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Abstract
Objective Considering the influence of cable geometric nonlinearity, inclination angle, and the synergistic vibration of the 
bridge deck beam, the parametric vibration characteristics of stay cables under random excitation is investigated in this paper.
Methods Based on the establishment of the cable-beam coupled parametric vibration model under random excitation, the 
coupled motion equations of stay cable and bridge deck beam are derived and transformed into a random system of state 
equations by phase space transformation. The Wong-Zakai correction term in the Stradonovich principle is introduced and 
the Milstein-Platen method is used to discretize the given Ito state equations of cable-beam coupled vibration under random 
excitation. In order to avoid the influence of the parametric diffusion coefficient on the numerical format, an iterative method 
for solving the time history of the random vibration of the cable-deck beam is proposed. Then the vibration amplitude, radom 
response power spectral density and probability density change of the cable are analyzed from the random track angle, and 
the results are compared with the Gauss truncation method. The effects of damping ratio, initial tension, initial disturbance 
of stiffening beam and random excitation intensity on the vibration of the cable are studied.
Conclusions It is found that the the iterative calculation results of random vibration of stay cables are consistent with the 
traditional Gaussian truncation method, and the proposed method can solve the vibration time history of cables under 
random excitation. It is also observed that the greater the intensity of the random excitation, the maximum response of the 
cable presents a non-linear increase; compared with the ideal excitation, the response of the stay cable under the action of 
the random excitation is larger under the same conditions.

Keywords Stayed cable · Random excitation · Coupling model · Parametric vibration · Response analysis

Introduction

In recent decades, cable-stayed structures have become 
increasingly popular for modern long-span bridges. The 
long-span cable-stayed bridge is a high-order statically inde-
terminate structure composed of cable stays, deck beams and 
bridge towers [1]. The cable stays in cable-stayed bridges 
suspend the deck from the towers; they are elastic and flex-
ible, with extremely low damping properties. With the 
ever-increasing span lengths of cable-stayed bridges, stay 

cables are getting longer and longer and thus more prone 
to excessive vibration under complex external excitations 
due to vehicles, rain, snow, and temperature, among oth-
ers [2]. Monitoring studies of active cable-stayed bridges 
show that the cables are prone to large-scale vibration even 
under the action of breeze and drizzle. This effect is gener-
ally attributed to the parametric vibration induced by the 
excitation of stiffening beams or bridge towers. The result-
ing fatigue stress in the cable–beam anchorage area may 
accelerate fatigue damage to the cable, and in severe cases 
endanger the operational safety and performance of the 
bridge [3]. Therefore, it is very important to understand the 
stay cable’s parametric vibration mechanism and dynamic 
response characteristics.

Traditionally, investigations into the parametric vibra-
tion of stay cables have focused separately on the beam 
and cables [4–7]. In other studies that consider the overall 
structure, the cable–beam coupling, consisting of a beam 
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and a cable, has also often been used to investigate cable 
parametric vibration [8–12]. Extensive research has been 
conducted on the different forms of cable end excitation, 
including ideal excitation [13], vertical harmonic support 
excitation [14], wind and support motion excitation [6], 
white noise and narrow band random excitation [15], in-
plane transverse uniformly distributed Gaussian white noise 
[16], random and periodic combined support motion excita-
tion [17], filtered Gaussian white noise [18], and seismic and 
sea wave excitation [19]. In practice, the different excitations 
applied to cables are neither harmonic nor periodic but ran-
dom in nature. Therefore, it is crucial to analyze the random 
response of stay cables.

Modeling parametric vibration under random excitation 
of the stay cable, Zhou et al. [3] apply fourth-order cumu-
lant-neglect closure together with C-type Gram–Charlier 
expansion with a fourth-order closure to obtain the statisti-
cal moments, power spectral density (PSD) and probabil-
ity density function (PDF) of the dynamic response of an 
inclined shallow cable with linear viscous dampers under 
stochastic excitation. In Brouwers’ [20] theoretical analysis 
of the non-stationary response of a randomly parametrically 
excited oscillator, the amplitude and phase are described 
by fluctuation equations in which time is the independent 
variable and Fokker–Planck equations are applied to derive 
the probability density of amplitude and phase. Nielsen and 
Sichani [21] analyze the stochastic response and chaotic 
behavior of a shallow cable using two comparable stochas-
tic models. Narayanan and Kumar [22] develop a modified 
path integral procedure based on a non-Gaussian transition 
PDF, which is the product of a Gaussian PDF and a series of 
Hermite polynomials, to solve the Fokker–Planck equation 
and predict the stochastic and chaotic response of a number 
of nonlinear systems subjected to external and parametric 
random excitations. In their study of the random vibration 
of stay cables under Gaussian white noise and narrowband 
random excitation, Gu et al. [23] derive Gaussian and first-
order non-Gaussian closed-form solutions by employing the 
statistical moment truncation method to solve the moment 
equation. Brzakala and Herbut [24] test a projection method 
based on the finite dimensional polynomial subspace as an 
effective alternative to popular perturbation methods, the 
method of moments, or the Monte Carlo simulation. Taking 
a different approach, Fu et al. [25] apply the stochastic aver-
aging method and stochastic dynamic programming prin-
ciple to determine stochastic optimal control of the stayed 
cable under fluctuating wind load. Based on nonlocal strain 
gradient theory, Rastehkenari [26] investigate the dynamic 
response of a functionally graded nanobeam supported by 

viscoelastic foundation to a stationary random excitation. 
Most recently, using the direct eigenvalue analysis approach 
based on response moment stability, Floquet theorem, Fou-
rier series and matrix eigenvalue analysis, Ying et al. [27] 
analyze stochastic stability control of parameter-excited 
vibration of the inclined stay cable with multiple modes of 
coupling and under random and periodic combined support 
excitation.

