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Abstract
Purpose  The present paper addresses the vibration reduction for an elastic beam with an asymmetric boundary condition 
that is clamped at one end and elastically supported at the other end. An inertial nonlinear energy sink (NES) is installed on 
the elastic support end to suppress the beam's vibration.
Methods  The nonlinear terms introduced by the NES are transferred as the external excitations acting on the beam. The 
motion equations of the beam with an NES are derived according to Hamilton's principle and the Galerkin truncation method. 
The beam's natural frequencies and corresponding mode shapes are analytically obtained and verified with the results of the 
finite element method. The responses of the beam are numerically and analytically solved by the fourth order Runge–Kutta 
method and the harmonic balance method (HBM), respectively.
Results  The good agreement among the results validates the present derivation of the theoretical model and numerical 
solutions. The steady-state responses of the beam with and without the NES are compared and analyzed in the time domain. 
Conclusions  The results demonstrate that adding the inertial enhanced NES can effectively reduce the resonance amplitude 
of the beam. Furthermore, a parametric optimization is conducted for NES to improve its performance. The results of this 
paper contribute to the application of NESs on the boundaries of elastic structures.

Keywords  Nonlinear energy sink · Elastic support · Vibration control · Nonlinear boundary, inerter

Introduction

Vibration control has always been a research hotspot in engi-
neering applications, wherein passive vibration control is 
widely applied due to the advantages of its simple structure, 
low cost, and lack of demand for external energy. However, 

appropriately designed linear vibration absorbers can only 
reduce structural vibration in a relatively narrow frequency 
range [1, 2]. Therefore, nonlinear elements were introduced 
into linear vibration absorbers to broaden the vibration 
reduction frequency band [3]. Vakakis [4] first proposed 
a nonlinear energy sink (NES), which has the advantages 
of small added mass and a wide working frequency band. 
As a passive shock absorber, the NES has quickly attracted 
much attention in the field of vibration reduction [5–9]. 
Furthermore, the target energy transfer characteristics of an 
NES further improve its vibration absorption performance 
[10–12].

The introduction of nonlinearity complicates the 
dynamic response of the associated system. Thus, many 
investigations have been devoted to the dynamics of sys-
tems consisting of coupled linear and nonlinear oscillators. 
Zang and Chen [13] investigated the complex dynamic 
behaviors of a single-degree-of-freedom oscillator cou-
pled with an NES subjected to harmonic excitation. 
Grinberg et al. [14] studied the periodic, quasiperiodic 
and chaotic responses of a primary system coupled to a 
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two-degrees-of-freedom (2DOF) NES and found that the 
additional degree-of-freedom of the NES could consid-
erably improve its vibration reduction performance. Tsa-
kirtzis et al. [15] studied the complex dynamics of linear 
oscillators coupled to NESs with multiple degrees of free-
dom. Substantial passive targeted energy transfer from the 
linear to the nonlinear subsystem can be archived over a 
wide frequency. Furthermore, combining multiple NESs 
in parallel can effectively improve the target energy trans-
mission capacity [16, 17]. Sun and Chen [18] analyzed 
the dynamic behavior of a coupled system composed of a 
nonlinear primary oscillator and an NES under harmonic 
excitation. The results showed that properly reducing the 
nonlinear stiffness of the NES could eliminate the high 
branch response and improve the damping efficiency of 
the NES with respect to the primary system.

