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Abstract
Purpose  This research proves a novel closed-form solution for the forced vibration analysis of a Mindlin viscoelastic plate 
subjected to harmonic transversal load and constant in-plane compression, simultaneously.
Method  The excitation frequency of the harmonic transversal load is considered as equal to the natural frequency of the 
viscoelastic plate. The viscoelastic properties obey the Boltzmann integral law with constant bulk modulus. The displacement 
field is approximated by the product of a known geometrical function and an unknown time function. The simple hp cloud 
method is employed for discretization. Calculating the natural and viscous damping frequencies, geometry, mass and stiff-
ness matrices in the Laplace–Carson domain, and introducing the best values to replace the Laplace parameter, the dynamic 
responses of Mindlin viscoelastic plates are determined.
Results and Conclusion  The transient, steady-state and total dynamic responses of moderately thick viscoelastic plates are 
explicitly formulated in the time domain based on the elastic bending analysis at time zero, for the first time. In the numerical 
results, the effects of material properties and loading on the total dynamic responses are investigated.

Keywords  Dynamic response · Forced vibration analysis · Moderately thick viscoelastic plates · Steady-state response · 
Transient response

Introduction

As the use of time-dependent composite materials increases 
in industries, the use of viscoelastic theories has been 
increasing recently. Due to the damping property of vis-
coelastic materials, the dynamic analysis of viscoelastic 
plates subjected to harmonic load is one of the most inter-
esting problems in the structural vibration field. Vibration 
control is needed to control noise in engineering systems 
and to reduce vibration levels. Wang and Tsai [1] employed 
the finite element method to analyze the quasi-static and 
dynamic responses of linear viscoelastic plates with con-
stant Poisson’s ratio. Ilyasov and Akoz [2] considered the 
static and dynamic behavior of simply supported viscoelas-
tic triangular plates subjected to static and dynamic loads 

employing the Boltzmann–Volterra principle. Eshmatov [3] 
studied the geometrically nonlinear vibration and dynamic 
stability analysis of viscoelastic orthotropic rectangular 
plates based on the Kirchhoff–Love hypothesis and Reiss-
ner–Mindlin generalized theory. Abdoun et al. [4] investi-
gated the asymptotic numerical method for the forced har-
monic vibration analysis of viscoelastic structures. Gupta 
et al. [5] presented the vibration analysis of clamped viscoe-
lastic rectangular plates with varying thickness, linearly in 
one and parabolically in other direction. Li and Cheng [6] 
studied the dynamic behavior of viscoelastic plates by con-
sidering higher-order shear effects and finite deformations. 
Shariyat [7] investigated the free vibration and dynamic 
buckling analyses of viscoelastic composite sandwich plates 
subjected to thermomechanical loads based on the double-
superposition global–local theory. Mahmoudkhani et al. [8] 
considered the free and forced vibration analysis of sand-
wich plates with thick viscoelastic cores under wide-band 
random excitation. Temel and Sahan [9] studied the tran-
sient behavior of orthotropic viscoelastic thick plates under 
dynamic loads using the Laplace transformation. Amabili 
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[10] investigated the nonlinear vibration analysis of viscoe-
lastic rectangular plates using the Von Karman assumptions 
and Kelvin–Voigt solids. Wan and Zheng [11] considered 
the vibration and damping analysis of the five-layered con-
strained damping plates based on the theory of Donnell 
using the complex constant model. Khadem Moshir et al. 
[12] studied the free vibration analysis of moderately thick 
annular viscoelastic plates based on the perturbation tech-
nique. Amabili [13] presented the nonlinear vibration analy-
sis of viscoelastic rectangular plates derivation from viscoe-
lasticity and experimental validation. Balasubramanian et al. 
[14] studied the geometrically nonlinear vibration analysis 
of rubber viscoelastic rectangular plates with fixed edges 
and identified the increase of damping with the vibration 
amplitude, experimentally and numerically. Zhou and Wang 
[15] studied the transverse vibration and dynamic stability 
of the axially moving viscoelastic plates based on the Kel-
vin–Voigt model. Rouzegar and Davoudi [16] investigated 
the forced vibration analysis of smart laminated viscoelastic 
composite plates integrated with a piezoelectric layer using 
the RPT finite element approach. Silva et al. [17] presented 
the uncertainty propagation and numerical evaluation for the 
nonlinear dynamic analysis of viscoelastic sandwich plates 
by performing the Karhunen–Loeve expansion technique. 
Sofiyev et al. [18] considered the free vibration and dynamic 
stability analyses of functionally graded viscoelastic plates 
subjected to compressive load and resting on elastic founda-
tions. Ojha and Dwivedy [19] studied the dynamic analysis 
of a three-layered sandwich plate with thin composite layers 
and LPRE-based viscoelastic core. Amabili et al. [20] con-
sidered the nonlinear vibrations and nonlinear damping of 
fractional viscoelastic rectangular plates using a fractional 
linear solid model, experimentally and numerically. Zamani 
[21] investigated the free vibration analysis of viscoelas-
tic plates employing single-term Bubnov–Galerkin, least 
squares, and point collocation methods. Jafari and Azhari 
[22] presented the free vibration analysis of moderately 
thick viscoelastic plates based on the free vibration analysis 
of elastic plates. Jafari [23] investigated the non-harmonic 
resonance of Mindlin viscoelastic plates subjected to time-
dependent decreasing exponential transversal distributed 
loads. Jafari and Azhari [24] studied the dynamic stability 
analysis of moderately thick viscoelastic plates subjected to 
constant and harmonic in-plane compression based on the 
free vibration analysis of elastic plates.