The literature review reveals that despite the richness and 
profundity of investigations into the parametric vibration 
of stay cables under random excitations, there is limited 
research available in the open literature on the vibration 
characteristics of the cable parameters from the angle of 
random orbit. Most existing studies are based on the Fok-
ker–Planck–Kolmogorov (FPK) equation and study cable 
parametric vibration from the perspective of transition prob-
ability density, ignoring the effect of the synergistic vibra-
tion of the bridge deck beam and cannot directly solve the 
vibration response time history. Therefore, in order to more 
accurately grasp the vibration characteristics of the stayed 
cable, and consider the geometric nonlinearity of the stay-
ing cable, the inclination angle and the synergistic vibration 
effect of the bridge deck beam, the aim of this study is to 
provide one method which can directly solve the response 
time history of the cable–beam coupling structure. To this 
end, based on the cable–beam coupling vibration model 
under random excitation established, the coupled motion 
equations of stay cable and bridge deck beam are derived 
and transformed into a random system of state equations 
by phase space transformation. Following in the next sec-
tion, the Milstein–Platen method is used as a first attempt 
to solve the coupled random vibration time history of the 
cable–beam structure. An iterative method for solving the 
time history of the random vibration of the cable-deck beam 
is applied to avoid the influence of the parametric diffusion 
coefficient on the numerical forma, which is of great signifi-
cance to the vibration analysis of the cable–beam coupling 
system. The proposed model is then validated by a detailed 
case study. The random displacement, statistical moment 
characteristics, PSD and probability density change of the 
cable are analyzed from the random track angle, and the 
results are compared with the Gauss truncation method. 
Finally, a comparative study is illustrated with the help of 
a numerical example to investigate the effects of damping 
ratio, initial tension, initial disturbance of stiffening beam 
and random excitation intensity on the vibration of the cable. 
The results of the analysis are thoroughly discussed, and the 
paper ends with the conclusions drawn from the analysis 
based on the key findings.
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Cable–Beam Coupled Vibration Model Under 
Random Excitation

Model Description

The effect of the coordinated vibration of the cable and the 
deck beam is modeled using the cable–beam coupled sys-
tem shown in Fig. 1. The cable and beam are supported on 
one end and attached to each other at the other end. For the 
purposes of this study, the subscripts c and b denote the 
variables of the cable and the deck beam, respectively. The 
structure parameters for the system (shown in Fig. 1) are 
denoted as follows: m, l, c, E, I, A and θ are the masses per 
unit length, lengths, damping coefficients, elastic modulus, 
moment of inertia, cross-sectional area, and cable inclination 
angle, respectively. The following assumptions are made: 
(1) since the dead weight of the cable is often small and the 
tension is large, the sag effect of the cable is very small. In 
the chord vibration direction, the stay cable is only subjected 
to its self-weight load uniformly distributed along the cable 
length, and the weight redistribution of the cable caused 
by gravity sag and thermal expansion and contraction is 
ignored; (2) the constitutive relationship of the stay cable 
complies with Hooke's law, and the influence of factors such 
as the bending stiffness, torsion stiffness and shear stiffness 
of the stay cable are ignored; (3) under the excitation of 
Gaussian white noise, the stay cable remains elastic.

Modern long-span cable-stayed bridges mostly adopt 
dense cable structure systems. To improve the bending rigid-
ity of the entire bridge, the design stiffness of the pylon is 
relatively large. Therefore, the influence of the vibration of 

the pylon is ignored in the model, and the boundary between 
the pylon and the cable regarded as a hinged connection. 
Consolidation is often used at the junction of the bridge 
tower and the bridge deck beam to reduce the stress on the 
bridge deck beam. Supported by the cable at various points, 
the bridge deck beam behaves like a continuous beam with 
multi-span elastic support, and is prone to producing vertical 
random excitation f(t) when subjected to external excitations 
such as wind, snow, and vehicles, etc. Therefore, the bridge 
deck beam can be regarded as a Bernoulli–Euler beam: one 
end is consolidated with the boundary and the other end is 
hinged with the cable. The vertical vibration displacement is 
vb. The cable is hinged with the bridge tower and the bridge 
deck beam, and uc and vc are the longitudinal and transverse 
in-plane dynamic displacements, respectively.

Vibration Equation

The respective motion trajectories of the cable and deck 
beam are described by the local coordinate systems o-xbyb 
and o-xcyc, as shown in Fig. 1. Assuming that the static linear 
shape of the cable is a parabola, the linear equation for the 
sag of the stayed cable is

 where H is the horizontal component of the cable force and 
g is the gravitational acceleration. It is worth noting that the 
precise line type of the cables of the long-span cable-stayed 
bridge is actually a catenary. In order to facilitate the calcu-
lation, the author selects a quadratic parabola as the initial 
line type of the cable.

Based on D'Alembert's principle and cable static equilib-
rium, the in-plane lateral vibration differential equation of 
the stayed cable is established as [28]:

 in which mc, lc and θ are the masses per unit length, length 
and inclination angle of cable, respectively, vc and yc are the 
functions of the position coordinate xc and time t, h is the 
horizontal component of the cable dynamic tension, d is the 
sag of the cable at the midspan, f(t) is the Gaussian white 
noise random excitation, and δ(x) is the Dirac function.

