2

(
A3e

i�30T0 + A3e
−i�30T0

)3

+ Z
(
�10A1ie

i�10T0 − �10A1ie
−i�10T0

)

+ �1
(
Z + 2�1�1

)(
�20iA2e

i�20T0 − �20iA2e
−i�20T0

)

− 2
(
1 + �2

)
�2�2

(
�30iA3e

i�30T0 − �30iA3e
−i�30T0

)
.

Case 1: when �20 and �30 are far from �10 , substituting 
�∗ = �10 + �� into the Eqs. (31–33) and eliminating the 
secular terms, the following equations are obtained:

By assuming:

and substituting it into (34–36), we have the result:

Let �1 = �T1 − �1 , separating real and imaginary parts can 
be obtain:

(34)−2�10D1A1i − Z�10A1i+
1 + �1

2R
Aei��T0 = 0,

(35)−2�20D1A2i −
(
�1Z + 2

(
1 + �1

)
�1�1

)
�20iA2 = 0,

(36)
−2�30D1A3i − 3

(
1 + �2

)
k2A

2
3
A3 − 2

(
1 + �2

)
�2�2�30iA3 = 0.

(37a)A1 =
1

2
a1
(
T1
)
ei�1(T1),A1 =

1

2
a1
(
T1
)
e−i�1(T1),

(37b)A2 =
1

2
a2
(
T1
)
ei�2(T1),A2 =

1

2
a2
(
T1
)
e−i�2(T1),

(37c)A3 =
1

2
a3
(
T1
)
ei�3(T1),A3 =

1

2
a3
(
T1
)
e−i�3(T1),

(38a)
ȧ1 + a1i�̇1 = −Z

2
a1 −

i
(

1 + �1
)

A
2R�10

(

cos
(

�T1 − �1
)

+ i sin
(

�T1 − �1
))

,

(38b)ȧ2 + a2i𝜑̇2 =
𝜀1Z + 2

(
1 + 𝜀1

)
𝛽1𝜍1

2
a2,

(38c)ȧ3 + a3i𝜑̇3 =
3i
(
1 + 𝜀2

)
k2a

3
3

8𝜔30

−
(
1 + 𝜀2

)
𝛽2𝜍2a3.

(39a)ȧ1 = −
Z

2
a1 +

(
1 + 𝜀1

)
A

2R𝜔10

sin 𝜃1,

(39b)ȧ1𝜑̇1 = −

(
1 + 𝜀1

)
A

2R𝜔10

cos 𝜃1,

(39c)ȧ2 =
𝜀1Z + 2

(
1 + 𝜀1

)
𝛽1𝜍1

2
a2,

(39d)a2𝜑̇2 = 0,
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In order to obtain a steady state solution, let 
ȧ1 = 𝜃̇1 = ȧ2 = 𝜑̇2 = ȧ3 = 𝜑̇3 = 0 , we can obtained the 
Eq. (40) as follow:

Substituting Eqs. (34–36, 37) into Eqs. (31–33) and Eqs. 
(15–17), finally, the approximate solutions of the shock 
absorbers x , y , z are obtained.

Case 2: when �20 = �10 + ��1 ( �1 is the nonlinear detun-
ing parameter) and �30 is far from �10 , substituting the 
expressions of �∗ and �20 into the Eqs. (31–33) and elimi-
nating the secular terms, one obtained:

Substituting (37) into (41–43), we have:

(39e)ȧ3 = −
(
1 + 𝜀2

)
𝛽2𝜍2a3,

(39f)a3𝜑̇3 =
3
(
1 + 𝜀2

)
k2a

3
3

8𝜔30

.

(40)

(
1 + �1

)2
A2

4R2�2
10

=
Z2a2

1

4
+ a2

1
�2.

(41)
− 2�10D1A1i − �1A2ei��1T0 − Z�10A1i

− �1Z�20A2iei��1T0+
1 + �1
2R

Aei��T0 = 0,

(42)
− 2�20D1A2i − A1e−i��1T0 − Z�10A1ie−i��1T0

−
(

�1Z + 2
(

1 + �1
)

�1�1
)

�20iA2 = 0,

(43)
−2�30D1A3i − 3

(
1 + �2

)
k2A

2
3
A3 − 2

(
1 + �2

)
�2�2�30iA3 = 0.

