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Abstract
Purpose In many cases, working on models such as carrying a point attached mass or distributed attached mass provides a 
more realistic depiction of the problem. The main reason for the vibration studies of the structural elements with coupled 
mass, which constitute the main purpose of this study, is to see the changes in the resonance frequency due to the attached 
mass and to reduce the resonance frequency to a desired value. Although the vibration problems of mass-loaded rectangular 
plates are a very common problem in engineering applications, no study on functionally graded plates has been found in the 
literature. In this study, the effect of the variation of temperature-dependent material properties along the thickness accord-
ing to a simple power law on the vibration behavior of point mass carrying functionally graded plates is investigated for the 
cantilever (CFFF) boundary condition. Numerical studies are performed for different mass ratio (M), different location of 
point mass on the plate region and throughout the x axis, volume fractions with p and side-to-side ratio (a/b) at nonlinear 
temperature distribution.
Methods In this study, effect of the mass and temperature on free vibration of the functionally graded plate carrying a point 
mass at an arbitrary position is analysed with three-dimensional Ritz solution. Material properties of considered functionally 
graded plate are assumed to be temperature dependent and reinforcement in thickness direction according to a power law 
distribution and effective material properties are estimated using Mori-Tanaka homogenization method.
Results Free vibration frequencies decrease with increasing p index and increasing temperature difference. The frequencies 
obtained in the case of with point mass are always smaller than the frequency values obtained in the case of without point 
mass. When the point mass is located on a nodal line, the mass does not move during these and so frequency remains constant 
as independent of the presence of mass. If the mass is located on the nodal lines, at these frequencies it will resonate at the 
natural frequency of the unperturbed plate.
Conclusion The study shows that the effect of the presence of added mass, mass size and location on structures may not be 
negligible.

Keywords Free vibration · Attached point mass · Nonlinear temperature distribution · Functionally graded plate · Mori–
Tanaka homogenization scheme · Ritz method

Introduction

Functionally graded materials (FGMs) are designed for the 
first time in 1984 by Japanese scientists [1, 2] as high tem-
perature resistant materials, especially for structures such as 
aircraft, spacecraft and other engineering structures. FGMs 

are high-tech materials in which the desired thermal and 
mechanical properties can be produced by continuously 
changing the material properties in a thickness and/or in-
plane direction. These advanced properties of FGMs have 
allowed them to be considered as materials for structures 
modeled as structural elements such as plates, beams, and 
shells. Free vibration analysis of structural elements with 
FGM-designed plate geometry has always attracted the 
attention of researchers.

A simple yet effective first order shear deformation plate 
theory integrated with meshfree moving Kriging method 
has been developed by Vu et  al. [3] for the analysis of 

 * Bahar Uymaz 
 buymaz@nku.edu.tr

1 Engineering Faculty, Department of Mechanical 
Engineering, Tekirdağ Namık Kemal University, Çorlu, 
59860 Tekirdağ, Turkey

http://orcid.org/0000-0002-0036-0730
http://crossmark.crossref.org/dialog/?doi=10.1007/s42417-022-00676-9&domain=pdf


1868 Journal of Vibration Engineering & Technologies (2023) 11:1867–1888

1 3

free vibration and static deflection of functionally graded 
ceramic–metal plates. Zhao et al. [4] presented a free vibra-
tion analysis of functionally graded rectangular and skew 
plates with used the element-free kp-Ritz method based on 
first order shear deformation theory under clamped, sim-
ply supported and cantilever boundary conditions. The 
free vibration and static analysis of square and rectangular 
functionally graded plates was presented, which is based on 
the higher order shear deformation theory with a new finite 
element model by Talha ve Singh [5]. In the study the sys-
tems of algebraic equations were derived using variational 
approach for the free vibration and static problem. Nguyen 
[6] proposed a higher order hyperbolic shear deformation 
plate model for bending, buckling and vibration analysis 
of functionally graded plates. Ferreira et al. [7] used the 
asymmetric collocation method with multiquadrics basis 
functions, and the FSDT and the TSDT to obtained natural 
frequencies of square functionally graded plates. Matsunaga 
[8] presented a 2-dimensional high-order theory in which 
the full effects of shear deformations, thickness changes and 
rotational inertia are taken into account to analyze the natu-
ral frequencies and buckling stresses of functionally graded 
plates. Exact free vibration analysis of moderately thick 
and thick functionally graded plates using two-dimensional 
higher order kinematic theories which considered both shear 
and normal deformation effects is investigated by used Levy 
method by Dozio [9].

A unified and accurate solution method has been devel-
oped by Jin et al. [10] to deal with the free vibration analysis 
of arbitrarily thick functionally graded plate with general 
boundary based on the linear, small-strain 3D elasticity the-
ory. Vel and Batra [11] presented a three-dimensional exact 
solution for the vibration of simply supported rectangular 
thick functionally graded plates. In the study the effective 
material properties at a point were estimated from the local 
volume fractions and the material properties of the phases 
either by the Mori–Tanaka [12, 13] or the self-consistent 
[14] scheme. Uymaz and Aydoğdu [15] carried out the Ritz 
method with Chebyshev polynomials for the free vibration 
analysis of functionally graded plates based on three-dimen-
sional elasticity.

Free vibration analysis of simply supported functionally 
graded plates is numerically studied using QUAD-8 shear 
flexible element with and without thermal environment 
based on first order shear deformation theory by Natarajan 
et al. [16]. The effective material properties are estimated 
using Mori–Tanaka homogenization method.

A theoretical method was developed to investigate vibra-
tion characteristics of initially stressed functionally graded 
rectangular platesmade up of metal and ceramic in thermal 
environment by Kim [17]. Free vibration of functionally 
graded material rectangular plates with simply supported 
and clamped edges in the thermal environment was studied 

based on the three-dimensional linear theory of elasticity 
by Li et al. [18].

However, in many cases, working on models such as car-
rying a point attached mass or distributed attached mass pro-
vides a more realistic depiction of the problem. The main 
reason for the vibration studies of the structural elements 
with coupled mass, which constitute the main purpose of this 
study, is to see the changes in the resonance frequency due 
to the attached mass and to reduce the resonance frequency 
to a desired value.

Gürgöze et al. [19] investigated free vibration of a canti-
lever euler–bernoulli beam carrying a tip mass with in-span 
support using the Dunkerley's procedure. Cha and Wong 
[20] presented a method to analyze free vibration of com-
bined dynamical system which consist of a uniform cantile-
ver Euler–Bernoulli beam carrying an undamped oscillator 
system using the Lagrange multiplier method and the Green 
function method.