Due to the difficulty and complexity of the equations, 
there are few articles on the forced vibration analysis of 
moderately thick viscoelastic plates. Also, there are not 
any closed-form solutions for the total dynamic responses 
of Mindlin viscoelastic plates subjected to harmonic 
transversal load and in-plane compression, simultane-
ously. The present paper investigates the forced vibra-
tion analysis of moderately thick viscoelastic plates under 

harmonic transversal and constant in-plane compressive 
loads, simultaneously. The excitation frequency of the 
harmonic load is investigated as equal to the natural fre-
quency. The stress–strain relation is written based on the 
Boltzmann superposition principle with constant bulk 
modulus for linear viscoelastic materials. The displace-
ment field is approximated using the separation of variables 
technique by the product of a known geometrical function 
and an unknown time function. The Laplace transform 
is employed to convert equations from the time domain 
to the Laplace domain. The simple hp cloud method is 
employed for discretization. Calculating the natural and 
viscous damping frequencies, geometry and mass matri-
ces, stiffness matrix in the Laplace–Carson domain, and 
finding the best values to replace the Laplace parameter, 
the unknown coefficients of the time function are deter-
mined. Finally, a closed-form solution is extracted while 
the transient, steady-state and total dynamic responses of 
Mindlin viscoelastic plates under out-of-plane and in-plane 
loadings are explicitly formulated in the time domain for 
the first time.

This paper is organized as follows: The extraction of 
equations of forced vibration analysis of moderately thick 
viscoelastic plates is described in Sect. 2. The numerical 
results are presented in Sect. 3. Section 4 presents the con-
clusions. The extraction of equations of forced vibration 
analysis of Bernoulli viscoelastic beams is described in 
Appendix 1.

Governing Equations

Kinematic Relations

The time-dependent displacement field is defined using the 
first-order shear deformation theory as:

in which �x and �y denote the rotations around y and x 
axes, respectively. u0 and v0 are the in-plane displacements 
and w(x,y,t) is an out-of-plane displacement of the middle 
surface.

According to the small deformation theory, the in-plane 
and out-of-plane solutions of a plate are uncoupled [25]. So, 
assuming the in-plane compressions to be less than the criti-
cal buckling load, the in-plane displacements of the middle 
surface can be removed for out-of-plane analysis.

Omitting the in-plane displacements, the strain–displace-
ment relations can be given as follows:

(1)

⎧⎪⎨⎪⎩

u(x,y,z,t)

v(x,y,z,t)

w(x,y,z,t)

⎫⎪⎬⎪⎭
=

⎧⎪⎨⎪⎩

u0(x,y,t) − z�x(x,y,t)

v0(x,y,t) − z�y(x,y,t)

w(x,y,t)

⎫⎪⎬⎪⎭
,
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Constitutive Equations

According to the Boltzmann superposition principle, the 
stress–strain relations of a linear viscoelasticity can be writ-
ten as [26]:

where �(t) is the time-dependent relaxed modulus tensor, 
�̇(t) = 𝜕�∕𝜕t , and the stress vector �(x,y,z,t) is defined as:

For isotropic materials, Eqs. (5–6) are always valid:

where K(t) , G(t) and E(t) are the bulk, shear, and elastic 
moduli and ν(t) is the Poisson ratio.

Assuming the constant bulk modulus:

Substituting Eqs. (5) and (7) into Eq.  (6), Eq.  (8) is 
obtained:

where the dimensionless relaxation function of a viscoelastic 

material can be defined by three coefficients as follows [22, 
24, 27]:

c1 and c2 are constant parameters and ts is the relaxation time 
of a viscoelastic material.

(2)�(x,y,z,t) =

⎧
⎪⎪⎨⎪⎪⎩

−z�x,x
−z�y,y

−z(�x,y + �y,x)

w,x − �x
w,y − �y

⎫
⎪⎪⎬⎪⎪⎭

.

(3)�(x,y,z,t) = �(t)�(x,y,z,0) + ∫
t

0

�(t − 𝜏)�̇(x,y,z,𝜏)d𝜏,

(4)�(x,y,z,t) = ⟨ σx σy �xy �xz �yz ⟩T .

(5)K(t) =
E(t)

3(1 − 2ν(t))
,

(6)G(t) =
E(t)

2(1 + ν(t))
,

(7)K(t) = K.

(8)

G(t) =
3K

2

(1 − 2ν(t))

(1 + ν(t))
= G0�(t),G0 =

3K

2
, �(t) =

(1 − 2ν(t))

(1 + ν(t))
,

(9)�(t) = c1 + c2���(−λt), λ = 1∕ts.

Substituting Eqs. (7–9) into Eqs. (5–6), the time-dependent 
elastic modulus and the time-dependent Poisson ratio can be 
given as:

Equation of Motion

The equilibrium equation of a moderately thick viscoelastic 
plate subjected to harmonic transversal loading q(t) , and in-
plane compressive forces Nx and Ny , as illustrated in Fig. 1, 
can be stated as:

The variations of the strain, �U , potentials, �V1 and �V2 , 
and kinetic, �T  , energies are written as:

where � is the plate density.