The first mode of the stay cable is the predominant vibra-
tion mode under end axial excitation and thus is usually the 

(1)yc =
mcglc cos �

2H

(
xc −

x2
c

lc

)
,

(2)

mc
�2vc
�t2

+ cc
�vc
�t

−

[

1 − 8d2
l2c

(

1 −
2xc
lc

)2
]

⋅

{

H
�2vc
�x2c

+ (h + f (t) sin �)
(

d2yc
dx2c

+
�2vc
�x2c

)}

=f (t) cos ��(x)

Fig. 1  Coupled vibration model
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only mode taken into account [29]. Thus, the in-plane lateral 
vibration displacement of the stay cable is

 where V is the modal displacement and �c

(
xc
)
 and �b are 

the mode functions of the stay cable and bridge deck beam, 
respectively; moreover, �c

(
xc
)
= sin(�xc∕lc) . As can clearly 

be seen, Eq. (3) includes the cable displacement caused by 
the vibration of the bridge deck beam so that the dynamic 
effect on the structure system can be considered.

In addition, the tangential dynamic tension of the cable 
T can be expressed by the stress–strain relationship of the 
cable as follows:

 where � is the axial strains of the stay cable, and s′ and s are 
the in-plane arc length coordinates of the stay cable in its 
present and initial configurations, respectively. The elements 
of s can be expressed as:

If f is the additional tangential dynamic tension of the stay 
cable, then the following equation is obtained by combining 
Eq. (1) and Eq. (5):

Considering the second-order amount of the cable, the 
strain ε caused by the lateral vibration of the cable can be 
obtained as

Then based on Eqs. (6) and (7), the horizontal dynamic 
tension h of the stay cable can be obtained as

 where the longitudinal displacement of any point on the 
cable is expressed as

(3)vc(x, t) = Vb(t)�b

(
lb
)
cos�

(
1 −

xc

lc

)
+ Vc(t)�c

(
xc
)
,

(4)T = EcAc� = EcAc

ds� − ds

ds
,

(5)

ds =

√(
dxc +

�uc

�s
dxc

)2

+

(
dyc +

�vc

�s
dyc

)2

=

√
1 + (

dyc

dxc
)2dxc.

(6)dxc

ds
=

h

f
=

[
1 +

(
dyc

dxc

)2
]−

1

2

≈ 1 −
8d2

l2
c

(
1−

2xc

lc

)2

(7)

� =
ds� − ds

ds
≈

[
�uc

�s

�xc

�s
+

�vc

�s

�yc

�s
+

1

2

(
�vc

�s

)2
]
∕

[
1 +

(
dyc

dxc

)2
]

(8)h = f∕

[
1 +

(
dyc

dxc

)2
]
= EcAc ∫

lc

0

[
�uc

�x
+

�vc

�x

�yc

�x
+

1

2

(
�vc

�x

)2
]
dxc∕∫

lc

0

√√√√√
[
1 +

(
dyc

dxc

)2
]3

dxc,

To calculate h, first take out the denominator part 
of Eq. (8) for separate analysis, as represented by le and 
expanded according to Taylor's formula at y� = 0 . Finally, 
take the first three terms of the expansion and integrate them 
to get:

Subsequently, h can be calculated by substituting Eqs. (1), 
(3), (9) and (10) into Eq. (8):

Simplifying the bridge deck beam as a Bernoulli–Euler 
cantilever beam (Xia and Fujino 2016), its partial differential 
equation of motion is

 in which N is the axial force of the beam and 
N = (h + H)cos� . If the vertical vibration displacement vb 
is separated into variables, and only the first-order vibration 
mode of the bridge deck beam considered:

 where the mode functions of bridge deck beam �b is:

then the boundary conditions of the bridge deck beam 
�b(0) = ��

b
(0) = ���

b
(0) = 0 can be introduced into Eq. (14) 

to obtain the value of each constant:

(9)uc
(
xc, t

)
= −Vb(t)�b

(
lb
)
sin �

(
1 −

xc

lc

)
.

(10)le = ∫
lc

0

√√√√√
[
1 +

(
dyc

dxc

)2
]3

dxc ≈ lc

(
1 +

8d2

l2
c

)
.

(11)
h =

E
c
A
c

l
e

[(
V
b(t)�b

(
l
b

)
cos �

)2
2l

c

+
�2V2

c

4l
c

+
16dV

c

�l
c

+ V
b(t)�b

(
l
b

)
sin �

]
.

(12)

EbIb
�4vb

�x4
b

+ N
�2vb

�x2
b

+ mb

�2vb

�t2
+ cb

�vb

�t
− f (t)�

(
xb − lb

)
= 0,

(13)vb
(
xb, t

)
= Vb(t)�b

(
xb
)
,

(14)
�
b

(
x
b

)
= A1 sin

(
�
b
x
b

)
+ A2cos

(
�
b
x
b

)
+ A3sinh

(
�
b
x
b

)
+ A4cosh

(
�
b
x
b

)
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A1 = −A3, A2 = −A4, A4 = −A3

(sin �blb+sinh �blb)
(cos �blb+cosh �blb)

 where �b
satisfies the transcendental equation:

Let A3 = 1, then the values of A1, A2, and A4 can be 
obtained from the above relationship.