The free vibration analysis of an isotropic simply sup-
ported plate carrying a uniformly distributed mass was 
investigated by Kopmaz and Telli [21]. The analysis was 
carried out using the Galerkin procedure, the equation 
of motion was reduced to a set of ordinary differential 
equations based on clasical plate theory. This polynomial 
equation was solved numerically. Wong [22] performed 
Ritz method based on classical plate theory for solved the 
free bending vibration of a simply supported rectangular 
plate carrying distributed mass. Free vibration of isotropic 
plate carrying distributed spring mass using Ritz-Galerkin 
method with Chebyshev polynomial series based on clas-
sical plate theory by Zhou and Ji [23]. Alibeigloo et al. 
[24] investigated the free vibration of simply supported 
angle-ply laminated plates carrying distributed attach mass 
using the Hamilton’s Principle by means of a double Fou-
rier series based on a third-order shear deformation theory.

Chiba and Sugimoto [25] analyzed free vibration of a 
cantilever plate carrying spring-mass system using Ray-
leigh–Ritz method based on classical plate theory. Yu [26] 
presented analytical solutions for free and forced vibra-
tions of cantilever plates carrying single attached mass 
using Gorman’s method of superposition and the modal 
summaton method. Ciancio et al. [27] presented the vibra-
tion problem for a cantilever anisotropic plate carrying a 
concentrated mass on of center using Ritz method with 
beam functions based on the classical plate theory. Vibra-
tion of symmetrically laminated composite plate carry-
ing an attached mass on of center using Ritz method with 
simple polynomials based on the classical plate theory is 
analyzed by Aydoğdu and Filiz [28].

An experimental study on vibration response of an elas-
tically point-supported isotropic plate carrying an attached 
point mass was presented by Watkins et al. [29]. These 
results are compared to frequencies and to modes shapes 
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determined from the Rayleigh–Ritz method and a finite 
element analysis using COMSOL. Ritz method is per-
formed with Orthogonal polynomials as admissible func-
tions, and finite element analysis is based on Mindlin plate 
theory, adjusted for negligible transverse shear effects.

Khalili et al. [30] studied free vibration of simply sup-
ported laminated composite cylindrical shells with uni-
formly distributed attached mass using Galerkin method 
based on higher order shell theory including stiffness 
effect.

Free vibration of clamped thin elliptical plates carrying 
a concentrated mass at an arbitrary position using Ritz 
method by polynomial expressions as admissible functions 
was researched by Maiz et al. [31].

Although the vibration problems of mass-loaded rec-
tangular plates are a very common problem in engineering 
applications, no study on functionally graded plates has 
been found in the literature. In this study, the effect of the 
variation of temperature-dependent material properties 

along the thickness according to a simple power law on 
the vibration behavior of point mass carrying function-
ally graded plates is investigated for the cantilever (CFFF) 
boundary condition. Numerical studies are performed for 
different mass ratio (M), different location of point mass 
on the plate region and throughout the x axis, volume frac-
tions with p and side-to-side ratio (a/b) at nonlinear tem-
perature distribution.

Problem Formulation

In this study, effect of the mass and temperature on free 
vibration of the functionally graded plate carrying a point 
mass at an arbitrary position is analyzed with three-dimen-
sional Ritz solution. Material properties of considered func-
tionally graded plate are assumed to be temperature depend-
ent and reinforcement in thickness direction according to 
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Fig. 1  Volume fraction through the nondimensional thickness co-ordinate, and effective elastic moduli estimated by the Mori–Tanaka scheme 
with nonlinear temperature distribution
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a power law distribution and effective material properties 
are estimated using Mori–Tanaka homogenization method.

Effective Material Properties of Functionally Graded 
Plates

The lower surface of the considered plate consists of the 
metal phase and the upper surface of the ceramic phase, and 
the ceramic phase varies according to a power law distribu-
tion in the thickness direction, and it is also assumed that 
material properties of both phases are temperature depend-
ent. The sum of volume fraction of ceramic and metal phases 
is

and the ceramic volume fraction distribution in the thickness 
direction is as follows.

Here, the p value, which is called the volume ratio expo-
nent, takes values in the range of 0 ≤ p ≤ ∞ and shows the 
amount of ceramic volume ratio. As can be seen in Fig. 1(a), 
when the p value is 0, the material is full ceramic, when 
the p value is 1, the variation of the ceramic material in 
the thickness direction is linear, when p > 1 the amount of 
ceramic increases and when p < 1, the amount of ceramic 
increases with a decrease. In general, an increase in the p 
value means a decrease in the ceramic volume ratio.

The Mori–Tanaka scheme assumes that isotropic par-
ticles are randomly dispersed within the isotropic matrix 
material. In this study, the matrix phase is metal and the 
particle phase is ceramic. The effective material properties 
Young modulus (E), poisson ratio (υ) and thermal coef-
ficients (α) of functionally graded plate which defined 
according to the Mori–Tanaka homogenization scheme 
are given as follows,

In here the effective Bulk modulus K, the effective 
shear modulus G and the effective heat conductivity κ are 
defined as follows,

(1)Vc + Vm = 1,

(2)Vc(z) =
(
z

h
+

1

2

)p

.

(3)E =
9KG

3K + G
,

(4)� =
3K − 2G

2(3K + G)
,

(5)
� − �m

�c − �m
=

(
1

�
−

1

�m

)
(

1

�c
−

1

�m

) .

where

The effective mass density (ρ) of functionally graded 
plate which defined according to the rule of mixtures is 
given as follow,

The sub-indices c and m used in the equations given 
above represent ceramic and metal materials, respectively. 
Variation of the nondimensional effective elastic moduli 
throughout the nondimensional thickness co-ordinate esti-
mated by the Mori–Tanaka scheme are given in Fig. 1(b)–(d) 
for various temperature in nonlinear thermal environment.

Stress–Strain Relations Based on Three‑Dimensional 
Elasticity

The considered thin functionally graded plate in this paper is 
in the form of rectangular with length a, width b and thick-
ness h. The origin of the co-ordinate system (x,y,z) is placed 
at the geometric center of the plate and the axes are parallel 
to the edges of the plate and the corresponding displacement 
components u, v and w along the x, y and z directions, respec-
tively. For free vibration problem based on three-dimensional 
elasticity theory the displacement field is as follows,

where ω corresponds the natural frequency of the plate and 
i =

√
−1 . The strain components εij (i,j = x,y,z) for small 

deformations are given as,

(6)
� − �m

�c − �m
=

Vc

1 +
(
1 − Vc

) (�c−�m)
2�m

,

(7)
K − Km

Kc − Km

=
Vc

1 +
(
1 − Vc

) 3(Kc−Km)
3Km+4Gm

,

(8)
G − Gm

Gc − Gm

=
Vc

1 +
(
1 − Vc

) (Gc−Gm)
Gm+f1

,

(9)f1 =
Gm

(
9Km + 8Gm

)

6
(
Km + 2Gm

) ,

(10)� = Vc

(
�c − �m

)
+ �m.