Separation of Variables

The displacement vector can be approximated using the 
separation of variables method as follows:

The variation and the rate of displacement vector can be 
given as:

(10)E(t) =
9K�(t)

2 + �(t)
,

(11)ν(t) =
1 − �(t)

2 + �(t)
.

(12)�U − �V1 − �V2 − �T = 0.

(13)𝛿U = ∫ V

(
�(0)T�(t) + ∫

t

0

�̇(𝜏)T�(t − 𝜏)d𝜏

)
𝛿�dV ,

(14)�V1 = ∫ A

[
Nx

�w

�x

��w

�x
+ Ny

�w

�y

��w

�y

]
dA,

(15)�V2 = ∫ A

q(t)�wdA,

(16)�T = −∫ V

�

[
�2u

�t2
�u +

�2v

�t2
�v +

�2w

�t2
�w

]
dV ,

(17)�(x,y,t) =

⎧⎪⎨⎪⎩

w(x,y,t)

�x(x,y,t)

�y(x,y,t)

⎫⎪⎬⎪⎭
=

⎧⎪⎨⎪⎩

w(x,y, t = 0)

�x(x,y, t = 0)

�y(x,y, t = 0)

⎫⎪⎬⎪⎭
F(t) = �0F(t), �0 = �(x,y,t = 0).

(18)��(x,y,t) = �0�F,
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Using Eqs. (17–19), the strain vector, the variation of strain 
vector, the rate of strain vector, and the variation of out-of-
plane displacement are obtained as:

Discretization

There are several numerical methods for discretizing equations 
in the space domain. In this study, the simple hp cloud method 
is utilized, [27].

The displacement vector can be discretized as:

in which:

and � is the vector of basis functions. More details exist in 
Appendix 2.

Substituting Eqs. (17–25) into Eqs. (13–16), Eqs. (26–29) 
are derived:

(19)�̇(x,y,t) = �0Ḟ(t).

(20)�(x,y,z,t) = �(x,y,z,t = 0)F(t) = �0F(t),

(21)�� = �0�F,

(22)�̇ = �0Ḟ(t),

(23)�w = w0�F.

(24)�0 = ��0,�0 =
[
�1

T �2
T
.. .. �N

T
]
,

(25)�i = ⟨wi �xi �yi ⟩
T

(26)𝛿U = ∫ V

�0T�TF(0)�(t)��0𝛿FdV + ∫ V∫
t

0

�0T�TḞ(𝜏)�(t − 𝜏)d𝜏��0𝛿FdV ,

The strain–displacement transformation matrices � and �G 
are introduced in Sect. 2.9 and the matrix of in-plane compres-
sive forces �p is defined as follows:

Ncr is the critical compressive load of a viscoelastic plate at 
time zero and �1 is an arbitrary constant coefficient.

Harmonic Transversal Load

For Mindlin viscoelastic plates, Ω is defined as the fundamen-
tal natural frequency calculated by the free vibration analysis 
of moderately thick viscoelastic plates at time zero [22]. If the 
plate is subjected to in-plane compression too, the natural fre-
quency �0 is decreased �0 ≅ Ω

√
1 − �1,0 ≤ 𝛼1 < 1 , [24]. In 

this paper, the plate is subjected to harmonic transversal load 
q(t) = qsin�0t and in-plane compressions, simultaneously. In 
other word, the excitation frequency is considered as equal to 
the natural frequency and the time-dependent behavior of the 
viscoelastic plate is studied.

Integrating over the Thickness

By integrating over the thickness of the plate, Eq. (26) can 
be rewritten as:

in which the time-dependent effective modulus tensor can 
be stated as:

(27)�V1 = ∫ A

�0T�T
G
F(t)�p�G�

0�FdA,

(28)�V2 = ∫ A

q(t)�w�
0�FdA,

(29)𝛿T = −∫ V

�0T�T�mF̈(t)��
0𝛿FdV .

(30)

�p =

[
Nx 0

0 Ny

]
= 𝛼1Ncr

[
1 0

0 k1

]
, k1 = Ny∕Nx,0 ≤ 𝛼1 < 1.

(31)𝛿U = ∫ A

�0T�TF(0)�(t)��0dA𝛿F + ∫ A∫
t

0

�0T�TḞ(𝜏)�(t − 𝜏)d𝜏��0dA𝛿F,

Fig. 1   A viscoelastic plate subjected to harmonic transversal load and 
in-plane compressions
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h is the plate thickness and k is the shear correction fac-
tor of the first-order shear deformation theory.

Also, by integrating over the thickness of the plate, 
Eq. (29) can be stated as:

where the mass density matrix, �m , can be expressed as:

Substituting Eqs. (27–28, 31, 33) into Eq. (12), Eq. (35) 
is derived:

Removing �F from Eq. (35), Eq. (36) is derived:

Transforming to Laplace Domain

Utilizing the Laplace transform, the convolution integral 
of Eq. (36) can be simplified as follows:

(32)�(t) =

⎡
⎢⎢⎢⎢⎢⎣

E(t)h3

12(1−�(t)2)

⎡
⎢⎢⎣

1 �(t) 0

�(t) 1 0

0 0
1−�(t)

2

⎤
⎥⎥⎦

0

0
E(t)hk

2(1+�(t))

�
1 0

0 1

�

⎤⎥⎥⎥⎥⎥⎦

,

(33)𝛿T = −∫ A

�0T�TF̈(t)�m��
0dA𝛿F,

(34)�m = �

⎡⎢⎢⎢⎣

h 0 0

0
h3

12
0

0 0
h3

12

⎤⎥⎥⎥⎦
.