However, in most engineering applications, the main sys-
tems are usually modeled as continuous structures, such as 
beams and plates, rather than discrete systems. Georgiades 
and Vakakis [19] first extended the applicability of NESs to 
continuous systems. They numerically showed that an appro-
priately designed and placed NES could irreversibly absorb 
and locally dissipate a large portion of the vibration energy 
of a beam subjected to impulse excitations. Their results 
provided an insight into the implementation of the NESs 
for vibration reduction in practical engineering structures. 
Samani [20] demonstrated the effectiveness of NESs applied 
to beams excited by axially moving loads and considered 
several optimization strategies to enhance the vibration 
absorption performance. Modeling an aircraft's motion as 
an axial moving beam, Zhang et al. [21] studied the vibra-
tion suppression performance of an NES to the aircraft under 
heat-induced vibration and found that the appropriate NES 
parameters could realize the rapid vibration suppression for 
the main structure. Mamaghani et al. [22] studied the vibra-
tion control of a flow transmission pipeline with an NES and 
analyzed the influences of the NES position, damping, fluid 
velocity, and other factors on the dynamic response of the 
structure. Ahmadabadi [23] analyzed the vibration reduction 
performance of a cantilever beam attached with grounded 
and ungrounded configurations of NESs, respectively. The 
necessary conditions for achieving target energy transfer 
were discussed by evaluating the nonlinear normal modes. 
Parseh et al. [24] investigated the steady-state dynamics of a 
beam attached with an NES subjected to harmonic excitation 
under different boundary conditions. To study the targeted 
energy transfer from a nonlinear continuous system to an 
NES, Kani et al. [25] analyzed the targeted energy transfer 
between multiple modes of a nonlinear beam and an NES 
as well as the dissipation of the oscillating energy of the 
beam. Zhang et al. [26] studied the vibration control effects 

of an NES on a laminated composite beam in hygrothermal 
and thermal environments environment. Zhang and Chen 
[27] analyzed the vibration reduction effect of an NES on a 
geometric nonlinear plate.

There are strict requirements for the mass of an additional 
shock absorber in aerospace and structural engineering, so 
research on the optimal designs of shock absorbers has always 
been a problem worthy of study. In 2002, Smith [28] proposed 
an inertial element, known as inerter which could provide iner-
tia several times its own mass. Recently, the inerter has been 
successfully applied for vibration absorption and reduction for 
many structures, such as aircrafts [29, 30], vehicles [31], and 
buildings [32]. Zhang et al. [33, 34] integrated an inerter into 
an NES to enhance the vibration reduction of the NES on elas-
tic structures. They revealed that the inertial NES could sup-
press elastic beams' multimodal transverse bending vibration.

Some recent studies on the reduction of vibrations of elas-
tic structures have focused on elastic or nonlinear boundaries 
instead of classical boundaries. Ding et al. [35, 36] investigated 
the force transmission of a viscoelastic beam with a new verti-
cal elastic support boundary. The study provided a new direc-
tion for the study of vibration isolation of elastic structures. 
Mao [37] first introduced an analytical method for analyzing 
flexible structures with nonlinear elastic boundary conditions. 
Ye et al. [38] studied the complex dynamic characteristics of 
micro bending beams with nonlinear boundary conditions. The 
results showed that both nonlinear boundary conditions and 
the initial curvature could significantly affect the vibration of 
curved flexible structures.

As reviewed above, although many studies have been ded-
icated to improving the vibration reduction performance of 
NESs to beams with normal boundary conditions, the appli-
cability of inertial NESs to the vibration mitigation of beams 
with asymmetric elastic supports is still limited. This particular 
beam model with asymmetric elastic supports can be degener-
ated into a cantilever beam or clamped-elastically supported 
beam.

The present paper establishes a dynamic model for a canti-
lever beam with a vertical spring on its free end by Hamilton's 
principle. A light inertial NES is installed at the elastic support 
end to suppress the multi-modal resonance of the beam. The 
Dirac function is used to deal with the nonlinearity introduced 
by the NES on the boundary. The finite element method veri-
fies the frequencies and modes obtained in this paper. Then, 
the steady-state response of the beam is obtained according to 
the Runge–Kutta method, and the correctness of the results 
is verified by the harmonic balance method (HBM). Finally, 
the suppression effect of the NES on the resonant amplitude 
of the beam is analyzed, and the parameters of the NES are 
optimized to improve its performance.
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Dynamic model

Figure 1 shows the dynamic model of an elastic beam with 
a nonlinear energy sink attached to its right end. The left 
end of the beam is clamped, and the right end of the beam 
is linearly elastically supported. L denotes the length of the 
beam. t  and x represent the time and axial coordinate of 
the beam, respectively. k means the stiffness of the vertical 
springs at the right end of the beam. w(x, t) is the displace-
ment of the transverse vibration of the beam with respect 
to the x coordinate. v(t) and w0 are the displacements 
of the NES and the right end of the beam, respectively. 
The beam is excited by a uniformly distributed harmonic 
force excitation f (x, t) = f0 cos (Ωt) , where f0 and Ω are 
the amplitude and frequency of the uniformly distributed 
harmonic force, respectively. bm is the inertance of the 
NES installed on the right end of the beam. knes and � are 
the cubic nonlinear stiffness and the linear damping of the 
NES, respectively.