(11)

u(x, y, z;t) = U(x, y, z)ei�t; v(x, y, z;t)

= V(x, y, z)ei�t;w(x, y, z;t) = W(x, y, z)ei�t,

(12)�x = u,x; �y = v,y; �z = w,z,

(13)�yz = v,z + w,y; �xz = u,z + w,x; �xy = u,y + v,x,



1871Journal of Vibration Engineering & Technologies (2023) 11:1867–1888 

1 3

where,(x,y,z) =
(

�

�x
,

�

�y
,
�

�z

)
 . The stress–strain relations for a 

linear elastic isotropic material are given by the generalized 
Hooke’s law as follows,

(14)�x = C11�x + C12�y + C12�z,

(15)�y = C12�x + C11�y + C12�z,

(16)�z = C12�x + C12�y + C11�z,

The solution of Eq. (23) is obtained using a polynomial 
series [16] as follow,

In the comparison results, the uniform temperature dis-
tribution given as follow were used.

T0 in Eqs. (24) and (27) is the room temperature with a 
value of 300 K and ΔT represents the temperature change. 
At nonlinear temperature distribution, the full metal bottom 
surface of the plate is assumed to be at T0 temperature.

Thermal Stresses Based on Three‑Dimensional Elasticity

The plate is initially stress-free at temperature  T0 and ther-
mal stresses occur in the plate with temperature change. The 
initial stresses due to a temperature change of ΔT(z) are 
defined for a functionally graded plate as:

(23)
−

d

dz

[
κ(z)

dT

dz

]
= 0, T = Tm at z = −h∕2; T = Tc at z = h∕2,

(24)T(z) = T0 + ΔTξ(z),
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,

(26)
� = 1 −

(
�c − �m

)
(p + 1)�m

+

(
�c − �m

)2
(2p + 1)�2

m

−

(
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)3
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m

+

(
�c − �m

)4
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−

(
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)5
(5p + 1)�5

m

,

(27)T = T0 + ΔT ,

(28)
σT
i
= −

(
C11(z,T)α(z,T) + C12(z,T)α(z,T)

)
ΔT(z)(i = x, y),

where [C] is stiffness matrix and its components are defined 
as follows,

Thermal Analysis

In this study, the effect of a thermal environment on the free 
vibration behavior of the cantilever functionally graded plate 
which carrying a point mass is also investigated. In here the 
temperature distribution is considered as a nonlinear distri-
bution that can be obtained by solving a steady-state heat 
transfer equation. The temperature distribution through the 
thickness is as follow [16],

(17)�yz = C66�yz,

(18)�xz = C66�xz,

(19)�xy = C66�xy,

(20)C11(z,T)=
E(z,T)(1 − ν(z,T))

(1 + ν(z,T))(1 − 2ν(z,T))
,

(21)C12(z,T)=
E(z,T)ν(z,T)

(1 + ν(z,T))(1 − 2ν(z,T))
,

(22)C66(z,T)=
E(z,T)

2(1 + ν(z,T))
.
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Three‑Dimensional Ritz Solution in Thermal 
Environment

The linear elastic strain potential energy  Us of the plate can 
be given as,

(29)

Us =
1

2 ∫
V

[
σxεx + σyεy + σzεz + τyzγyz + τxzγxz + τxyγxy

]
dV,

According to thermal vibration problem the maximum 
energy functional Π of the elastic plate is defined as:

In here;  Usmax is maximum of the nondimensionalized 
linear elastic strain potential energy,  UTmax is maximum of 
the nondimensionalized thermal strain potential energy and 
 Tmax is maximum of the nondimensionalized kinetic energy 
and are obtained as follow:

In this study, the Chebyshev polynomials are preferred 
which are the orthogonal polynomials reduced the computa-
tional effort [32]. In accordance with the Ritz method, each 
of the displacement amplitude functions is written as a triple 

(34)Π =
(
Usmax + UTmax

)
− Tmax,

(35)Usmax =
1

2 ∫
V

[
C11

(
ε2
x
+ ε2

y
+ ε2

z

)
+ 2C12

(
εxεy + εxεz + εyεz

)
+ C66

(
γ2
yz
+ γ2

xz
+ γ2

xy

)]
dV,

(36)UTmax = −
1

2 ∫
V

(
C11 + C12

)
α(z, T)ΔT(z)

[(
�U

�x

)2

+
(
�V

�x

)2

+
(
�W

�x

)2

+

(
�U

�y

)2

+

(
�V

�y

)2

+

(
�W

�y

)2
]
dV,

(37)

Tmax =
ω2

2 ∫
V

ρ(z, T)
[
U2 + V2 +W2

]
dV +

ω2

2

N∑
p=1

mpW
2.

Table 1  Boundary functions for 
considered boundary conditions

Boundary Condi-
tion

fU
1(X) fV

1(X) fW
1(X) fU

2(Y) fV
2(Y) fW

2(Y)

C–C 1–X2 1–X2 1–X2 1–Y2 1–Y2 1–Y2

C–F 1 + X 1 + X 1 + X 1 + Y 1 + Y 1 + Y
F–F 1 1 1 1 1 1

The strain energy  UT from the initial stresses due to tem-
perature rise can be given from Kim [17] as follow,

The kinetic energy  Tp of the plate can be given as:

(30)UT =
1

2 ∫
V

[
σT
x
dxx + 2τT

xy
dxy + σT

y
dyy

]
dV,

(31)dij = u,iu,j + v,iv,j + w,iw,j(i, j = x, y).

(32)Tp =
1

2 ∫
V

ρ(z, T)

[(
�u

�t

)2

+
(
�v

�t

)2

+
(
�w

�t

)2
]
dV +

1

2

N∑
p=1

mp

(
�w

�t

)2

,

The nondimensionalization process is performed using 
the following nondimensionalized parameters:

(33)X = 2x∕a; Y = 2y∕b; Z = 2z∕h,

series of Chebyshev polynomials, the displacement component 
of which is multiplied by a boundary function that satisfies 
the geometric boundary conditions of the plate. The displace-
ment components are written in terms of nondimensionalized 
coordinates



1873Journal of Vibration Engineering & Technologies (2023) 11:1867–1888 

1 3

(38)

U(X,Y,Z) = Fu(X,Y)

∞∑
i=1

∞∑
j=1

∞∑
k=1

AijkPi(X)Pj(Y)Pk(Z),

(39)

V(X,Y,Z) = Fv(X,Y)

∞∑
l=1

∞∑
m=1

∞∑
n=1

BlmnPl(X)Pm(Y)Pn(Z),
where Ps(ζ) = cos

[
(s − 1)arccos(ζ)

]
  (s = 1,2,3,…; ζ = X,Y,Z) 

is the sth order one-dimensional Chebyshev polynomial and 
Fα(X,Y) = f1

α
(X,Y)f2

α
(X,Y)  (α = U, V, W) is the boundary 

function satisfying the geometric boundary conditions, are 
as follows in terms of nondimensionalized coordinates and 
Chebyshev polynomials. The boundary functions used for 
boundary condition in this study are given in the Table 1.