(35)

{
∫ A

U0TBT

(
F(0)D(t) + ∫

t

0

Ḟ(𝜏)D(t − 𝜏)d𝜏

)
BU0dA

−𝛼1Ncr∫ A

U0TBT
G
F(t)

[
1 0

0 k1

]
BGU

0dA

+∫ A

U0TNT F̈(t)DmNU
0dA

}
𝛿F = 𝑠𝑖𝑛𝜔0t∫ A

qNwU
0dA𝛿F

(36)

�0T

{
∫ A

�T

(
F(0)�(t) + ∫

t

0

Ḟ(𝜏)�(t − 𝜏)d𝜏

)
�dA

}
�0

− 𝛼1NcrF(t)�
0T

(
∫ A

�T
G

[
1 0

0 k1

]
�GdA

)
�0

+ F̈(t)�0T

(
∫ A

�T�m�dA

)
�0 = sin𝜔0t

(
∫ A

q�wdA

)
�0.

(37)

�0T

(
∫ A

�TF∗s�∗�dA

)
�0 − 𝛼1NcrF

∗�0T

(
∫ A

�T
G

[
1 0

0 k1

]
�GdA

)
�0 + F̈∗�0T

(
∫ A

�T�m�dA

)
�0

=
(
sin𝜔0t

)∗(
∫ A

q�wdA

)
�0,

in which F∗ , �∗ , F̈∗ and 
(
sin�0t

)∗ are the Laplace transfor-
mation of F(t) , �(t) , F̈(t) and sin�0t , respectively.

Steady‑State Response

The time function is approximated as follows:

Hence, Eqs. (39–40) are derived:

Inserting Eq. (40) into Eq. (37), Eq. (41) is obtained:

On the other hand:

Substituting Eqs. (42) into Eq. (41), Eq. (43) is derived:

(38)F(t) = A����0t + B����0t.

(39)F̈(t) = −A𝜔0
2𝑠𝑖𝑛𝜔0t − B𝜔0

2𝑐𝑜𝑠𝜔0t = −𝜔0
2F(t),

(40)F̈∗ = −𝜔0
2F∗.

(41)

F∗

{
�0T

(
∫ A

�T��dA

)
�0 − �1Ncr�

0T

(
∫ A

�T
G

[
1 0

0 k1

]
�GdA

)

�0 − �0
2�0T

(
∫ A

�T�m�dA

)
�0

}

=
(
sin�0t

)∗(
∫ A

q�wdA

)
�0,� = s�∗.

(42)F∗ =
A�0 + Bs

s2 + �0
2
,
(
sin�0t

)∗
=

�0

s2 + �0
2
.

(43)

A�0 + Bs

s2 + �0
2

{
�0T

(
∫

A

�T��dA

)
�0 − �1Ncr�

0T

(
∫

A

�T

G

[
1 0

0 k1

]
�GdA

)
�0 − �0

2�0T

(
∫

A

�T�m�dA

)
�0

}

=
�0

s2 + �0
2 ∫

A

q�wdA�
0.

Equation (43) can be rewritten as follows:

Defining the stiffness matrix in the Laplace–Carson 
domain � , geometry matrix �G , mass matrix �m , and load 
vector � as follows:

(44)

(
A�0 + Bs

){
�0T

(
∫ A

�T��dA

)
�0 − �1Ncr�

0T

(
∫ A

�T
G

[
1 0

0 k1

]
�GdA

)
�0 − �0

2�0T

(
∫ A

�T�m�dA

)
�0

}

= �0

(
∫ A

q�wdA

)
�0.
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in which:

Equation (44) can be rewritten as follows:

Satisfying Eq. (52) at s = 0 , Eq. (53) is obtained:

Consequently, the coefficients of the time function are 
determined as follows:

(45)� = ∫ A

�T��dA =

(
∫ A

�T
b
�b�bdA + ∫ A

�T
s
�s�sdA

)
,K = �0T��0,

(46)�G = ∫ A

�T
G

[
1 0

0 k1

]
�GdA,KG = �0T�G�

0,

(47)�m = ∫ A

�T�m�dA,Km = �0T�m�
0,

(48)� = ∫ A

q�wdA,R = ��0,

(49)

�i
b
=

⎡⎢⎢⎣

0 −�i
,x

0

0 0 −�i
,y

0 −�i
,y
−�i

,x

⎤⎥⎥⎦
, �i

s
=

�
�i

,x
−�i 0

�i
,y

0 −�i

�
,�i

G
=

�
�i

,x
0 0

�i
,y
0 0

�
,

(50)�b = h3∕12

⎡
⎢⎢⎢⎢⎣

3K�
(2+�)
(1+2�)

3K�
(1−�)
(1+2�)

0

3K�
(1−�)
(1+2�)

3K�
(2+�)
(1+2�)

0

0 0 3∕2K�

⎤
⎥⎥⎥⎥⎦
,

(51)

�s = hk

[
3∕2K� 0

0 3∕2K�

]
, � = s∫

∞

0

�(t)e−stdt = c1 +
c2s

s + �
.