(44a)

ȧ1 + a1i𝜑̇1 =
i𝜀1a2

2𝜔10

(
cos

(
𝜑2 − 𝜑1 + 𝜎1T1

)
+

i sin
(
𝜑2 − 𝜑1 + 𝜎1T1

)
)

−
Z

2
a1

−
𝜀1Z𝜔20a2

2𝜔10

(
cos

(
𝜑2 − 𝜑1 + 𝜎1T1

)
+

i sin
(
𝜑2 − 𝜑1 + 𝜎1T1

)
)

−

(
1 + 𝜀1

)
A

2R𝜔10

i

(
cos

(
𝜎T1 − 𝜑1

)
+

i sin
(
𝜎T1 − 𝜑1

)
)
,

(44b)

ȧ2 + a2i𝜑̇2 =
ia1

2𝜔20

(
cos

(
𝜑2 − 𝜑1 + 𝜎1T1

)
−

i sin
(
𝜑2 − 𝜑1 + 𝜎1T1

)
)

−
Z𝜔10a1

2𝜔20

(
cos

(
𝜑2 − 𝜑1 + 𝜎1T1

)
−

i sin
(
𝜑2 − 𝜑1 + 𝜎1T1

)
)

−
𝜀1Z + 2

(
1 + 𝜀1

)
𝛽1𝜍1

2
a2,

Let �2 = �2 − �1 + �1T1 , the calculation process is as in 
case 1, the frequency response equation of the steady-state 
solutions is obtained:

Case 3: when �30 = �10 + ��2 ( �2 is the nonlinear detun-
ing parameter) and �20 is far from �10 , substituting the 
expressions of �∗ and �30 into the Eqs. (31–33) and elimi-
nating the secular terms, we have the result:

Substituting (37) into (46–48), we have:

(44c)ȧ3 + a3i𝜑̇3 =
3i
(
1 + 𝜀2

)
k2a

3
3

8𝜔30

−
(
1 + 𝜀2

)
𝛽2𝜍2a3.

(45)

(

a1
2�20

)2

+
(

Z�10

2�20
a1

)2

=

(

�1Z + 2
(

1 + �1
)

�1�1
2

a2

)2

+ a22
(

� − �1
)2.

(46)

− 2�10D1A1i − Z�10A1i + �2
(
1 + �1

)
�2
2
A3e

i��2T0+3�2k2A
2
3
A3e

i��2T0

+ 2�2�2�2�30A3ie
i��2T0+

1 + �1

2R
Aei��T0 = 0,

(47)−2�20D1A2i −
(
�1Z + 2

(
1 + �1

)
�1�1

)
�20iA2 = 0,

(48)

− 2�30D1A3i + A1e
−i��2T0 − 3

(
1 + �2

)
k2A

2
3
A3 + Z�10A1ie

−i��2T0

− 2
(
1 + �2

)
�2�2�30iA3 = 0.

(49a)

ȧ1 + a1i𝜑̇1 =
Z

2
a1 −

i𝜀2
(
1 + 𝜀1

)
𝛽2
2
a3

2𝜔10

(
cos

(
𝜑3 − 𝜑1 + 𝜎2T1

)
+

i sin
(
𝜑3 − 𝜑1 + 𝜎2T1

)
)

−
i3𝜀2k2a

3
3

8𝜔10

(
cos

(
𝜑3 − 𝜑1 + 𝜎2T1

)
+

i sin
(
𝜑3 − 𝜑1 + 𝜎2T1

)
)

+
𝜀2𝛽2𝜍2𝜔30a3

𝜔10

(
cos

(
𝜑3 − 𝜑1 + 𝜎2T1

)
+

i sin
(
𝜑3 − 𝜑1 + 𝜎2T1

)
)

−

(
1 + 𝜀1

)
A

2R𝜔10

i

(
cos

(
𝜎T1 − 𝜑1

)
+

i sin
(
𝜎T1 − 𝜑1

)
)
,

(49b)ȧ2 + a2i𝜑̇2 =
𝜀1Z + 2

(
1 + 𝜀1

)
𝛽1𝜍1

2
a2,
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Let �3 = �3 − �1 + �2T1 , similarly, the frequency 
response equation of the steady-state solutions is obtained:

Repeat the same procedures for case 2 and 3, then, the 
approximate solutions of the shock absorbers x , y , z are 
obtained.