(40)

W(X,Y,Z) = Fw(X,Y)

∞∑
p=1

∞∑
q=1

∞∑
r=1

CpqrPp(X)Pq(Y)Pr(Z),

Table 2  Coefficients of the 
temperature dependent material 
properties of constituents of 
FGM

Material P-1 P0 P1 P2 P3

Si3N4

E (Pa) 0 348.43 ×  109 − 3.070 ×  10–4 2.160 ×  10–7 − 8.946 ×  10–11

υ 0 0.2400 0 0 0
α (1/K) 0 5.8723 ×  10–6 9.095 ×  10–4 0 0
ρ (kg/m3) 0 2370 0 0 0
κ (W/(mK)) 0 9.19 0 0 0
SUS304
E (Pa) 0 201.04 ×  109 3.079 ×  10–4 – 6.534 ×  10–7 0
υ 0 0.3262 − 2.002 ×  10–4 3.797 ×  10–7 0
α (1/K) 0 12.330 ×  10–6 8.086 ×  10–4 0 0
ρ (kg/m3) 0 8166 0 0 0
κ (W/(mK)) 0 12.04 0 0 0

Table 3  Convergence and 
comparison of first five 
frequency parameters of 
cantilever isotropic plate 
without mass (a/h = 100, 
ΔT = 0, υ = 0.333)

M a/b i ×  j × k Nondimensionalized frequency parameters

Δ1 Δ2 Δ3 Δ4 Δ5

0 1 4 × 4x4 3.5762 8.5140 21.9537 31.2937 31.9213
5 × 5 × 5 3.5220 8.4768 21.6620 27.4786 31.4276
6 × 6 × 6 3.5035 8.4216 21.3398 27.3788 30.8134
7 × 7 × 7 3.4909 8.4042 21.2598 27.1042 30.7448
8 × 8 × 8 3.4836 8.3879 21.2202 27.0913 30.6807
Gorman [33] 3.459 8.356 21.09 27.06 30.55

1.5 4 × 4 × 4 3.5906 6.4381 15.9983 23.0735 26.8188
5 × 5 × 5 3.5392 6.3993 14.5051 22.5232 26.5504
6 × 6 × 6 3.5221 6.3441 14.4817 22.1542 25.8724
7 × 7 × 7 3.5087 6.3304 14.3039 22.0634 25.8141
8 × 8 × 8 3.5016 6.3167 14.2936 22.0224 25.7172
Gorman [33] 3.477 6.288 14.26 21.88 25.59

1 1 4 × 4 × 4 2.7821 8.5140 13.6886 26.1330 31.9213
5 × 5 × 5 2.7374 8.4768 12.7961 23.6249 31.4276
6 × 6 × 6 2.7138 8.4216 12.4247 23.5626 30.8134
7 × 7 × 7 2.7008 8.4042 12.2086 23.2702 30.7448
8 × 8 × 8 2.6946 8.3879 12.1549 23.2337 30.6807
Chiba and Sugimoto [25] 2.732 8.502 12.996 23.745 31.153
Aydoğdu and Filiz [28] 2.824 8.364 12.953 23.243 30.580
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In accordance with the Ritz method, by substituting the 
displacement components given by Eq. (38)–(40) at the maxi-
mum energy values and substituting the maximum energy val-
ues in the maximum energy functional given by Eq. (34)–(37), 
the energy functional Π is obtained in terms of Chebyshev 
polynomials. Then the energy functional Π is minimized 
according to the unknown coefficients  Aijk,  Blmn and  Cpqr.

As a result of the Ritz procedure, the eigenvalue problem 
given below is obtained, and the solution of the system of 
equations gives the natural frequencies of the free vibration 
problem occurring in the thermal environment under the 
influence of temperature.

(41)
�
∏

�Aijk

= 0,

(42)
�
∏

�Blmn

= 0,

(43)
�
∏

�Cpqr

= 0.

where  [Kij] and  [Mij] (i,j = u,v,w) are the stiffness matrix 
and diagonal mass matrix, respectively. The dimensionless 
coefficients {Aijk}, {Blmn} and {Cpqr} corresponding to the 
eigenvectors in the eigenvalue problem, represent the ampli-
tude. Also, Ω is the nondimensional frequnecy parameter 
and obtained as:

Here ω is the natural frequency and ρm0 and Em0 are mass 
density per unit volume and Young modulus of metal at 
room temperature (T0 = 300 K).

(44)
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,

(45)Ω = ω
�
a2∕h

�√
ρm0∕Em0,

Table 4  Comparison of natural 
frequency parameters of 
clamped square functionally 
graded plates subjected to 
uniform temperature rise (p = 2, 
a/h = 10, a = 0.2)

ΔT (K) Source Nondimensionalized frequency parameters

Δ1 Δ2 Δ3 Δ4 Δ5

0 The rule of mixture 4.1249 7.8713 7.8713 11.0374 13.0130
The Mori–Tanaka scheme 4.0787 7.7860 7.7860 10.9207 12.8766
Kim [17] 4.1165 7.9696 7.9696 11.2198 13.1060

300 The rule of mixture 3.9872 7.6039 7.6039 10.6583 12.5629
The Mori–Tanaka scheme 3.9537 7.5396 7.5396 10.5682 12.4557
Kim [17] 3.6593 7.3098 7.3098 10.4021 12.1982

500 The rule of mixture 3.8241 7.2849 7.2849 10.2044 12.0227
The Mori–Tanaka scheme 3.7889 7.2140 7.2140 10.1021 11.8986
Kim [17] 3.2147 6.6561 6.6561 9.5761 11.2708

Table 5  Comparison of natural 
frequency parameters of 
clamped functionally graded 
plates subjected to non-linear 
temperature rise (h/b = 0.05, 
a/b = 1, ΔT = 300 K)

p Source Nondimensionalized frequency parameters

Δ1 Δ2 Δ3 Δ4 Δ5

1 The Mori–Tanaka scheme 4.7964 9.5861 9.5861 13.8885 16.7426
Li et al. [18] 4.4780 9.3453 9.3453 13.7358 16.6440

2 The Mori–Tanaka scheme 4.3394 8.6635 8.6635 12.5414 15.1109
Li et al. [18] 3.9471 8.2896 8.2896 12.2071 14.8029

5 The Mori–Tanaka scheme 3.9678 7.9131 7.9131 11.4454 13.7834
Li et al. [18] 3.4954 7.4142 7.4142 10.9500 13.2942

10 The Mori–Tanaka scheme 3.8012 7.5796 7.5796 10.9617 13.2005
Li et al. [18] 3.3011 7.0428 7.0428 10.4184 12.6567
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Numerical Results

In this study, silicon nitride (Si3N4) as ceramic phase and 
stainless steel (SUS304) as metal phase are chosen to be 
the constituent materials of the functionally graded plate. 