The Galerkin method [30] is used to model truncation 
of the vibration equations of the cable and the bridge deck 
beam, and the vibration Eqs. (15) and (16) of the cable-deck 
beam coupling system under random excitation can then be 
obtained as follows:

 where
m1 =

2�b(lb) cos �

�
, m2 =

cc

mc

, m3 =
2cc�b(lb) cos �

�mc

, m4 =
H�2

mcl
2
c

�1 +
512EcAcd

mcl
3
c
le�

2
�2

m5 =
32EcAc�b(lb) sin �d

mcl
2
c le�

�2, m6 =
8EcAc�d

mcl
3
c le

�2, m7 =
16EcAc�

2
b
(lb) cos

2 �d

mcl
3
c le�

�2

m8 =
EcAc�b(lb) sin ��2

mcl
2
c
le

�1, m9 =
EcAc�

4

4mcl
3
c
le

�1, m10 =
EcAc�

2

b
(lb) cos2 ��2

2mcl
3
c
le

�1

 �1 = 1 −
8d2

3lc
+

16d2

�2 lc

, �2 = 1 −
8d2

lc

+
64d2

�2 l2
c

, � =
�2 sin

2 �

mcl
2
c

�1, �1 =
32 sin �d

�mcl
2
c

�2, �2 = −
1

mb

h1 =
cb

mb

, h2 =
EbIb�

4

b
+HQ cos �

mb

, h3 =
16Qd cos �EcAc

�lc lemb

, h4 =
cos �Q�b(lb)EcAc sin �

lemb

h5 =
cos �QEcAc�

2

4lelcmb

, h6 =
cos3 �Q�2

b(lb)EcAc

2lelcmb

Solution of Vibration Equation

As an important highlight of this paper, in this section, the 
Milstein–Platen method is used as a first attempt to solve the 
coupled random vibration time history of the cable–beam 
structure under random excitation. The phase space trans-
formation method is first adopted to convert the above-men-
tioned cable-deck beam coupled vibration Eqs. (15) and (16) 
set into a random state equation. Introducing the state vector 
{Y} =

{
Y
1
Y
2

}
= [ q

1
q
2
q
3
q
4
]Tsuperscript T denotes the 

EcAc sin
2 �

EbIblc
= �3

b

1 + cos �blb cosh �blb

cos �blb sinh �blb − sin �blb cosh �blb

(15)

∙∙
Vc +m1

∙∙
Vb +m2

∙
Vc +m3

∙
Vb

+
(

m4 + �f (t)
)

Vc + m5Vb + m6V2
c + m7V2

b
+ m8VbVc + m9V3

c + m10VcV2
b + �1f (t) = 0,

(16)

∙∙

Vb +h1

∙

Vb +h2Vb + h3VcVb + h4V
2

b
+ h5VbV

2

c
+ h6V

3

b
+ �2f (t) = 0,

Q = �2
b

{
A1

[
cos

(
�blb

)
− 1

]
− A2 sin

(
�blb

)
+ A3

[
cosh

(
�blb

)
− 1

]
+ A4 sinh

(
�blb

)

A1

[
1 − cos

(
�blb

)]
+ A2 sin

(
�blb

)
+ A3

[
cosh

(
�blb

)
− 1

]
+ A4 sinh

(
�blb

)
}

.

transpose operation), the phase space change method is as 
follows:

 where 
{
M
(
qi, t

)}
and 

{
N
(
qi, t

)}
are the drift vector and dif-

fusion vector, respectively; i = 1, 2, 3, 4; W(� ) is a zero mean 
unit intensity Gaussian white noise with spectral density K, 
and the autocovariance function:

 in which E[] denotes the mathematical expectation.
The Stradonovich equation equivalent of Eq. (18) is

 where B̃t is the Wiener process with covariance function:

The Itô-differential equation equivalent to the Stra-
donovich Eq.  (19) can be obtained by introducing the 
Wong–Zakai correction term on the basis of the original 
equation, namely

(17)

⎧
⎪⎨⎪⎩

Y1 = (Vc,
∙

Vc)
T =

�
q1, q2

�T

Y2 = (Vb,
∙

Vb)
T =

�
q3, q4

�T ,

(18)
d{Y}

dt
=
{
M
(
qi, t

)}
+
{
N
(
qi, t

)}
dW,

E[W(t)W(t + �)] = �(�),

(19)d{Y} =
{
M
(
qi, t

)}
dt +

{
N
(
qi, t

)}
◦dB̃t,

E
[
B̃t1

B̃t2

]
= 2𝜋K𝛿t1t2 .

 where Bt is the unit Wiener process, i = 1, 2, 3, 4.
Then, substituting Eqs. (15) and (16) into Eq. (19), the Itô 

state equations for the coupled vibration of the cable–beam 
under random excitation can be obtained as

(20)d{Y} =
�
M̃
�
qi, t

��
dt +

√
2𝜋K

�
N
�
qi, t

��
dBt,

(21)M̃
(
qi, t

)
= M

(
qi, t

)
+ 𝜋KN

(
qi, t

) 𝜕

𝜕Y
N
(
qi, t

)
,
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At present, most researches start from the perspective of 
transition probability density, and are used to transform the 
Itô state equations of the cable into the FPK equation of 
the cable vibration, and then the Gauss truncation method 
is used to solve the equation and only the statistical char-
acteristics of the parametric vibration response of the stay 
cable can be obtained. Since the external random excitation 
applied in this research is Gaussian white noise, the state 
response Y(t) of the system is a Markov process. Therefore, 
the transition probability density of Y(t) (denoted as p) still 
needs to satisfy the FPK equation:

Substituting Eq. (22) into Eq. (23), the FPK equation of 
the cable–beam coupling system can be obtained as

Since Eq.  (22) contains the diffusion term √
2�K

�
−�q1 − �1

�
 , the multiplicative white noise excitation 

term will affect the stability of the solution process, result-
ing in the Gauss truncation method being unable to solve 
the stay cable vibration time history. Therefore, as the main 
contribution of this paper, the Milstein–Platen method [31, 
32] is introduced to directly transform the Itô state Eq. (22) 
into iterative format that can be solved numerically. The Mil-
stein–Platen iteration format is

(22)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dq1 = q2dt

dq2 = (m1h1q4 + m1h2q3 + m1h3q1q3 + m1h4q
2

3
+ m1h5q

2

1
q3 + m1h6q

3

3

− m2q2 − m3q4 − m4q1 − m5q3 − m6q
2

1
− m7q

2

3
− m8q1q3 − m9q

3

1
− m10q1q

2

3
)dt

+
√
2�K

�
−�q1 − �1

�
dBt

dq3 = q4dt

dq4 =
�
−h1q4 − h2q3 − h3q1q3 − h4q

2

3
− h5q

2

1
q3 − h6q

3

3

�
dt +

�
−
√
2�K�2

�
dBt

.

(23)

�p

�t
= −

∑
i

�

�qi

[
ai(Y , t)p

]
+

1

2

∑
i

∑
j

�2

�qi�qj

[
aij(Y , t)p

]

ai(Y , t) = Mi(Y , t)

aij(Y , t) = �KN
(
qi, t

)
NT

(
qi, t

)

i = 1, 2, 3, 4; j = 1, 2, 3, 4.

(24)

�p

�t
= −[�q2p∕�q1 + �(m1h1q4 + m1h2q3 + m1h3q1q3 + m1h4q

2

3
+ m1h5q

2

1
q3 + m1h6q

3

3
− m2q2 − m3q4 − m4q1−

m5q3 − m6q
2

1
− m7q

2

3
− m8q1q3 − m9q

3

1
− m10q1q
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 in the nth iteration, 

respectively; N is obtained by three initial conditions: 
start time t0, end time tn, time step Δt,N = (tn − t0)∕Δt

;ΔWj is an independent random increment, and satisfies 
ΔWj ∼

√
ΔtN(0, 1) . The initial value of i is 1 and when i is 

equal to N, the iteration is terminated. The calculation itera-
tion format of Eq. (22) is then

in which the q(1)
n

 , q(2)
n

 and q(4)
n

 are the iterative terms of 
cable displacement, cable speed, bridge deck displacement 
and bridge deck speed, respectively. s(2)

n
 is a correction term 

for multiplicative white noise excitation, which can reduce 
the influence of random parametric excitation on iteration. 
Starting from q(i)

n
 , iteratively solve q(i)

n+1
 (i = 1,2,3,4) step by 

step. After the state vector is obtained, the time-domain and 
frequency-domain characteristics of the coupled vibration 
of the cable–beam structure can be obtained.

Based on the above-mentioned process, the time his-
tory of the cable–deck beam coupling vibration under ran-
dom excitation can be successfully obtained. The method 
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introduced in this section overcomes the problem that other 
methods can only obtain the probability statistical informa-
tion, so that the influence of the multiplicative excitation on 
the system can be effectively eliminated, which is of great 
significance to the vibration analysis of the cable–beam cou-
pling system.

Case Analysis

Verification of Milstein–Platen Iterative Method

Taking the longest stay cable of a long-span cable-stayed 
bridge as an example, the initial displacement of the cable 
and beam is set to 0.01 m. The structural parameters are 
shown in Table 1.

Based on the relationship between Gaussian white noise 
and Wiener process, namely dBt∕dt = W(t) , it can be seen 
that the ideal white noise process has infinite energy. As 
shown by Zhu and Cai [30], within a small time step Δt, the 
white noise can be discretized into the following form:

Considering two moments, then:

According to the reciprocal theorem method, random exci-
tation can be degenerated into ideal excitation [33]. It is worth 
noting that the introduction of ideal excitation here is only 
used to compare with the problem of random excitation and 
verify the correctness of the method proposed in this paper. 
The ideal excitation is set to p(t) = A sin�t , where A and � 
are, respectively, the amplitude and circle frequency of the 
equivalent ideal excitation; moreover,

(27)
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The relevant parameters are selected as follows: the white 
noise intensity K is 135.66N2/Hz, the load time is 300 s, and 
the random excitation peak value is 2.48 ×  107 N. The time 
history comparison between random excitation and equiva-
lent ideal excitation is shown in Fig. 2. As shown by Fig. 2, 
the size of the random excitation force varies randomly and 
irregularly with time, with strong uncertainty, while the ideal 
excitation force has obvious periodicity, and its magnitude is 
determined. Obviously, the vibration of bridge deck beam is 
random in engineering practice, and if the bridge deck beam 
is simplified as ideal excitation, it cannot truly reflect the end 
excitation of the cable. Therefore, it can be seen that study-
ing the parametric vibration of stay cables under random 
excitation has broader engineering practical significance.