The beam is considered as the Euler–Bernoulli beam 
model with a uniform cross-section. The kinetic energy 
of the beam is given as

where � and A are the density and the cross-sectional area of 
the beam, respectively.

The potential energy of the beam is obtained as

where E and I are Young's modulus and the moment of iner-
tia of the cross section, respectively.

The potential energy of the vertically supported spring 
can be expressed as

(1)T =
1

2 ∫
L

0

�A
(
�w

�t

)2

dx

(2)Uv =
1

2 ∫
L

0

EI

(
�2w

�x2

)2

dx

where w0 is the displacement of the right end of the beam.
Therefore, the potential energy of the beam-spring sys-

tem is

At the right end of the beam, the force generated by the 
NESs can be expressed as

In addition, the damping term is introduced by using the 
Kelvin material constitutive model [39]

where c is the viscous damping coefficient of the beam.
The virtual work done by the force of the NES and the 

external force is given as

where �Wnes and �Wf  represent the virtual work done by 
the NES and the uniformly distributed harmonic force, 
respectively.

Hamilton's principle is applied to obtain the governing 
equations of the beam with the NES. Hamilton's principle 
takes the following form

The dimensionless variables and parameters are intro-
duced as follows

Substituting Eqs.  (1)–(7) and (9) into Eq.  (8), the 
dimensionless governing equations of the clamped-elasti-
cally supported beam can be obtained as
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Fig. 1   Dynamic model of an elastic beam with an inertial NES
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The dimensionless nonlinear boundary conditions of 
the beam can be written as

The dimensionless governing equation of the NES 
mounted at the right end of the beam is derived as

In the references [40, 41], Ding et al. treated the non-
linear restoring force and damping force in the boundary 
conditions as the external excitations subjecting to the 
beam and verified this special treatment by the finite differ-
ence method. According to this treatment for dealing with 
nonlinear boundary conditions, the Dirac function �

(
x
)
 is 

applied to transfer the nonlinear term and damping term 
in Eq. (11) into the external excitations acting to the right 
end of the beam. Consequently, Eqs. (10) and (11) can be 
rewritten as

where the Dirac delta function �
(
x − 1

)
 indicates the loca-

tion of the interaction force.

Free Vibration

In this section, the natural frequencies and modal func-
tions of the linear system are solved. Without nonlinear 
terms and damping, the corresponding Eq. (13) of the 
linear transverse vibration of the beam can be rewritten 
as
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The transverse vibration displacement can be assumed as

where �
(
x
)
 denotes the mode function of the beam and q

(
t
)
 

represents the corresponding generalized coordinate. Satis-
fying the boundary conditions that are clamped at one side 
and elastically supported on the other side, the mode func-
tion �

(
x
)
 can be defined as

Substituting Eq. (16) into Eq. (14), the following equa-
tions are obtained

The undetermined coefficients Ci(i = 1, 2, 3, 4) and the 
eigenvalue � can be obtained by solving Eqs. (18). Besides, 
the relationship � and natural frequencies � can be derived 
as

Substituting Eq. (17) into Eq. (18) leads to

For a nontrivial solution Ci ≠ 0 , the determinant of the 
coefficient matrix of Eq. (20) should be zero. Thus, the val-
ues of � and � can be obtained. Table 1 shows the geometric 
and material parameters of an aluminum alloy beam consid-
ered in the present paper [34].

Based on the parameters in Table 1, the first four val-
ues of �i(i = 1, 2, 3, 4) can be calculated as �1 = 3.4009 , 
�2 = 5.2012 , �3 = 7.9642 , �4 = 11.0342 . The undetermined 
coefficients Ci(i = 1, 2, 3, 4) can be accordingly solved, and 
the corresponding modal functions of the first four orders are 
obtained as follows.