(52)
(
A�0 + Bs

)(
K − �1NcrKG − �0

2Km

)
= �0R.

(53)A�0

(
Ks=0 − �1NcrKG − �0

2Km

)
= �0R.

(54)A =
R

Ks=0 − �1NcrKG − �0
2Km

,Ks=0 = �0T

(
∫ A

�T�(s = 0)�dA

)
�0,

(55)
B =

𝜔0

(
R(

K−𝛼1NcrKG−𝜔0
2Km

) − A

)

s
,∀s > 0.

It is noted that for calculating B , although Eq. (55) is 
satisfied for every s > 0 , our experience with the numer-
ical solution of Eq.  (87), which is related to the Ber-
noulli viscoelastic beam (Please study the Appendix 1), 
showed that the best value for s is s ≈ � . Thus, Eq. (56) 
is obtained:

Finally, the steady-state response of a Mindlin viscoe-
lastic plate can be expressed as follows:

where �0 = �(x,y,t = 0) is easily calculated utilizing the elas-
tic bending analysis at time zero.

Transient Response

The transient response of a Mindlin viscoelastic plate can be 
expressed as follows [24]:

where �0 is the viscous damping frequency. �0 and �0 are 
calculated by solving Eq. (59) as follows:

Total Dynamic Response

Thus, the total dynamic response can be written as:

(56)B =
�0

�

⎛
⎜⎜⎜⎝

R�
Ks=� − �1NcrKG − �0

2Km

� −
R

Ks=0 − �1NcrKG − �0
2Km

⎞
⎟⎟⎟⎠
,Ks=� = �0T

�
∫ A

�T�(s = �)�dA

�
�0.

(57)

u(x,y,t) = u0

(
R

Ks=0 − �1NcrKG − �0
2Km

����0t +
�0

�

(
R

Ks=� − �1NcrKG − �0
2Km

−
R

Ks=0 − �1NcrKG − �0
2Km

)
����0t

)
,

(58)u(x,y,t) = u0J(t), J(t) = e−�0t
(
Csin�0t + Dcos�0t

)
,

(59)
���

�
s0K

∗ + s0
2Km − Ncr�1KG

�
= 0, s0 = i�0 − �0,�0 ≅ Ω

√
1 − �1.

(60)
u(x,y,t) = u0(F(t) + J(t)) = u0

[
A����0t + B����0t

+e−�0t
(
C����0t + D����0t

)]
.
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C and D can be calculated using the initial conditions at 
time zero:

In other words, the transient response can be rewritten as:

Finally, the total nonlinear dynamic response of Mindlin 
viscoelastic plates subjected to harmonic transversal load 
q(t) = qsin�0t and in-plane compression Nx = �1Ncr can be 
expressed as:

Equation (64) indicates that, due to the damping property 
of viscoelastic materials, the transient response is damped 
and the total response converges to the steady-state response.

Numerical Results

In this section, the forced vibration analysis of viscoelastic 
plates subjected to harmonic transversal load and in-plane 
compression with different material properties are con-
sidered. The unknown coefficients of the total response, 
A , B , �0 and �0 , are determined using Matlab program-
ming. The geometrical and material properties are taken 
as h∕a = 0.1,K = 3 × 10

7N∕m2, k = 5∕6,� = 7800Kg∕m2

,c1 + c2 = 1 and q = 10
5N∕m2 . Also, for spatial discretiza-

tion, distribution of 25 nodes on the domain of the square 
plate is considered.

For calculating B , our experience with the numerical 
solution of Eq. (87), which is related to the Bernoulli vis-
coelastic beam, showed that the best value for s is s ≈ � . 
Therefore, in the range s ≈ � , several values are selected 
and the average of the obtained values for B is calculated.

(61)w(x,y, t = 0) = 0 ⇒ D = −B,

(62)ẇ(x,y, t = 0) = 0 ⇒ C = −B
𝛼0

𝜔0

− A ≅ −A,
𝛼0

𝜔0

≪ 1.

(63)�(x,y,t) = −�0e−�0t
(
Asin�0t + Bcos�0t

)
.

(64)
�(x,y,t) = �0H(t),H(t) =

(
1 − e−�0t

)(
Asin�0t + Bcos�0t

)
.

Verification

Table 1 considers the effect of relaxation function parameter, 
c1 , on the time responses of moderately thick viscoelastic 
plates.