In order to verify the accuracy of the Milstein–Platen 
method for solving the vibration equations, it is compared 
with the traditional FPK method, with the mean square 
error of the statistical distance under the transition proba-
bility density used as the comparison index. When Eq. (24) 

Table 1  The parameter value of the structure

Parameters Cable Deck

Weight/kg/m 80.7 2345
Length/m 292.57 242.5
Damping 0 0
Elastic modulus/Pa 2 ×  1110 4 ×  1010

Inertia moment/m4 – 26.1
Area/m2 0.0102 23.26
Cable force/N 5.5 ×  107 –
Angle/θ 30 –

Fig. 2  Time history comparison between two excitation modes
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is multiplied by qi
1
q
j

2
qk
3
ql
4
 (i, j, k and l are all non-negative 

integers), and then the entire state space is integrated with 
the boundary condition P(-∞,t) = P(+ ∞,t) = 0, the moment 
equation of the state vector {Y} can be obtained, where 
p = p(q,t) is the PDF of the diffusion process. The r-th 
order (r = i + j + k + l) statistical moment equation of the 
state vector {Y} is:

(30)

∙
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[
qi
1
q
j
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3
ql
4

]
 , which is the r = i + j + k + l 

moment of q1, q2, q3 and q4. It can be seen that Eq. (30) 
contains nonlinear terms and coupling terms. Therefore, 
higher moments are generated in the rth order moment equa-
tion, with the result that the moment equation cannot be 
closed. In other words, Eq. (30) is a non-closed nonlinear 
differential equation.

Therefore, the Gaussian statistical moment truncation 
method [25] is used next to convert Eq. (30) into a closed 
differential equation. The logarithm calculation of the mean 
square error (MSE) is as follows:

The changing trend for the logarithm of the MSE over 
time is shown in Fig. 3, where the MSE of the cable vibra-
tion displacement quickly stabilized in a relatively short 
period of time. The reason for this is that the initial moment 
of the external excitation is an assault. In the stable vibra-
tion region, the logarithmic MSE calculated by the Gauss-
ian truncation method is [3.32 m -2.51 m], and [-2.79 m 
-2.52 m] by the Milstein–Platen method, indicating the cal-
culation results of the two methods are basically consistent. 
As time goes by, the absolute error between the two con-
tinues to decrease. Therefore, from the perspective of ran-
dom orbit, the Milstein–Platen method is clearly the correct 
choice to solve the cable displacement time history under 
random excitation, which is consistent with the calculation 
results of the Gaussian truncation method.

Time‑History Analysis of Cable–Beam Vibration 
Under Random Excitation

Based on the iterative format derived from Eq. (26), a pro-
gram is compiled to analyze the time history characteristics 
of the displacement of the cable and beam under random 
excitation. The time history curves of cable and beam dis-
placement are shown in Fig. 4.

It can be seen from Fig. 4 that the parametric vibration 
of the stay cable presents an obvious "beat vibration" phe-
nomenon under the action of random excitation. Under 

(31)Y
[
qi
]
= Ln

(
E
[
q2
i

])
.

Fig. 3  Comparison of logarithm MSE and error curve of cable dis-
placement
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Fig. 4  Displacement time history curves of cable and beam

Fig. 5  The statistical characteristic curve of cable vibration displace-
ment
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random excitation, the "beat vibration" amplitude of the 
cable changes randomly, the absolute value of its amplitude 
within 300 s is 0.27 m ~ 0.61 m, and the "beat vibration" 
period is 9.1 s. Under the equivalent ideal excitation effect, 
the amplitude of the "beat" is relatively unchanged, with a 
maximum amplitude of 0.5 m and a period of 10 s, which 
is relatively close to the period of the beat under random 
excitation. It can be seen that under random excitation, the 
amplitude of the stay cable has obvious uncertainty.

Regarding the vibration displacement of the bridge 
deck beam under random excitation, it exhibits irregular 
changes as can be seen in Fig. 4c. The bridge deck beam 
undergoes relatively stable periodic vibration near the bal-
ance plane, but the maximum amplitude does not exceed 
0.02 m. According to Fig. 4d, under equivalent ideal excita-
tion, the bridge deck beam makes a relatively stable periodic 
vibration at the equilibrium position, and its amplitude is 
-0.02 m ~ 0.02 m. These indicate that when coupled vibra-
tion occurs in the structural system, there is energy transfer 
between the stayed cable and the bridge deck beam.

To further grasp the statistical characteristics of cable 
vibration, the mean square response curve of cable vibration 

displacement under the two excitation modes are shown in 
Fig. 5.

From Fig. 5a, b, it can be seen that under random exci-
tation and equivalent ideal excitation, the vibration of the 
stayed cable at the initial moment has non-stationary tran-
sient characteristics. During random excitation, the aver-
age value of cable displacement oscillates repeatedly in the 
range of -8 mm ~ 12 mm, and reaches a stable state after 
12 s, and then gradually approaches zero. The average value 
of the cable's displacement during ideal excitation recipro-
cates in the range of -16 mm ~ 21 mm, and reaches a stable 
state after 10 s, and finally gradually approaches zero. It can 
be seen that whether it is random excitation or ideal excita-
tion, the average value of the displacement response of the 
cable eventually tends to zero.

It can be seen from Fig. 5c that the MSE of the cable's 
displacement during ideal excitation first increases sharply, 
then the oscillation decreases, and finally tends to be stable; 
while randomly excited, the MSE of the cable's displace-
ment increases sharply at first, then slowly increases in an 
oscillating manner, and finally stabilizes, stabilizing at 0.2 m 
after 100 s. Under the two excitation modes, the mean square 
deviation of the cable displacement is obviously different. 
The reason is that the ideal excitation is a deterministic 
effect, while the random excitation has a strong uncertainty.