�1
(

x
)

=1.0482 cos
(

3.4009x
)

− sin
(

3.4009x
)

− 1.0482ch
(

3.4009x
)

+ sh
(

3.4009x
)

,

(15)
�2w

(

x, t
)

�t2
+ �2

�4w
(

x, t
)

�x4
= 0

(16)w
(
x, t

)
= �

(
x
)
q
(
t
)

(17)�
(
x
)
= C1 cos �x + C2 sin �x + C3ch�x + C4sh�x

(18)�(0) = 0,��(0) = 0,���(1) = 0,����(1) − k�(1) = 0

(19)�4 = �2

�2

(20)

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 1 0
0 1 0 1

− cos � − sin � ch� sh�
�3 sin � − k cos � −�3 cos � − k sin � �3sh� − kch� �3ch� − ksh�

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

C1

C2

C3

C4

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

0

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦



1715Journal of Vibration Engineering & Technologies (2023) 11:1711–1723	

1 3

�2
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Then, the analytically derived frequencies and modal 
functions are compared with results obtained using the 
finite element method. In software ABAQUS, the finite 
element numerical calculation is conducted to establish the 
2D model of the elastic beam with boundary conditions 
in which one side is clamped and the other side is elasti-
cally supported by a vertical spring. Table 2 shows the 
comparative results of the frequencies of the beam with 
the same parameters. Figure 2 demonstrates the first four 
mode shapes obtained by the present modal functions and 
the finite element method in software ABAQUS, respec-
tively. A good agreement can be observed by comparing 
frequencies and mode shapes, verifying the accuracy of 
the proposed method.

Numerical and Analytical Solutions

Galerkin Method

The Galerkin method is applied to truncate the partial differ-
ential governing Eqs. (12) and (13) into nonlinear ordinary 
differential equations. The solution of the beam's transverse 
vibration is assumed as

(21)
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where K is the Galerkin truncation order. The trial func-
tion �k

(
x
)
 and the weight function �n

(
x
)
 are expressed as 

the mode functions of the beam as shown in Eq. (17). The 
ordinary differential equations of the beam and NES are 
derived as

where
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Table 1   Geometric and material parameters of an aluminum alloy 
beam

Item Notation Value

Young's modulus of the beam E 68.9 GPa
Density of the beam ρ 2800 kg·m−3

Length of the beam L 0.5 m
Width of the beam b 0.02 m
Height of the beam h 0.01 m
Cross-sectional area A 2 × 10–4 m2

Cross-sectional moment of inertia I 1.67 × 10–9 m4

Viscoelastic coefficient c 1 × 106 N·s·m−2

Vertical spring stiffness at the right end k 46,025.2 N·m−1

Table 2   Comparison of the first four frequencies of the beam

Present ABAQUS

First order (Hz) 105.44 105.42
Second order (Hz) 246.62 246.25
Third order (Hz) 578.24 575.32
Fourth order (Hz) 1109.95 1099.40

Fig. 2   Comparison of the first four mode shapes
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The response of the beam can be numerically calculated 
by the fourth-order Runge–Kutta method based on Eqs. (23) 
and (25). The parameters of the inertial NES are given as 
mass of the inerter mnes = 0.0028kg , Inertance coefficient 
� = 100 , Damping � = 1N ⋅ s ⋅m−1 , and Nonlinear stiffness 
knes = 1 × 107N ⋅m−3 . Based on the reference [42], this 
paper adopts a ballscrew inerter whose mass is less than 
1% of that of the elastic beam. The inertance of the inerter 
is given as

where mnes is the mass of the inerter of the NES, and the 
inertance coefficient � is in the range of 60 − 240 . The initial 
values are given as

Then, the effects of the Galerkin truncation order K on 
the calculation accuracy are analyzed. Figure 3 shows the 
free vibration responses of the beam with respect to the 2nd, 
4th and 6th order Galerkin truncations. It can be observed 
that the responses of the 4th and 6th order truncation are 
almost consistent. In contrast, these results are different from 
the responses of the 2nd order truncation. Consequently, 
considering the calculation accuracy and convenience, the 
4th order Galerkin truncation is employed in the following 
analysis.