Table 1   The coefficients of 
the time function of simply 
supported Mindlin viscoelastic 
square plates with different 
materials ( t

s
= 1s, �1 = 0, 

H(t) = (1 − e−�0 t)
(
A����0t + B����0t

))

�0 �0 A B

Present [24] Present [24]

c1 = 0.1 18.18 18.18 0.29 0.29 −1.24 −35.79
c1 = 0.3 18.18 18.18 0.22 0.22 −1.83 −45.04
c1 = 0.5 18.18 18.18 0.16 0.16 −2.82 −63.56
c1 = 0.7 18.18 – 0.1 – −5.13 −112.38
c1 = 0.9 18.19 – 0.03 – −17.86 −467.12
c1 = 0.9.5 18.19 – 0.016 – −43.28 −1912.6

Table 2   The coefficients of the time function of simply sup-
ported Mindlin viscoelastic square plates with different materials 
( t
s
= 1s, �1 = 0.5,H(t) = (1 − e

−�0 t)
(
A����0t + B����0t

)
)

�0 �0 A B

c1 = 0.1 12.9 0.56 −1.25 −26.07
c1 = 0.3 12.9 0.438 −1.85 −33.14
c1 = 0.5 12.9 0.31 −2.87 −47.63
c1 = 0.7 12.9 0.18 −5.29 −88.08
c1 = 0.9 12.9 0.06 −20.35 −546.05

Fig. 2   Steady-state responses of simply supported moderately thick 
viscoelastic square plates ( h∕L = 0.1 , �1 = 0.5)

Table 3   The coefficients of the time function of simply supported 
Mindlin viscoelastic square plates with different relaxation times 
( c1 = 0.1, �1 = 0.5,�0 = 12.9)

A B B∕
(
�0∕�

)

ts = 1s −1.24 −26.07 −2.02
ts = 10s −1.24 −260.7 −2.02
ts = 100s −1.24 −2670 −2.02



1400	 Journal of Vibration Engineering & Technologies (2023) 11:1393–1405

1 3

As the results show, by increasing c1 which means the 
material tends to elasticity, the absolute value of the coef-
ficients A and B are increased and the responses tend to 
the resonance behavior. So that, the maximum value of the 
time function corresponding to c1 = 0.95 is approximately 
55 times of the maximum value of the time function related 
to c1 = 0.1.

Effect of Material Properties

Table 2 investigates the effect of relaxation function param-
eter, c1 , on the time responses of moderately thick viscoe-
lastic plates.

Figure 2 shows the steady-state responses of Mindlin 
viscoelastic square plates with simply supported boundary 
conditions subjected to harmonic transversal loading and 
in-plane compression.

The results show that, by increasing c1 , the absolute 
value of the coefficients A and B are increased and the 
responses tend to the resonance behavior.

Table 3 investigates the effect of relaxation time, ts , on 
the time responses of moderately thick viscoelastic plates.

The results show that the absolute value of B is linearly 
related to the relaxation time, so that B∕

(
�0∕�

)
 does not 

change by changing the relaxation time. Also, A does not 
change by changing the relaxation time.

Tables 4–5 consider the effect of bulk modulus and 
mass density on the time responses of moderately thick 
viscoelastic plates.

As the results illustrate B∕
(
�0∕�

)
 and A do not change 

by changing the bulk modulus.
As the results show, the absolute value of B is 

decreased by increasing mass density. But B∕
(
�0∕�

)
 and 

A do not change by changing the mass density.

Effect of Loading

Tables 6, 7 consider the effect of in-plane compression and 
transversal loading on the time responses of moderately 
thick viscoelastic plates.

Table 4   The coefficients of the time function of simply supported 
Mindlin viscoelastic square plates with different bulk moduli 
( c1 = 0.1, �1 = 0.5, t

s
= 1s)

A B �0 B∕
(
�0∕�

)

K = 3 × 10
6 −1.24 −8.26 4.09 −2.02

K = 3 × 10
7 −1.24 −26.07 12.9 −2.02

K = 3 × 10
8 −1.24 −82.6 40.9 −2.02

Table 5   The coefficients of the time function of simply supported 
Mindlin viscoelastic square plates with different mass densities 
( c1 = 0.1, �1 = 0.5, t

s
= 1s)

A B �0 B∕
(
�0∕�

)

� = 5000 −1.24 −32.56 16.12 −2.02
� = 7800 −1.24 −26.07 12.9 −2.02
� = 10000 −1.24 −22.93 11.4 −2.01
� = 20000 −1.24 −16.25 8.06 −2.01

Table 6   The coefficients of the time function of simply supported 
Mindlin viscoelastic square plates subjected to different in-plane 
compressions ( c1 = 0.1, t

s
= 1s)

A B �0 B∕
(
�0∕�

)

�1 = 0 −1.24 −35.79 18.18 −2.02
�1 = 0.1 −1.24 −34.2 17.25 −1.98
�1 = 0.3 −1.24 −30.39 15.22 −1.99
�1 = 0.5 −1.25 −26.07 12.9 −2.02
�1 = 0.7 −1.25 −20.39 10.07 −2.02

Table 7   The coefficients of the time function of a simply supported 
Mindlin viscoelastic square plate subjected to different transversal 
loadings ( c1 = 0.1, �1 = 0.5, t

s
= 1s)

A B �0 B∕
(
�0∕�

)

q = 10
4 −1.24 −26.07 12.9 −2.02

q = 10
5 −1.24 −26.07 12.9 −2.02

q = 10
6 −1.24 −26.07 12.9 −2.02

Fig. 3   Transient J(t) , steady-state F(t) , and total dynamic H(t) 
responses of a simply supported moderately thick viscoelastic square 
plate under harmonic transversal loading ( h∕L = 0.1 , c1 = 0.1 , 
�1 = 0 , �0 = 0.29 , �0 = 18.18)
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As the results illustrate, by increasing the in-plane 
compression, the absolute value of B is decreased. But 
B∕

(
�0∕�

)
 and A are almost constant.

The results show that A and B do not change by chang-
ing the value of the distributed load.