Mechanical properties of constituent materials are tempera-
ture dependent as follows:

(46)P(T) = P0
(
P−1T

−1 + 1 + P1T + P2T
2 + P3T

3
)
,

Table 6  Frequency parameters 
of cantilever functionally graded 
plates with various temperature 
differences (a/h = 10, a/b = 1)

ΔT Material com-
position

Nondimensionalized frequency parameters

Δ1 Δ2 Δ3 Δ4 Δ5 Δ6

Without mass
0 Si3N4 7.5478 18.6562 45.0671 49.6717 56.6032 64.5702

1 4.6859 11.1744 27.6203 30.1946 34.8129 39.0427
2 4.2384 10.0337 24.8961 26.8167 31.4358 35.0865
5 3.8777 9.1135 22.7002 24.0644 28.7171 31.8948
10 3.7137 8.6863 21.7021 22.9632 27.4868 30.4455
SUS304 3.4822 8.0576 20.2715 21.7607 25.7495 28.3671

300 Si3N4 7.4638 18.4008 44.5543 49.0469 55.9659 63.7579
1 4.6316 11.0248 27.3079 29.7954 34.4399 38.5710
2 4.1869 9.8950 24.6042 26.4506 31.0875 34.6504
5 3.8250 8.9748 22.4048 23.7170 28.3635 31.4587
10 3.6583 8.5421 21.3913 22.6175 27.1138 29.9905
SUS304 3.4182 7.8966 19.9143 21.4080 25.3174 27.8545

500 Si3N4 7.4145 18.2536 44.2584 48.6877 55.5991 63.2917
1 4.5916 10.9146 27.0755 29.4728 34.1624 38.2192
2 4.1442 9.7795 24.3567 26.1075 30.7917 34.2790
5 3.7729 8.8360 22.1013 23.3279 27.9988 31.0089
10 3.5959 8.3780 21.0274 22.1935 26.6747 29.4572
SUS304 3.3285 7.6679 19.3937 20.9251 24.6848 27.1089

With point mass M = 1 (X,Y) = (1,0)
0 Si3N4 1.6530 18.6562 26.5406 49.6717 52.5775 64.5702

1 1.4826 11.1744 16.3934 30.1946 32.6968 39.0427
2 1.4448 10.0337 14.8240 26.8167 29.5537 35.0865
5 1.4072 9.1135 13.5550 24.0644 27.0217 31.8948
10 1.3819 8.6863 12.9701 22.9632 25.8951 30.4455
SUS304 1.3306 8.0576 12.1105 21.7607 24.3374 28.3671

300 Si3N4 1.6339 18.4008 26.2034 49.0469 52.0339 63.7579
1 1.4648 11.0248 16.1906 29.7954 32.3634 38.5710
2 1.4266 9.8950 14.6355 26.4506 29.2405 34.6504
5 1.3874 8.9748 13.3661 23.7170 26.7027 31.4587
10 1.3605 8.5421 12.7730 22.6175 25.5576 29.9905
SUS304 1.3054 7.8966 11.8882 21.4080 23.9438 27.8545

500 Si3N4 1.6227 18.2536 26.0101 48.6877 51.7198 63.2917
1 1.4517 10.9146 16.0407 29.4728 32.1136 38.2192
2 1.4116 9.7795 14.4766 26.1075 28.9720 34.2790
5 1.3679 8.8360 13.1731 23.3279 26.3704 31.0089
10 1.3366 8.3780 12.5436 22.1935 25.1575 29.4572
SUS304 1.2702 7.6679 11.5649 20.9251 23.3662 27.1089
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where  P0 is the material property of ceramic and metal at 
temperature  T0, respectively.  P0 and the coefficients of mate-
rial properties depending on temperature,  Pi (i = 0,1,2,3) are 
given in Table 2 [17, 18].

Convergence and Accuracy Studies

In this study, the natural frequencies are obtained by 
Ritz method. The number of terms of the Chebyshev 

Table 7  Frequency parameters 
of cantilever functionally graded 
plates with various temperature 
differences (a/h = 10, a/b = 1.5)

ΔT Material com-
position

Nondimensionalized frequency parameters

Δ1 Δ2 Δ3 Δ4 Δ5 Δ6

Without mass
0 Si3N4 7.5315 25.0474 39.6468 45.1831 80.9517 108.8917

1 4.6624 14.9073 24.3014 27.7972 48.5035 66.1242
2 4.2146 13.3756 21.6061 25.0748 43.5245 59.6283
5 3.8534 12.1470 19.3930 22.8817 39.5208 54.4735
10 3.6886 11.5770 18.5066 21.8927 37.6970 52.1277
SUS304 3.4540 10.7309 17.5457 20.4944 35.0542 48.6568

300 Si3N4 7.4463 24.6948 39.1663 44.6801 79.8811 107.6174
1 4.6074 14.7054 23.9840 27.4925 47.8987 65.4122
2 4.1623 13.1884 21.3142 24.7899 42.9676 58.9657
5 3.8000 11.9592 19.1163 22.5932 38.9646 53.7948
10 3.6324 11.3811 18.2318 21.5888 37.1173 51.4012
SUS304 3.3892 10.5120 17.2666 20.1440 34.4045 47.8030

500 Si3N4 7.3963 24.4912 38.8897 44.3899 79.2676 106.8827
1 4.5668 14.5559 23.7280 27.2654 47.4468 64.8759
2 4.1190 13.0316 21.0411 24.5477 42.4922 58.3946
5 3.7472 11.7707 18.8066 22.2955 38.3901 53.0866
10 3.5691 11.1582 17.8950 21.2317 36.4380 50.5401
SUS304 3.2985 10.2023 16.8850 19.6326 33.4608 46.5480

With point mass M = 1 (X,Y) = (1,0)
0 Si3N4 1.6690 25.0474 30.1036 39.6468 74.2003 80.9517

1 1.4937 14.9073 18.7513 24.3014 45.5607 48.5035
2 1.4547 13.3756 16.9753 21.6061 41.0260 43.5245
5 1.4159 12.1470 15.5386 19.3930 37.3548 39.5208
10 1.3898 11.5770 14.8837 18.5066 35.7151 37.6970
SUS304 1.3369 10.7309 13.9385 17.5457 33.3955 35.0542