Harmonic Balance Method

The accuracy of the numerical results obtained for the 
governing Eqs. (23) and (25) are verified with the approxi-
mate analytical solutions derived by the harmonic balance 
method. The cubic nonlinearity feature is applied in the 
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NES. Therefore, the odd harmonics are considered for the 
solutions of the beam and the intertial NES as

where N is the nonnegative integer, n is the Galerkin trunca-
tion order, and 2i + 1 is the harmonic order.

In the following, an example of the derivation process of 
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The coefficients in the above algebraic equations can be 
obtained by the pseudo-arc length continuation method. Fig-
ure 4 shows the amplitude-frequency response curve of the 
numerical solution based on the Runge–Kutta method and the 
analytical solution obtained by the harmonic balance method. 
A good agreement can be observed for the two methods, which 
verifies the accuracy and reliability of the numerical solution.

Vibration Reduction Effect

This section focuses on the suppression effect of the NES 
on beam vibration, including the free vibration response, 
transient response, and steady-state response. Based on the 
derived governing equation, the numerical results for the 

(33)b11 = b1,1,B =
(
b1 − b11�11

)
,

response of the beam's right point are obtained by the fourth 
order Runge–Kutta method.

Free Vibration

Neglecting the force terms related to the NES and setting 
f 0 = 0 in Eq. (23), the free vibration response of the beam 
without NES can be numerically determined. Two kinds of 
spring stiffness ( k = 46025.2 N ⋅m−1 and k = 0 N ⋅m−1 ) are 
considered to investigate the suppression effect of the NES 
on the beam's free vibration. According to the parameters 
given in Table 1, for k = 46025.2 N ⋅m−1 , the free vibration 
responses of the right point of the beam with and without 
the NES are plotted in Fig. 5a. It shows that by introducing 
an NES, the free vibration response of the beam decays to 
zero more quickly after the initial transient response. For the 
special case in which k = 0 N ⋅m−1 , the boundary condition 
of the beam changes from the clamped-elastic support to 
clamped-free. Figure 5b depicts the vibration suppression 
effect of the free vibration response at the right point end 
of the cantilever beam. An effective reduction of the free 
vibration can also be observed.

Transient Response

The reduction effect of the NES on the transient response of 
the clamped-elastic support beam under different external 
excitation frequencies is analyzed in the time domain. In 
the following analysis, the external excitation amplitude is 
taken as f0 = 30N∕m . First, when the excitation frequency 
Ω=105.4Hz is near the first natural frequency �1 , the first 
four order response of the beam's right point is shown in 
Fig. 6a. It illustrates that the first order primary oscillation 
can be observed, while the response of the other three orders 
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Fig. 5   Vibration suppression effect of the free vibration response at the beam’s right point: (a) elastically supported beam, (b) cantilever beam
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is minimal and have little impact on the total response of the 
beam. Figure 6b demonstrates the first four order responses 
of the beam with an NES. It can be observed from Fig. 6 
that the beam's amplitude will decrease from 11 to 6 mm. 
Therefore, introducing an NES can efficiently reduce the 
amplitude of the transient response of the beam.

Figure 7 illustrates the comparison of the beam's right 
point response when the excitation frequency Ω= 246.6Hz 
is near the second natural frequency �2 . It can be found 
that the second order response is the main component of the 
beam's response, and a noticeable vibration reduction effect 
can also be observed.

Steady State Response

The steady-state response means the stable periodic 
response after which the transient response completely 
expires due to the damping effect. To evaluate the vibra-
tion suppression effect of the NES on the steady-state 
response, the reduction percentage of the primary reso-
nance peak R is introduced as the following form

(34)R =
Au − An

Au

× 100%

Fig. 6   The first four order transient response of the beam: (a) without an NES, (b) with an NES

Fig. 7   The first four order transient response of the beam: (a) without an NES, (b) with an NES
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where Au and An represent the primary resonance peak of 
the vibration at the right point of the beam without and with 
an NES, respectively.

Figure 8 shows the vibration suppression effect of the 
steady-state response of the beam under different excitation 
frequencies. The reduction rates of the first three primary 
resonance peaks at the right point of the beam are 42.27%
,35.28% and 8.27% . The vibration suppression effect of the 
NES on the first two orders of primary resonance is more 
effective than that of the third order response.