Total Dynamic Responses

Employing Eq. (64), Figs. 3, 4, 5, 6 show the transient, 
steady-state and total dynamic responses of Mindlin vis-
coelastic square plates with simply supported boundary 
conditions subjected to harmonic transversal loading and 
in-plane compression.

The results indicate that, due to the damping prop-
erty of viscoelastic materials, the transient responses are 
damped and the total responses converge to the steady-
state responses.

Conclusions

In this research, a novel formulation was introduced while 
the transient, steady-state and total dynamic responses 
of Mindlin viscoelastic plates under out-of-plane and 
in-plane loadings are explicitly formulated in the time 
domain for the first time.

The results show that the total dynamic responses of 
Mindlin viscoelastic plates subjected to harmonic trans-
versal load q(t) = qsin�0t , the excitation frequency is con-
sidered as equal to the natural frequency, and in-plane 
compress ion  Nx = �1Ncr  can  be  expressed  as 
u = u0(1 − e−�0t)

(
A����0t + B����0t

)
 i n  w h i c h 

A =
R

Ks=0−�1NcrKG−�0
2Km

 , and B =
�0

�

(
R

Ks=�−�1NcrKG−�0
2Km

− A
)
 

and u0 is calculated using the elastic bending analysis at 
time zero.

Also, the results indicate that the absolute value of B 
is linearly related to the relaxation time. Besides, A and 
B∕

(
�0∕�

)
 do not change by changing the relaxation time, 

bulk modulus, density, and transversal load.

Fig. 4   Transient J(t) , steady-state F(t) , and total dynamic H(t) 
responses of a simply supported moderately thick viscoelastic square 
plate under harmonic transversal loading and in-plane compression 
( h∕L = 0.1 , c1 = 0.1 , �1 = 0.5 , �0 = 0.57 , �0 = 12.9)

Fig. 5   Transient J(t) , steady-state F(t) , and total dynamic H(t) 
responses of a simply supported moderately thick viscoelastic square 
plate under harmonic transversal loading ( h∕L = 0.1 , c1 = 0.5 , 
�1 = 0 , �0 = 0.16 , �0 = 18.18)

Fig. 6   Transient J(t) , steady-state F(t) , and total dynamic H(t) 
responses of a simply supported moderately thick viscoelastic square 
plate under harmonic transversal loading and in-plane compression 
( h∕L = 0.1 , c1 = 0.5 , �1 = 0.5 , �0 = 0.31 , �0 = 12.9)

Fig. 7   A simply supported viscoelastic beam subjected to harmonic 
transversal load and axial compression
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The results show that by increasing c1 which means the 
material tends to elasticity, the responses tend to the reso-
nance behavior.

Appendix 1

Forced Vibration Analysis of Simply 
Supported Bernoulli Viscoelastic Beams 
Subjected to Harmonic Transversal Load 
and Axial Compression

The equation of a Bernoulli viscoelastic beam subjected 
to a harmonic transversal load and axial compression, (as 
illustrated in Fig. 7) can be written as follows [28]:

in which M is the bending moment, w is the transversal 
deflection, t is the time and � is the mass per unit length.

The bending moment can be expressed as:

The stress–strain relation of a linear viscoelasticity based 
on the Boltzmann integral can be defined as [26]:

where E(t) is the modulus of elasticity.
For Bernoulli beams, the strain–deflection relation can 

be written as:

Investigating simply supported boundary conditions, the 
deflection may be approximated using the separation of vari-
ables method as follows:

It is noted that only one term of the series of sin n�x

l
 has 

been considered, since the goal of this step is to concentrate 
on the time domain solution.

The time-dependent elasticity modulus can be expressed 
as:

(65)�2M

�x2
− p

�2w

�x2
= �

�2w

�t2
− q(t),

(66)M = ∫ A

�(x, t)zdA.

(67)𝜎(x, t) = E(t)𝜀(0) +

t

∫
0

E(t − 𝜏)𝜀̇(𝜏)d𝜏, 𝜀̇(t) = 𝜕𝜀∕𝜕t,

(68)�(x, t) = −z
�2w(x, t)

�x2
.

(69)w(x, t) = F(t)���
�x

l
.

(70)E(t) = E0�(t),E0 = E(t = 0),

in which �(t) is the relaxation function of viscoelastic mate-
rial which is defined in Eq. (9).

Substituting Eqs. (66–70) into Eq.  (65), Eq.  (71) is 
obtained:

where I = ∫
A
z2dA is the moment of inertia.

The compressive load may be given as:

in which �1 is constant.
For Bernoulli viscoelastic plates, Ω is defined as the 

fundamental natural frequency calculated by the free vibra-
tion analysis of Bernoulli viscoelastic beams at time zero, 
Ω2 =

E0I�
4

ml4
 . If the beam is subjected to axial compression 

too, the natural frequency is decreased �0 = Ω
√
1 − �1 , 

[24]. In this paper, the beam is subjected to harmonic trans-
versal load q(t) = qsin�0t and axial compression, simultane-
ously. In other word, the excitation frequency is equal to the 
natural frequency and the time-dependent behavior of the 
viscoelastic beam is studied.

Replacing Eq. (72) in Eq. (71), Eq. (73) is obtained:

Equation (73) can be simplified as follows:

in which �∗ , F∗ , F̈∗ and 
(
sin�0t

)∗ are the Laplace transforma-
tion of �(t) , F(t) , F̈(t) and sin�0t , respectively.