300 Si3N4 1.6496 24.6948 29.7452 39.1663 73.2773 79.8811
1 1.4756 14.7054 18.5322 23.9840 45.0122 47.8987
2 1.4362 13.1884 16.7708 21.3142 40.5174 42.9676
5 1.3958 11.9592 15.3326 19.1163 36.8463 38.9646
10 1.3681 11.3811 14.6679 18.2318 35.1849 37.1173
SUS304 1.3113 10.5120 13.6925 17.2666 32.7975 34.4045

500 Si3N4 1.6383 24.4912 29.5394 38.8897 72.7480 79.2676
1 1.4622 14.5559 18.3696 23.7280 44.5997 47.4468
2 1.4209 13.0316 16.5976 21.0411 40.0790 42.4922
5 1.3759 11.7707 15.1206 18.8066 36.3149 38.3901
10 1.3437 11.1582 14.4148 17.8950 34.5576 36.4380
SUS304 1.2754 10.2023 13.3330 16.8850 31.9261 33.4608
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polynomials used as admissible functions is decided by 
comparing the results for isotropic plate results which pre-
sented by Gorman [33] in the case of without mass and 
which presented by Chiba and Sugimoto [25] and Aydoğdu 

and Filiz [28] in the case of with mass. As the results 
were found to be in good agreement, it was concluded 
that it would be appropriate to determine the term number 

Table 8  Frequency parameters 
of cantilever functionally graded 
plates with various temperature 
differences (a/h = 10, a/b = 2)

ΔT Material com-
position

Nondimensionalized frequency parameters

Δ1 Δ2 Δ3 Δ4 Δ5 Δ6

Without mass
0 Si3N4 7.5186 31.0010 32.4327 45.1532 97.2486 116.5419

1 4.6441 18.0522 20.3395 27.7576 57.8121 71.3537
2 4.1961 16.2094 18.0716 25.0354 51.8488 63.7755
5 3.8346 14.8223 16.1063 22.8423 47.0979 57.6096
10 3.6691 14.2061 15.2829 21.8524 44.9318 55.1246
SUS304 3.4321 13.2147 14.4350 20.4506 41.7464 52.3863

300 Si3N4 7.4324 30.5542 32.0496 44.6482 95.9236 115.2220
1 4.5885 17.8317 20.0454 27.4521 57.0902 70.5340
2 4.1432 16.0058 17.7997 24.7497 51.1853 63.0038
5 3.7807 14.6138 15.8515 22.5530 46.4321 56.8502
10 3.6123 13.9786 15.0394 21.5477 44.2343 54.3557
SUS304 3.3667 12.9404 14.2078 20.0996 40.9609 51.5825

500 Si3N4 7.3818 30.2946 31.8304 44.3568 95.1643 114.4600
1 4.5475 17.6633 19.8151 27.2243 56.5478 69.8704
2 4.0995 15.8295 17.5538 24.5069 50.6154 62.2748
5 3.7273 14.3999 15.5741 22.2546 45.7417 55.9907
10 3.5485 13.7160 14.7470 21.1898 43.4154 53.4030
SUS304 3.2754 12.5509 13.9017 19.5872 39.8201 50.4706

With point mass M = 1 (X,Y) = (1,0)
0 Si3N4 1.6722 31.0010 31.0779 32.4327 84.6825 97.2486

1 1.4939 18.0522 19.3981 20.3395 52.1730 57.8121
2 1.4543 16.2094 17.5649 18.0716 46.9598 51.8488
5 1.4148 14.8223 16.0814 16.1063 42.7192 47.0979
10 1.3883 14.2061 15.2829 15.4065 40.8369 44.9318
SUS304 1.3343 13.2147 14.4350 14.4377 38.2014 41.7464

300 Si3N4 1.6527 30.5542 30.7165 32.0496 83.6062 95.9236
1 1.4756 17.8317 19.1758 20.0454 51.5297 57.0902
2 1.4356 16.0058 17.3570 17.7997 46.3639 51.1863
5 1.3945 14.6138 15.8515 15.8714 42.1248 46.4321
10 1.3663 13.9786 15.0394 15.1861 40.2181 44.2343
SUS304 1.3084 12.9404 14.1852 14.2078 37.5054 40.9609

500 Si3N4 1.6412 30.2946 30.5086 31.8304 82.9897 95.1643
1 1.4621 17.6633 19.0107 19.8151 51.0442 56.5478
2 1.4201 15.8295 17.1806 17.5538 45.8471 50.6154
5 1.3744 14.3999 15.5741 15.6549 41.4993 45.7417
10 1.3417 13.7160 14.7470 14.9271 39.4821 43.4154
SUS304 1.2722 12.5509 13.8158 13.9017 36.4909 39.8201
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Table 9  Frequency parameters 
of cantilever functionally graded 
plates with various mass ratios 
and various mass locations 
(p = 2, a/h = 10, ΔT = 300, 
a/b = 1)

(X,Y) M Nondimensionalized frequency parameters

Δ1 Δ2 Δ3 Δ4 Δ5 Δ6

(− 0.5,0) 0.1 4.1715 9.8950 23.3216 26.4506 29.6603 34.6504
0.2 4.1561 9.8950 21.5774 26.4506 28.6197 34.6504
0.5 4.1090 9.8950 17.0366 26.4506 27.5051 34.6504
1 4.0286 9.8950 13.1916 26.4506 27.1156 34.6504

(0,0) 0.1 4.0187 9.8950 21.5839 26.4506 28.1868 34.6504
0.2 3.8656 9.8950 19.0337 26.4506 27.5499 34.6504
0.5 3.4820 9.8950 15.2987 26.4506 27.1394 34.6504
1 3.0223 9.8950 13.1045 26.4506 27.0056 34.6504

(0.5,0) 0.1 3.6538 9.8950 24.5243 26.4506 26.8244 34.6504
0.2 3.2800 9.8950 24.1211 25.1397 26.4506 34.6504
0.5 2.6037 9.8950 22.0275 24.7413 26.4506 34.6504
1 2.0460 9.8950 20.7807 24.7090 26.4506 34.6504

(1,0) 0.1 3.1770 9.8950 18.2137 26.4506 29.5561 34.6504
0.2 2.6521 9.8950 16.5590 26.4506 29.3914 34.6504
0.5 1.9146 9.8950 15.1822 26.4506 29.2799 34.6504
1 1.4266 9.8950 14.6355 26.4506 29.2405 34.6504