Parameter Analysis

This section is dedicated to the improvement of the NES's 
reduction performance based on the first primary reso-
nance response obtained in the above analysis. Therefore, 

a parametric study is conducted by concurrently altering 
the NES's nonlinear stiffness and damping coefficient for 
the inertia coefficients �=50 , 100 and 150 , as presented in 
Figs. 9, 10 and 11, respectively.

A slight ridge region found in the three-dimensional 
(3-D) surface graph indicates the optimal area for the sup-
pression effect. The two-dimensional (2-D) graph dem-
onstrates the details of the related ridge region, which 
indicates the optimal intervals for both nonlinear stiffness 
and linear damping. It reveals that increasing the inertia 
coefficient � can achieve a better reduction effect. Con-
sequently, the optimized parameter intervals of the NES 
can be concluded from Fig. 11, which are suggested as: 
knes = 108 ∼ 109N

/
m3 , � = 120 ∼ 160N ⋅ s∕m , �= 150.

Any set of values in the optimized intervals can achieve 
the best vibration suppression effect. Figure 12 shows the 
vibration suppression effect of the optimized NES with 

Fig. 8   Vibration suppression effect of the steady-state response of the right point of the beam: (a) the first primary resonance, (b) the second pri-
mary resonance, (c) the third primary resonance
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�= 150 , knes = 108 ∼ 109N
/
m3 and � = 120 ∼ 160N ⋅ s∕m . 

The result shows that the reduction percentage for the first 
primary resonance can approach to 99.41%. Although the 
optimized parameters are obtained according to the first 
primary resonance response, they can also effectually 
reduce the amplitude of the second and third-order pri-
mary resonance. Based on this set of optimization values, 
the time history response of free vibration is depicted in 
Fig. 13. This reveals that the response time of free vibra-
tion is remarkably reduced.

Conclusions

In this paper, an inertial NES is installed on the bound-
ary of a beam that is clamped at one end and elastically 
supported on another end to suppress the multimodal 
vibration of the beam. Based on Euler–Bernoulli theory 
and Hamiltonian principle, the dynamic equation of the 
beam is established. The natural frequency of the beam 
is analytically solved and verified by the finite element 
method. The nonlinear terms due to the NES attached 

Fig. 9   The vibration suppression effect for the first primary resonance when the nonlinear stiffness knes and linear damping � change simultane-
ously for � = 50 : (a) 3-D surface map for the right end, (b) 2-D contour map for the right end

Fig. 10   The vibration suppression effect for the first primary resonance when the nonlinear stiffness knes and linear damping � change simultane-
ously for � = 100 : (a) 3-D surface map for the right end, (b) 2-D contour map for the right end
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Fig. 11   The vibration suppression effect for the first primary resonance when the nonlinear stiffness knes and linear damping � change simultane-
ously for � = 1 50 : (a) 3-D surface map for the right end, (b) 2-D contour map for the right end

Fig. 12   The vibration reduction effect of the optimized NES on the steady-state response of the right end of the beam: (a) the first primary reso-
nance, (b) the second primary resonance, and (c) the third primary resonance
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to the boundary are transferred into the external excita-
tions. Furthermore, applying the Runge–Kutta method, the 
beam's transient and steady-state responses are numeri-
cally solved and compared with those of the same beam 
without the NES. The main conclusions of this paper are 
given as follows.

(1)	 Introducing an NES can efficiently reduce the free 
vibration, transient response, as well as steady-state 
response of the clamped-elastically supported beam.

(2)	 The optimized NES can achieve a good vibration sup-
pression effect, where the reduction percentage for the 
first primary resonance can approach 99%. Besides, the 
NES can also effectually reduce the amplitudes of the 
second and third-order primary resonances.

(3)	 With the enhanced inertial NES, it is possible to sig-
nificantly reduce the additional mass of the attached 
vibration absorber. Besides, installing the NES on the 
boundary can promote the practical implementation of 
NES in engineering applications.

(4)	 Based on the results obtained in the present paper, fur-
ther investigations can be conducted to implement the 
inertial NESs on the vibration reduction of different 
elastically supported structures on engineering, such 
as the wings of aircrafts, bridges, and vehicles suppres-
sions.
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