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Abstract
Purpose This paper investigates the vibration control of a stay cable using passive superelastic shape memory alloys (SMA) 
damper.
Methods The control of one vibration mode of a stay cable by optimized SMA damper parameters attached transversely to 
the cable is considered. A parametric study on two parameters, specifically, cross-sectional area and length of the damper, 
is conducted numerically.
Results Results show that optimized SMA damper can achieve significant damping improvement. The considered damper 
exhibits superior control performance over Magnetorheological damper for the target mode. However, designing the damper 
for a specific mode leads to vibrating other modes, revealing that optimized SMA damper is unable to provide sufficient sup-
plemental modal damping to the stay cable. To achieve coupled multi-modal control an optimization criterion was developed 
through an analytical and numerical approaches.
Conclusion The optimization results indicate that the SMA damper is potential to reach a significant control performance, 
mitigating simultaneously the vibration of three coupled modes which looks promising for practical applications.

Keywords Shape memory alloys · Passive damper · Stayed cable vibrations · multi-modal control

Introduction

The rapid progress of the span of cable stayed bridges 
increases the susceptibility to exhibit large amplitudes 
vibration under environmental excitations, such as wind 
[4, 15], rain wind [4, 15, 33, 37] and parametric excitation 
[8, 46, 52], given that this structures are flexible and have 
low inherent damping [53]. Vibration can lead to break-
down stay cable connections, damage corrosion protection 
systems resulting on the fatigue failure of the integrity of 
bridge. The mitigation of the dynamic response of stay cable 
using mechanical active, semi active and passive dampers 
was widely investigated to prevent premature damage in 

stay cable and improved safety and serviceability of bridges 
[3, 8, 19–21, 35]. Since they provide a significant damping 
force and present an easy replacement, mechanical dampers 
are applied in full-scale to medium and long span bridges 
[7, 54]. The frequency of vibrations induced by the rain 
wind is mainly between 1 Hz and 3 Hz according to a full 
scale measurements [31]. This range of frequency covers a 
number of modes for long stay cables which it is not so far 
perspicuous how to identify the target mode for damping. 
Hence, if the damper is designed for optimal performance in 
a specific mode can lead cable vibration of other modes [23, 
29, 47]. Therefore, multi-mode cable vibration control is an 
important issue for development of cable stayed bridges. 
Many investigations have been conducted to develop the 
control of multi-mode cable vibration. Susumpow and 
Fujino [12] proposed an active control of multi-modal cable 
vibrations by axial support motion. Wang et al. [50] devel-
oped a new active control algorithm for optimal design of 
viscous dampers to reach multi-modal cable vibration con-
trol. The used method provides a high level damping to all 
concerned modes. Semi-active cable multi-modal vibration 
control using magnetorheological (MR) damper has been 
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investigated by studies [9, 16, 32]. MR damper showed an 
effectiveness to provide damping for multi-mode vibration. 
Nevertheless, this strategy require a power alimentation and 
real-time detection of vibrations which making it less rec-
ommended in practice. In recent studies, the focus is placed 
on performance of using passive mechanism to enhance the 
control several modes. The effectiveness of inerter dampers 
was further evaluated through the comparison with the vis-
cous dampers in [42]. Inerter dampers was better performing 
than conventional viscous dampers for one mode, providing 
relatively limited additional damping ratios for other vibra-
tion modes. A full scale cable experiments have been car-
ried out in [26, 27] to validate the effect of inertial dampers. 
Chen et al [6], studied through a parallel arrangement of a 
Negative stiffness mechanism and a viscous damper the con-
trol of a multi-mode cable vibration. The numerical study 
considering a real cable of Sutong Bridge revealed that the 
negative stiffness mechanism improves damping effects of 
all cable modes equally. Following experimental studies, 
[43, 55] demonstrated the performance of negative stiffness 
devices. Damping performance dependence of modes fre-
quency was investigated through field tests using viscous and 
viscoelastic dampers [5]. Observations showed that, for a 
precisely range of frequency, the two aforementioned damp-
ers provide comparable modal damping for all the tested 
cable modes. However, in higher modes the damping pro-
vided by the viscous damper decreases considerably. In addi-
tion, when cables vibrate in modes with frequency higher 
than 3.0 Hz the performance of the viscous damper has been 
greatly reduced. The material SMA (shape memory alloys) 
is smart and functional which provide interesting proprieties 
not present in traditionally material including large damping 
capacity, self-centering ability, high fatigue and corrosion 
strength [2, 17, 40, 45]. The smart material has the capability 
of undergoing large inelastic deformations and of recovering 
their shape by releasing applied loads without residual strain 
[22]. This unique propriety, known as superelasticity, results 
from the phase transformation separating the two crystal-
lographic structures of the SMA: austenite and martensite. 
Once the critical stress is reached, a phase transformation 
of the austenite towards the martensite is caused, the strain 
of this transformation is added to the elastic strain; once 
the critical stress of the inverse transformation is reached, 
the austenitic transformation begins to take place without 
residual strain [49]. Consequently, the curve stress–strain is 
a hysteresis through the whole loading–unloading process. 
It presents the energy dissipation capacity and reflects the 
conspicuous damping property of the SMA [36, 38].