Analysis of Frequency Domain Characteristics 
of Cable Vibration

To further analyze the frequency domain characteristics of 
cable vibration, firstly, based on the vibration time history 
results of the stay cable, the fast Fourier change is used to 
calculate the random response power–frequency curve of the 
cable, and the result is shown in Fig. 6a; the Welch method is 
used to divide the cable response data sequence into differ-
ent periods, and the improved periodogram method is then 
applied to estimate and average each section and obtain the 
PSD curve, as shown in Fig. 6b. Finally, the non-paramet-
ric test is performed on the results to obtain the PDF and 
the cumulative distribution function (CDF) for the random 
vibration displacement of the cable, as shown in Fig. 7a, b.

It can be seen from Fig. 6a that under random excita-
tion and ideal excitation, the power–frequency of the cable 
displacement response presents a nonlinear trend that first 
increases and then becomes stable. The power peak of the 
cable response occurs near f1 = 43.3 Hz and f2 = 45.6 Hz, 
which dominate the entire response, and the power–fre-
quency curve of the stay cable is smoother under ideal exci-
tation. Further, as shown by Fig. 6b, under the two excitation 
modes, the PSDs of the cable response show a trend of non-
linear oscillation decreasing, and the PSD of the randomly 
excited drop cable is slightly higher than that of the ideal 

Fig. 6  Random response power and PSD curve of cable
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excitation. Compared with the main peak, the attenuation 
of the first side lobe of the PSD of the cable response under 
random excitation is -22.1 dB, and the peak attenuation of 
the side lobe is -3.17 dB/oct, which corresponding to ideal 
excitation are -22.8 dB and -3.17 dB/oct, respectively. Thus, 
whether it is random excitation or ideal excitation, the fre-
quency of the power peak response of the stay cable is basi-
cally the same as the attenuation of the PSD sidelobe peak. 
However, the difference between the first side lobe peak and 
the main peak of the cable PSD under the two excitations 
is not the same.

It can be seen from Fig. 7a that under the two excita-
tion modes, the PDF of the cable response first increases 
and then decreases, and its distribution trend satisfies the 
Gaussian distribution, with a confidence interval of about 
0.98, and conforms to the Markov property. Compared with 
the ideal excitation, the tail area of the PDF curve of the 
cable response under random excitation is expanded from 
[-0.5 m ~ 0.5 m] to [-0.525 m ~ 0.525 m]. However, the peak 
value of the relative probability density decreases from 
9.1% to 7.5%. The main reasons are as follows: First, the 
amplitude of the cable under random excitation changes, 
which causes the amplitude of the cable at the same time to 
be greater than the ideal excitation, and the system absorbs 
excess energy due to load uncertainty. Second, the probabil-
ity density of the reciprocating and balanced positions of the 
ideal excitation cable is greater than the random excitation, 
and the periodic random excitation of the "beat" movement 
of the cable is greater than the ideal excitation. Further, 
as shown by Fig. 7b, under the two conditions, the CDF 
curve of the cable response shows a nonlinear increase. In 
[− 0.5 m ~ 0 m], the random excitation is slightly larger than 
the ideal excitation, while in [0 m ~ 0.5 m], the ideal excita-
tion is slightly larger than the random excitation.

Analysis of Coupled Vibration Factors 
of Cable and Beam

To analyze the effect of cable self-damping, initial perturba-
tion of the bridge deck beam, and initial tension and exter-
nal excitation intensity on cable amplitude, the influence 
of these different factors can be obtained by adjusting the 
structural parameters of the cable and bridge deck beam.

Influence of Cable Self‑Damping

The cable damping ratio varies between 0.01 and 0.1, and 
the initial displacement of the stay cable and the bridge deck 
beam are set to zero. The maximum amplitude change curve 
of the stay cable under different cable damping ratio condi-
tions is calculated as shown in Fig. 8.

The results show that with the gradual increase in the 
cable damping ratio, the cable amplitude exhibits a nonlin-
ear decreasing trend under both random excitation and ideal 
excitation, and the cable displacement response under ran-
dom excitation is greater than the ideal excitation response. 
When the damping ratio increases from 0.01 to 0.04, the cable 
amplitude change rate is 16.7%, and when the damping ratio 
increases from 0.06 to 0.1, the cable amplitude change rate 
decreases to 8.9%. It can also be seen that the larger the cable 
damping ratio, the smaller the cable amplitude. However, when 
the damping ratio continues to increase, the amplitude decay 
of the cable vibration tends to ease, and the damping ratio of 
the cable itself restrains the cable amplitude to a limited extent.

Influence of Initial Disturbance of Bridge Deck Beam

The initial disturbance of the bridge deck beam is set to 
0.01 ~ 0.1 m, the initial displacement of the cable is set to 
zero, and the influence of the self-damping of the cable is 
ignored. The change curve of the maximum amplitude of 
the cable under different initial disturbance conditions of the 
beam is shown in Fig. 9.

Figure 9 shows that as the initial disturbance of the beam 
increases, the amplitude of the cable presents a nonlinear 
increasing trend, and the maximum amplitude of the cable 
under the random excitation is greater than the ideal excita-
tion. When the initial disturbance of the bridge deck beam 
increases from 0.01 m to 0.03 m, the maximum amplitude 
of the stay cable under random excitation increases from 
0.65 m to 1.11 m. Under ideal excitation, the maximum 
amplitude of the stay cable increases from 0.51 m to 1.01 m. 
It can be seen that the greater the initial disturbance of the 
bridge deck beam, regardless of whether this occurs under 
random excitation or ideal excitation conditions, the greater 
the amplitude of the stayed cable. Therefore, in engineering 
practice, it is necessary to control the disturbance of the 
bridge deck as much as possible.