Results and Discussion

In this section, numerical simulations are used to study 
the nonlinear vibration of electrostatically excited minia-
ture shock absorbers based on 3 degrees of freedom model. 
The tank is made of an aluminum sheet with a thickness 
tw = 1 mm and mass density � = 2700 kg

/
m3 . In addi-

tion, the non-dimensionless parameter values are taken as 
Z = 3.7 × 10−2 and k2 = 1[37]. In the following, the non-
dimensionless parameter values are �1 = 0.17 , �2 = 0.01 , 

(49c)

ȧ3 + a3i�̇3 = −
ia1
2�30

(

cos
(

�3 − �1 + �2T1
)

−
i sin

(

�3 − �1 + �2T1
)

)

+
i3
(

1 + �2
)

k2a33
8�30

+
Z�10a1
2�30

(

cos
(

�3 − �1 + �2T1
)

−
i sin

(

�3 − �1 + �2T1
)

)

−
(

1 + �2
)

�2�2a3.

(50)

(

a1
2�30

)2

+
(

Z�10

2�30
a1

)2

=
((

1 + �2
)

�2�2a3
)2

+

(

3
(

1 + �2
)

k2a33
8�30

+ a3
(

� − �2
)

)2

.

�1 = �2 = 0.1 , � = �1=�2=0.1 , �1=0.1 , �2=0.001 [37] when 
they are not listed specifically.

The relations among the amplitudes of main component 
and dampers are present in Figs. 2, 3 and 4 for case 1, case 
2 and case 3 correspondingly. It can be observed that the 
main component amplitude x is much smaller than those of 
the dampers y and z . Obviously, the dampers absorb energy 
of system, which makes the amplitude of main compo-
nent is reduced. From Fig. 3, It is clearly noted that when 
�∗ = �10 + �� and �20 = �10 + ��1 , the association of exter-
nal and internal resonances causes the energy of the external 
excitation moves to the TMD, and the amplitude y improves. 
From Fig. 4, we also get that the amplitude z improves.

To better show the damping effect of the dampers, the 
amplitude diagram of the main component under different 

Fig. 2   Diagram of amplitude relationship among main component 
and dampers for case 1

Fig. 3   Diagram of amplitude relationship among main component 
and dampers for case 2

Fig. 4   Diagram of amplitude relationship among main component 
and dampers for case 3
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dampers for case 1 is shown in Fig. 5. Obviously, with a 
damper, whether it is TMD or NES, the amplitude of the 
main component will be deskilled. Moreover, a combina-
tion of both can make a largely reduction. This indicates 
that TMD and /or NES play an important role in the shock 
absorption system.

Moreover, comparisons of the TMD mass ratio on the 
amplitude of the main component for case 2 and case 3 in 
Figs. 6 and 7 show that as the mass ratio increases, time 
response of main component amplitude is remarkably 
decreased. This indicates that the effect of TMD mass ratio 
on the amplitude of the main component is significant. 
Therefore, adjusting the mass ratio of the TMD can be used 
to reliably control the vibration characteristics of the system. 
The results in this paper accord well with those in Ref. [38].

Fig. 5   Time response of main component amplitude for case 1

Fig. 6   Time response of main component amplitude with different 
TMD mass ratio for case 1

Fig. 7   Time response of main component amplitude with different 
TMD mass ratio for case 2

Fig. 8   Time response of main component amplitude with different 
TMD damping ratio for case 2

Fig. 9   Time response of main component amplitude with different 
NES mass ratio for case 3
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We now turn our attention to the influence of the TMD 
damping ratio on the system amplitude as shown in Fig. 8. 
Studies have shown that as the damping ratio increases, the 
amplitude of the system decreases mostly, and at some point, 
the situation is just the opposite which is agreement with 
Ref. [38].

To clear how the amplitude varies with the different 
values of NES mass ratio, the case 3 are plotted in Fig. 9. 
Clearly, the larger the mass ratio is, the lower amplitude of 
the main component is, which is consistent with that of the 
TMD.

In addition, Fig. 10 shows variation of main component 
amplitude of system with different NES damping ratio. It is 
clear from Fig. 10 that the component amplitude decreases 
as the NES damping ratio coefficient increases, which is 
consistent with that of the TMD.

Finally, the results in Figs. 2, 3, 4, 5, 6, 7, 8, 9 and 10 
reveal that the amplitudes of main component and dampers 
may be in the same or the opposite direction as the parameter 
values vary.

Conclusion

To study the dynamic characteristics of the miniature shock 
absorber, the 3 DOF nonlinear forced vibration equations 
are established by Hamiltonian variational principle. A 
numerical approximate solution is obtained using a multi-
scale method. The main results of the study may be listed as:

•	 TMD and/or NES play an important role in the shock 
absorption system which can kill the amplitude of the 
main component magically.