Table 10  Frequency parameters 
of cantilever functionally graded 
plates with various mass ratios 
and various mass locations 
(p = 2, a/h = 10, ΔT = 300, 
a/b = 1.5)

(X,Y) M Nondimensionalized frequency parameters

Δ1 Δ2 Δ3 Δ4 Δ5 Δ6

(− 0.5,0) 0.1 4.1472 13.1884 21.3142 23.3182 42.9676 50.5889
0.2 4.1320 13.1884 21.3142 21.8194 42.9676 44.1385
0.5 4.0862 13.1884 18.0860 21.3142 37.3096 42.9676
1 4.0092 13.1884 14.4675 21.3142 34.6805 42.9676

(0,0) 0.1 3.9980 13.1884 21.3142 21.7064 42.9676 53.4051
0.2 3.8490 13.1884 19.6536 21.3142 42.9676 50.2540
0.5 3.4772 13.1884 16.4305 21.3142 42.9676 46.7492
1 3.0313 13.1884 14.3264 21.3142 42.9676 45.1562

(0.5,0) 0.1 3.6389 13.1884 21.3142 24.7330 42.9676 50.9037
0.2 3.2723 13.1884 21.3142 24.6904 42.9676 45.7788
0.5 2.6068 13.1884 21.3142 24.6096 39.9988 42.9676
1 2.0544 13.1884 21.3142 24.5432 37.2016 42.9676

(1,0) 0.1 3.1702 13.1884 20.0960 21.3142 42.9676 44.8823
0.2 2.6539 13.1884 18.6435 21.3142 42.6212 42.9676
0.5 1.9234 13.1884 17.3242 21.3142 41.0662 42.9676
1 1.4362 13.1884 16.7708 21.3142 40.5174 42.9676
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of Chebyshev polynomials in all directions equal number 
as 8 × 8 × 8 as seen in Table 3. However, computational 
optimization could be obtained using unequal number of 
series terms in all directions.

Tables 4 and 5 show that the results for the clamped 
square functionally grade plates subjected the uniform tem-
perature distribution and nonlinear temperature distribution, 
respectively are in good agreement as with presented by Kim 
[17] and Li et al. [18].

Parametric Studies

The object of this study is determined to effects of the mass 
ratio and location of the point mass on frequency param-
eters that moderately thick (a/h = 10) functionally graded 
plates with and without thermal environment. In the results 
the values of side to side ratios are a/b = 1; 1.5 and 2, vol-
ume fraction exponents are p = 1, 2, 5 and 10 and tempera-
ture differences are ΔT = 0, 300 and 500 K are considered. 
The temperature distribution is considered as in the form 
of nonlinear. The results are presented as for with a point 
mass that mass ratio M = 0.1, 0.2, 0.5 and 1 and without 
mass. The location coordinates of point mass are presented 
as (X,Y) = (−  0.5,0); (0,0); (0.5,0); (1,0) in the tables. 
And to see the case of different locations according to y 

axis the location coordinates of point mass are presented 
as (X,Y) = (0,0); (1,0); (–0 .5,0.5); (0.5,− 0.5) in the mod 
shape figures. The location of the point mass was determined 
according to whether the coordinates were on the symmetry 
axis or not according to the boundary condition considered. 
Here, the (1,0) and (0,0) coordinates are above the sym-
metry axis according to the considered boundary condition. 
And also the (0,0) coordinates are correspond the geometric 
center of the plate. The (− 0.5,0.5) ve (0.5,− 0.5) coordi-
nates are not above the axis that is symmetrical with respect 
to the considered boundary condition. Thus, it provides a 
better understanding of the effects of the point mass whether 
on the symmetry axis or not on the frequency parameters.

Tables 6, 7 and 8 presents the frequency parameters 
obtained for the cases of with and without mass depend-
ing on the volume fraction exponent p and temperature dif-
ferences for a/b = 1, 1.5 and 2, respectively. For the cases 
with point mass, the location of point mass is considered 
as (1,0). According to these results free vibration frequen-
cies decreases with increasing p index and temperature dif-
ference. The frequencies obtained according to the with 
point mass cases are always smaller than the frequency 
values obtained for the without point mass case. One can 
be seen that from Tables 6, 7 and 8, when the a/b = 1, the 
second, the fourth and the sixth frequencies remain constant 

Table 11  Frequency parameters 
of cantilever functionally graded 
plates with various mass ratios 
and various mass locations 
(p = 2, a/h = 10, ΔT = 300, 
a/b = 2)

(X,Y) M Nondimensionalized frequency parameters

Δ1 Δ2 Δ3 Δ4 Δ5 Δ6

(− 0.5,0) 0.1 4.1284 16.0058 17.7997 23.2606 51.1853 54.8487
0.2 4.1136 16.0058 17.7997 21.8305 48.5803 51.1853
0.5 4.0689 16.0058 17.7997 18.3700 41.2155 51.1853
1 3.9942 14.9243 16.0058 17.7997 37.9831 51.1853

(0,0) 0.1 3.9812 16.0058 17.7997 21.6370 51.1853 62.9492
0.2 3.8345 16.0058 17.7997 19.6577 51.1853 62.8874
0.5 3.4681 16.0058 16.5717 17.7997 51.1853 62.6523
1 3.0279 14.5307 16.0058 17.7997 51.1853 62.1353

(0.5,0) 0.1 3.6246 16.0058 17.7997 24.6661 51.1853 59.9751
0.2 3.2612 16.0058 17.7997 24.6091 51.1853 56.0777
0.5 2.6007 16.0058 17.7997 24.5124 50.3203 51.1853
1 2.0512 16.0058 17.7997 24.4420 47.1472 51.1853

(1,0) 0.1 3.1598 16.0058 17.7997 20.4533 51.1853 51.9407
0.2 2.6476 16.0058 17.7997 19.1202 49.1517 51.1853
0.5 1.9212 16.0058 17.7997 17.8841 47.1095 51.1853
1 1.4356 16.0058 17.3570 17.7997 46.3639 51.1853
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Fig. 2  Variation of fundamental frequency parameter with temperature differences for cantilever functionally graded plate with point mass 
(a/h = 10, (X,Y) = (0,0))
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Fig. 3  Variation of fundamental frequency parameter with the location of point mass throguhout x axis for cantilever functionally graded plate 
with point mass (a/h = 10, Y = 0)
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as independent of the presence of mass. At the values of 
a/b = 1.5 and 2, it is seen that the second frequencies remain 
constant as independent from the presence of mass. It means 
that the mass does not move during these vibrations because 
of the mass is at a nodal line. However, when the a/b = 1,5 
and 2, it is seen that at high frequencies, intermediate fre-
quencies occur in the case of with mass. As a result of this, 
in the case of without mass the third and the fifth frequen-
cies, respectively, appears to be equivalent in the case of 

with mass to the fourth and sixth frequencies. It means that 
the case of with point mass the nodal lines are displaced.