Effect of Initial Tension

The initial tension range is 6.4 ×  107 N ~ 7 ×  107 N, and the 
initial displacement of the cable is set to zero. The maximum 
amplitude change curve of the cable under different initial 
tension conditions is shown in Fig. 10.

It can be seen from Fig.  10 that as the initial cable 
force increases, the maximum amplitude of the cable first 
decreases sharply and then tends to relax, and the amplitude 
of the cable under random excitation is greater than under 
the ideal excitation. When the initial tension of the cable is 
increased from 6.4 ×  107 N to 6.8 ×  107 N, the cable ampli-
tude reduction rate is 56.9% under random excitation and 
65.2% under ideal excitation. When the initial tension of the 
cable is further increased from 6.8 ×  107 N to 7.0 ×  107 N, 
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the amplitude reduction rate is only 5.2% for random excita-
tion, and 11.2% for ideal excitation. It can be seen that the 
initial tension has a great influence on the vibration of the 
stay cable, and the amplitude is greater under random than 
ideal excitation.

At the same time, it also can be seen that with greater 
initial tension of the cable, the sag effect decreases, that is, 
the Irvine parameter �2

I
 decreases:

Conversely, with a smaller initial cable force, the cable 
sag effect increases, and the random excitation term �1 in 
Eq. (15) will increase accordingly, which is equivalent to 
increasing the external excitation intensity, resulting in an 
increase in the vibration intensity of the cable.

(32)�2
I
=

(
mgl

H

)2
EcAcl

HLe
.

Fig. 7  PDF and CDF curve of random response for cable

Fig. 8  The relationship curve between cable amplitude and cable 
damping ratio

Fig. 9  The relationship curve between cable amplitude and initial dis-
turbance of beam

Fig. 10  The relationship curve between cable amplitude and initial 
tension
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Effects of External Excitation Intensity

For Gaussian external excitation intensity of the bridge deck 
beam in the range  0N2/Hz ~ 165.6N2/Hz, and the initial dis-
placement of the cable and bridge deck beam set to zero, 
Fig. 11 shows the relationship curve between the amplitude 
of the cable and the external excitation intensity.

It can be seen from Fig. 11 that as the intensity of the 
external excitation increases, the maximum response of the 
cable shows a nonlinear increasing trend. When the external 
excitation intensity is 45.6N2/Hz, the maximum response of 
the cable is 0.37 m, and when the external excitation inten-
sity is 165.6N2/Hz, the maximum amplitude of the cable 
increases to 0.68 m. It can also be seen that the greater the 
intensity of the random excitation, the greater the vibration 
amplitude of the cable.

Summary and Conclusions

After establishing a parametric vibration model of the 
cable–beam coupling under random excitation, the Mil-
stein–Platen method is used as a first attempt to solve the 
coupled random vibration time history of the cable–beam 
structure. As the main contribution, the method proposed 
in this study overcomes the issue that other methods can 
only obtain the probability statistical information and offers 
a way to directly solve the coupled random vibration time 
history of the cable–beam structure. The cable random 
displacement, statistical moment characteristics, PSD and 
probability density changes are analyzed from the random 

track angle, and the results are compared with the Gaussian 
truncation method. The cable damping ratio, initial perturba-
tion of the stiffened beam, initial tension, and the influence 
of external excitation intensity on the amplitude of the cable 
are also studied. The research results are very meaningful for 
studying the cable–beam coupling and provide a theoretical 
basis for vibration control of long-span cable-stayed bridges. 
Based on the analysis conducted in this study, the following 
conclusions can be drawn:

From the perspective of random orbit, the Milstein–Platen 
method can be used to discretize the given Itô state equations 
of cable–beam coupled vibration under random excitation 
and effectively solve the cable displacement time history. 
The case study shows that the result calculated by the Mil-
stein–Platen method is consistent with that calculated by the 
traditional Gaussian truncation method.

The phenomenon of “quasi-beat vibration” appears in 
the cable vibration under random excitation, and vibration 
amplitude changes randomly with time. There is energy 
transfer in the coupling system, and when the cable–beam 
structure undergoes coupling vibration, the bridge deck 
beam creates relatively stable periodic vibration.

With the passage of time, whether it is random excitation 
or ideal excitation, the mean value of the vibration displace-
ment response of the stay cable tends to zero. Under the two 
excitation modes, the mean square error stabilization time of 
the displacement response of the stay cable is not the same, 
but it tends to be stable in the end.

Under random excitation and ideal excitation, the fre-
quency and power spectral density side lobe peak attenuation 
corresponding to the power peak of the stay cable response 
are basically the same, but the difference between the first 
side lobe peak and the main peak of the stay cable under the 
two excitation modes is not same.

As the damping ratio increases, the damping efficiency 
of the cable itself decreases; the initial disturbance of the 
bridge deck beam has a greater impact on the cable vibra-
tion. The greater the initial disturbance of the bridge deck 
beam, the greater the cable vibration displacement; The 
greater the tension of the cable, the vibration amplitude of 
the cable shows a non-linear decrease, but when the ten-
sion of the cable is further increased, the amplitude of the 
vibration of the cable tends to be attenuated; the greater the 
intensity of the random excitation, the greater the amplitude 
of the cable.
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