•	 The vibration amplitude of the main components can be 
largely decreased by increasing the mass ratio and damp-
ing ratio of TMD and NES.

•	 The association of external and internal resonances 
causes the energy of the external excitation moves to the 
TMD or NES, thus reducing the amplitude of main com-
ponent.

•	 The amplitudes of main component and dampers may be 
in the same or opposite direction by adjusting the param-
eter values.

It is hoped that the nonlinear vibration presented herein 
will be useful for research work on micro shock absorbers.

Acknowledgements  The work described in this paper is supported by 
the scientific research foundation of Yunnan Provincial Department 
of Education (Grant nos.: 2022J0477 and 2022J0066) and the natural 
science foundation of Yunnan Provincial Department of science and 
Technology (Grant no.: 202201AU070227). The authors are grateful 
for their financial support.

Declarations 

Conflict of interest  The authors declare that they have no conflict of 
interest.

References

	 1.	 Santo DR, Balthazar JM, Tusset AM, Picciriol V, Brasil R, Sil-
veira M (2018) On nonlinear horizontal dynamics and vibrations 
control for high-speed elevators. J Vib Control 24:825–838

	 2.	 Ezzat MA, El-Bary AA, Morsey MM (2010) Space approach 
to the hydro-magnetic flow of a dusty fluid through a porous 
medium. Comput Math Appl 59:2868–2879

	 3.	 Lisitano D, Jiffri S, Bonisoli E, Mottershead JE (2018) Experi-
mental feedback linearisation of a vibrating system with a non-
smooth nonlinearity. J Sound Vib 416:192–212

	 4.	 Ezzat MA, El-Bary AA (2016) Effects of variable thermal con-
ductivity on Stokes’ flow of a thermoelectric fluid with fractional 
order of heat transfer. Int J Therm Sci 100:305–315

	 5.	 Chen J, Dong DW, Shi WZ (2016) Study on vibration isolation 
design of double layer vibration isolation system with dynamic 
package of beh system. J Vib Shock 35:211–218

	 6.	 Ezzat MA, El-Karamany AS, El-Bary AA (2017) On dual-phase-
lag thermoelasticity theory with memory-dependent derivative. 
Mech Adv Mater Struct 24(11):908–916

	 7.	 Yang F, Sedaghati R, Esmailzadeh E (2009) Vibration suppression 
of non-uniform curved beams under random loading using optimal 
tuned mass damper. J Vib Control 15:233–261

	 8.	 Yang F, Sedaghati R, Esmailzadeh E (2009) Optimal vibration 
suppression of Timoshenko beam with tuned mass damper using 
finite element method. J Vib Acoust 131:837–838

	 9.	 Ezzat MA, El-Karamany AS, El-Bary AA, Fayik MA (2014) 
Fractional ultrafast laser-induced magneto thermoelastic behav-
ior in perfect conducting metal films. J Electromagn Waves Appl 
28(1):64–82

Fig. 10   Time response of main component amplitude with different 
NES damping ratio for case 3



3038	 Journal of Vibration Engineering & Technologies (2023) 11:3029–3038

1 3

	10.	 Cheng Y, Li DY, Li C (2011) Dynamic vibration absorbers 
for vibration control within a frequency band. J Sound Vib 
330:1582–1598

	11.	 Roberson RE (1952) Synthesis of a non-linear dynamic vibration 
absorber. J Franklin Inst 254:205–220

	12.	 Srinivasa AV (1969) Analysis of parallel damped dynamic vibra-
tion absorbers. J Eng Ind Trans ASME 91:282–287

	13.	 Ture SA, Lamarque C-H, Dimitrijevic Z (2012) Vibratory energy 
exchange between a linear and a nonsmooth system in the pres-
ence of the gravity. Non-linear Dyn 70:1473–1483

	14.	 Lamarque C-H, Ture SA, Dimitrijevic Z (2014) Dynamics of a 
linear system with time-dependent mass and a coupled light mass 
with non-smooth potential. Meccanica 49:135–145

	15.	 Gendelman OV (2008) Targeted energy transfer in systems with 
non-polynomial non-linearity. J Sound Vib 315:732–745

	16.	 Vakakis AF, Gendelman O (2000) Energy pumping in nonlinear 
mechanical oscillators: Part II—resonance capture. J Appl Mech 
68:42–48

	17.	 Nucera F, Vakakis AF, McFarland DM, Bergman LA, Kerschen 
G (2007) Targeted energy transfers in vibro-impact oscillators for 
seismic mitigation. Nonlinear Dyn 50:651–677