Tables 9, 10 and 11 presents the frequency parameters 
obtained for in the case of for different location of the 
point mass throughout the x axis for different mass rate 
from 0.1 to 1, for a/b = 1, 1.5 and 2, respectively. It is 
seen that when the point mass is located at symmetry axis 
according the boundary condition which correspond Y = 0 
and throughout the x axis; some frequencies remain con-
stant independent of the increasing of mass ratios because 
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point mass (a/h = 10, Y = 0)
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of the mass is at a nodal line and the mass dos not move 
during these vibrations.

Variation of fundamental frequency parameter with vol-
ume fraction index for various temperature differences for 

cantilever functionally graded plate with point mass on plate 
center are given in Fig. 2. Generally the effect of tempera-
ture on frequency parameter higher at higher volume frac-
tion index. Also, The effect of volume fraction index on 
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Fig. 5  First six mode shapes of cantilever functionally graded plate without mass (p = 2, a/b = 1.5, a/h = 10)
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frequency parameter higher decreasing with increasing of 
volume fraction index.

Effect of the location of point mass throguhout x axis for 
cantilever functionally graded plate for different point mass 
ratio and for various temperature differences on fundamental 

frequency parameter and on third frequency parameter are 
given in Figs. 3 and 4, respectively. For all considered 
mass ratios, the fundamental frequency remains almost 
unchanged when the point mass is near the clamped edge, 
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Fig. 6  First six mode shapes of cantilever functionally graded plate with point mass (p = 2, a/b = 1.5, a/h = 10, M = 1, (X,Y) = (0,0))
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while it decreases substantially as the point mass approaches 
the free edge. Finally, the fundamental frequency reaches 
its minimum value at the free edge for all considered mass 
ratios, temperature differences, p values and a/b ratios. The 
decreasing on fundamental frequency parameters are greater 
with increasing mass ratios. It can be seen that the change of 
the third mode at different mass ratios along the x-axis is in 
the waveform for a/b = 1. The frequency parameters reaches 

a maximum value on a point which shifts gradually outward 
with increasing mass ratios. For a/b = 2 ratio, it is seen that 
the change in the position of the point mass along x axis, the 
effect on the frequency remains constant locally and has a 
sharp effect on the frequency change at some critical points. 
It is seen that the frequency values obtained by considering 
the temperature effect are always lower than the frequency 
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Fig. 7  First six mode shapes of cantilever functionally graded plate with point mass (p = 2, a/b = 1.5, a/h = 10, M = 1, (X,Y) = (1,0))



1885Journal of Vibration Engineering & Technologies (2023) 11:1867–1888 

1 3

values obtained at room temperature, and the change always 
remains parallel to each other.

The mod shapes for the first six frequencies of plate for 
p value is 2, side to side ratio a/b is 1.5 and mass ratio is 1 
are presented with Figs. 5, 6, 7, 8 and 9. These figures are 
presented for in the case of without mass and drawn for 
in the case of with mass four different locations of point 
mass and the conditions where the temperature difference 

is 0 and 500 K, respectively. Whether the cases where the 
point mass is on the axis of symmetry, the mode shapes 
maintain their symmetry with respect to the axis. It is seen 
that the nodal lines changing at the points where the mass 
is outside the symmetry axis and some modes shifting. 
On the other hand, it is seen that the temperature to cause 
waves to change phase in some modes.
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Fig. 8  First six mode shapes of cantilever functionally graded plate with point mass (p = 2, a/b = 1.5, a/h = 10, M = 1, (X,Y) = (− 0.5,0.5))
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Conclusions

The free vibration has been performed on a cantilever 
functionally graded plate carrying a point mass on an 
arbitrary point using Ritz method based on three-dimen-
sional elasticity under nonlinear temperature distribu-
tion. The effective material properties are estimated by 

Mori–Tanaka homogenization scheme. The following con-
clusions can be reached as a result of the analysis.

• Choosing the terms number of Chebyshev polynomials 
which used as admissible functions in Ritz method as 
8 × 8 × 8, the results can be obtained in good agreement 
with literature and consitent.

(i) (ii) (iii)

(iv) (v) (vi)

(a) ΔT=0 K (i)2.0429, (ii)10.8116, (iii)21.5683, (iv)24.8724, (v)43.2668, (vi)52.6142 

(i) (ii) (iii)

(iv) (v) (vi)

(b) ΔT=500 K (i)1.9964, (ii)10.5344, (iii)21.0115, (iv)24.3495, (v)42.2477, (vi)51.5980 
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Fig. 9  First six mode shapes of cantilever functionally graded plate with point mass (p = 2, a/b = 1.5, a/h = 10, M = 1, (X,Y) = (0.5,− 0.5))



1887Journal of Vibration Engineering & Technologies (2023) 11:1867–1888 

1 3

• Free vibration frequencies decreases with increasing p 
index and increasing temperature difference.

• The frequencies obtained for in the case of with point 
mass are always smaller than the frequency values 
obtained for in the case of without point mass.

• When the point mass is located on a nodal line, the mass 
does not move during these and so frequency remain con-
stant as independent of the presence of mass. It is under-
stood from this that if the mass is located on the nodal 
lines, at these frequencies it will resonate at the natu-
ral frequency of the unperturbed plate: e.g. for a/b = 1, 
the second, the fourth and the sixth frequencies remain 
constant; for a/b = 1.5 and 2, the second mode remains 
constant.

• When a/b = 1.5 and 2, at high frequencies, intermediate 
frequencies occur in the case of with mass: e.g. it is seen 
that in the case of without mass the third and the fifth 
frequencies, respectively, equivalent in the case of with 
mass to the fourth and sixth frequencies.

• The p value and temperature are more effective at increas-
ing a/b values in the case of with mass and accordingly 
the nodal lines are displaced.

• An increase in temperature always causes a decrease in 
the frequency value, regardless of the mass ratio and the 
position of the point mass, while this decrease becomes 
more temperature sensitive with increasing mass ratio.

• Increasing of the p value causes the frequency value to 
decrease regularly, in all mass ratio which considered and 
the location of the point mass.

• Temperature affects the vibration behavior in the form 
of the change of direction of the waves in some modes 
or the displacement of the mode shapes at some frequen-
cies.

• The presence of point mass affects vibrational behavior 
in some modes by changing the direction of the waves 
or changing their mode shape or increasing the num-
ber of waves at some frequencies. In addition, in cases 
where the point mass is on the axis of symmetry, the 
vibration behavior occurs symmetrically with respect to 
the axis, while this symmetry is broken at points where 
the mass is outside the axis of symmetry.
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