For the steady-state response, the time function is approx-
imated as follows:

Hence, Eqs. (76–77) are derived:

Inserting Eq. (77) into Eq. (74), Eq. (78) is obtained:

(71)

E0𝜂(t)
I𝜋4

l4
F(0) + E0

I𝜋4

l4

t

∫
0

𝜂(t − 𝜏)Ḟ(𝜏)d𝜏 −
𝜋2

l2
pF(t) + mF̈(t) = q(t),

(72)p = 𝛼1Pe,Pe =
𝜋2E0I

l2
, 0 ≤ 𝛼1 < 1,

𝜂(t)F(0) +

t

∫
0

𝜂(t − 𝜏)Ḟ(𝜏)d𝜏 − 𝛼1F(t) +
F̈(t)

Ω2
= q0sin𝜔0t,

(73)Ω2 =
E0I�

4

ml4
, q0 =

ql4

�4E0I
.

(74)sF∗𝜂∗ − 𝛼1F
∗ +

F̈∗

Ω2
= q0

(
sin𝜔0t

)∗
, 𝜂∗ =

c1

s
+

c2

s + 𝜆
,

(75)F(t) = Asin�0t + Bcos�0t.

(76)F̈(t) = −A𝜔0
2𝑠𝑖𝑛𝜔0t − B𝜔0

2𝑐𝑜𝑠𝜔0t = −𝜔0
2F(t),

(77)F̈∗ = −𝜔0
2F∗.
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Equation (78) can be simplified as follows:

On the other hand:

Supposing c1 + c2 = 1 and by substituting Eqs. (80) into 
Eq. (79), Eq. (81) is derived:

or

If Eq. (82) is solved by unifying the sentences:

Therefore, the steady-state response of a Bernoulli vis-
coelastic beam can be expressed as follows

But, if Eq. (82) is solved numerically:

Although Eq. (87) is hold ∀s > 0 , the numerical solu-
tion showed that selecting the large value for s , decreases 
the accuracy. And selecting s ≈ � is the proper selection.

On the other hand, the transient response of a Bernoulli 
viscoelastic beam can be expressed as follows [24]:

Thus, the total dynamic response can be written as:

(78)

sF∗�∗ − �1F
∗ −

�0
2F∗

Ω2
= q0

(
sin�0t

)∗
,�0

2 = Ω2
(
1 − �1

)
.

(79)F∗
(
� − 1

)
= q0

(
sin�0t

)∗
, � = s�∗.

(80)F∗ =
A�0 + Bs

s2 + �0
2
,
(
sin�0t

)∗
=

�0

s2 + �0
2
.

(81)
(
A�0 + Bs

)(
−

c2�

s + �

)
= q0�0

(82)−c2�
(
A�0 + Bs

)
= q0�0(s + �).

(83)A = −
q0

c2
,

(84)B = −
q0

c2

�0

�
.

(85)w(x, t) = −
q0

c2

(
sin�0t +

�0

�
cos�0t

)
���

�x

l
.

(86)s = 0 ⇒ A = −
q0

c2
,

(87)B = 𝜔0

(
q0(s + 𝜆)

−c2𝜆
− A

)
∕s,∀s > 0.

w(x,t) = ���
�x

l
J(t), J(t) = e−�0t

(
Csin�0t + Dcos�0t

)
,

(88)�0 = Ω
√
1 − �1, �0 =

c2�

2
�
1 − �1

� .

C and D can be calculated using the initial conditions 
at time zero:

In other words, the transient response can be written as:

Finally, the total dynamic response of Bernoulli vis-
coelastic plates subjected to harmonic transversal load 
q(t) = qsin�0t and axial compression p = �1Pe can be 
expressed as:

Appendix 2

Constructing the Simple hp Cloud 
Approximation Functions

Considering a selected set of scattered nodes as illustrated 
in Fig. 8:

Each node is centered at �i , related to the elliptical 
cloud �i and has the effective radius hix and hiy.

(89)

w(x,t) = ���
�x

l
(F(t) + J(t)) = w(x,t = 0)

[
−
q0

c2
����0t −

q0

c2

�0

�
����0t + e−�0t

(
C����0t + D����0t

)]
.

(90)w(x,t = 0) = 0 ⇒ D =
q0

c2

�0

�
,

(91)ẇ(x,t = 0) = 0 ⇒ C = −B
𝛼0

𝜔0

− A ≅
q0

c2
,
𝛼0

𝜔0

≪ 1.

(92)w(x,t) = w(x,t = 0)e−�0t
(
q0

c2
sin�0t +

q0

c2

�0

�
cos�0t

)
.

(93)

w(x,t) = w(x,t = 0)H(t),H(t)

=
(
1 − e−�0t

)(
−
q0

c2
sin�0t −

q0

c2

�0

�
cos�0t

)
.

(94)�N =
{
�1,�2,… ,�N

}
.

Fig. 8   Distribution of 25 nodes on the domain of a rectangular plate
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The basis functions, the simple hp cloud meshless 
approximation functions, are defined as:

where �i are the Shepard functions and �
i
 are the complete 

polynomial of order 2 as follows:

By defining the weight functions as:

Shepard functions are calculated in the following form:
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