	18.	 Gourc E, Michon G, Seguy S, Berlioz A (2015) Targeted energy 
transfer under harmonic forcing with a vibro-impact nonlinear 
energy sink: analytical and experimental developments. J Vib 
Acoust 137:031008

	19.	 Gendelman OV, Alloni A (2015) Dynamics of forced system with 
vibro-impact energy sink. J Sound Vib 358:301–314

	20.	 Ohtori Y, Christenson RE, Spencer BF, Dyke SJ (2004) Bench-
mark control problems for seismically excited nonlinear buildings. 
J Eng Mech 130:366–385

	21.	 Nucera F, LoIacono F, McFarland DM, Bergman LA, Vakakis 
AF (2008) Application of broadband nonlinear targeted energy 
transfers for seismic mitigation of a shear frame: experimental 
results. J Sound Vib 313:57–76

	22.	 Gendelman OV, Vakakis AF, Manevitch LI, McCloskey R (2000) 
Energy pumping in nonlinear mechanical oscillators I: dynamics 
of the underlying Hamiltonian system. J Appl Mech 68:34–41

	23.	 Sapsis TP, Vakakis AF, Gendelman OV, Bergman LA, Kerschen 
G, Quinn DD (2009) Efficiency of targeted energy transfers in 
coupled nonlinear oscillators associated with 1:1 resonance cap-
tures: Part II, analytical study. J Sound Vib 325:297–320

	24.	 Kerschen G, Kowtko JJ, McFarland DM, Bergman LA, Vakakis 
AF (2007) Theoretical and experimental study of multimodal tar-
geted energy transfer in a system of coupled oscillators. Nonlinear 
Dyn 47:285–309

	25.	 Ezzat MA, El-Bary AA (2014) Two-temperature theory of mag-
neto-thermo-viscoelasticity with fractional derivative and integral 
orders heat transfer. J Electromagn Waves Appl 28(16):1985–2004

	26.	 Vakakis AF, Manevitch L, Gendelman O, Bergman L (2003) 
Dynamics of linear discrete systems connected to local essentially 
non-linear attachments. J Sound Vib 264:559–577

	27.	 Vakakis AF, Gendelman O (2001) Energy pumping in nonlinear 
mechanical oscillators: Part II: resonance capture. J Appl Mech 
68:42–48

	28.	 Malhotra PK, Wenk T, Wieland M (2000) Simple procedure 
for seismic analysis of liquid-storage tanks. Struct Eng Int 
10:197–201

	29.	 Nagurka M, Huang S (2004) A mass-spring-damper model of a 
bouncing ball. Am Control Conf 1:499–504

	30.	 Hamamoto K, Fukuda T, Sugie T (2000) Iterative feedback tuning 
of controllers for a two-mass spring system with friction. Control 
Eng Pract 11:1061–1068

	31.	 Nayfeh AH, Mook DT (1979) Nonlinear oscillations. Wiley, New 
York, pp 365–431

	32.	 Gao XM, Jin DP, Chen T (2018) Nonlinear analysis and experi-
mental investigation of a rigid-flexible antenna system. Meccanica 
53:33–48

	33.	 Navazi HM, Hojjati M (2017) Nonlinear vibrations and stability 
analysis of a rotor on high-static-low-dynamic-stiffness supports 
using method of multiple scales. Aerosp Sci Technol 63:259–265

	34.	 Krylov S, Dick N (2016) Dynamic stability of electrostatically 
actuated initially curved shallow micro beams. Continuum Mech 
Thermodyn 7:445–468

	35.	 Li L, Zhang QC (2017) Nonlinear dynamic analysis of electrically 
actuated viscoelastic bistable micro-beam system. Nonlinear Dyn 
87:587–604

	36.	 Ezzat MA, El-Bary AA (2012) MHD free convection flow 
with fractional heat conduction law. Magnetohydrodynamics 
48(4):587–606

	37.	 Farid M, Levy N, Gendelman OV (2017) Vibration mitigation 
in partially liquid-filled vessel using passive energy absorbers. J 
Sound Vib 406:51–73

	38.	 Tong CH, Zhang XD (2007) Tuning mass damper parameter opti-
mization and its application. J Vib Meas Diagn 2:146–149

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.


	Dynamic Analysis of Micro-shock Absorbers
	Abstract
	Objective 
	Methods 
	Results 
	Conclusions 

	Introduction
	Mathematical Model
	Multiscale Method
	Results and Discussion
	Conclusion
	Acknowledgements 
	References