The number of studies focusing on the feasibility of using 
SMA as passive energy dissipation system with special 
emphasis on dynamic control of cable-stayed bridges has 
grown in the past decade and is still growing. [10] investi-
gated through a campaign of laboratory tests the feasibility 

of a hybrid control strategy by combining an open loop 
actuation and wrapped SMA for cable vibration mitiga-
tion. Experimental results shown on [11] confirm that the 
hybrid strategy promising vibration mitigation capabilities 
when the motion was essentially dominated by the first in-
plane mode. Taking 1:60 model of the Runyang cable-stayed 
bridge (in Jiangsu, China) as a test platform, [13] carried out 
experimentations on vibration control of a stay cable with 
SMA damper. Results show that the SMA damper installed 
in plane of the cable can mitigate 50% of the free vibration. 
Through two sets of laboratory scale experiments realized 
on stayed cable, [48] report that SMA damper reduces dras-
tically the oscillation amplitude (between 25% and 50%). 
The experimental results presented by [24] show that the 
Nickel–Titanium SMA wires permit an effective reduction 
of the oscillations time and theirs amplitudes by increasing 
the damping ratio.

In addition to experimental studies, many analytical 
approaches have been proposed. The study developed by 
[25] stated that the superelastic SMA damper can mitigate 
the cable’s vibration in both cases; at its first mode or at its 
first few modes. The responses of a stay cable model on a 
cable-stayed bridge model with/without one SMA damper 
are numerically investigated by [28]. The study evaluates 
the additional equivalent modal damping ratio when the 
combined stay cable/SMA damper system vibrates with a 
single mode. [39] focused on the effect of temperature under 
the influence of loading. Showing that the ambient tempera-
ture has its marked effect on the superelasticity and shape 
memory behaviors, SMA damper made of the Ni–Ti wire 
can effectively quashes the stay cable vibration. A compari-
son between linear quadratic regulator LQR active control 
and passive SMA damper for controlling the cable in-plane 
vibration under excitations has been developed in [56]. The 
study reveals that the optimal control effect of the SMA 
damper is approached to the LQR active control effect. Other 
researchers have paid attention to control seismic response 
of cable-stayed bridges using SMA devices [14, 41].

This study highlights the performance of superelastic 
SMA damping device to mitigate multi-modal stay cable 
vibration, since large amplitude vibrations tend to be domi-
nated by a single mode or the first modes as reported by 
[4, 30, 33].The damper used is passive and must not need 
supervision. The paper is divided into four parts. The first 
part presents vibration equations of a stayed cable-SMA 
system specifying different hypothesis adopted in problem 
linearization. The second part contains an outline of the opti-
mization method based on an energy balance used to achieve 
optimal damping for the first mode of vibration. The poten-
tial of SMA damper to mitigate transverse vibration stay 
cable belongs Rades-La Goulette cable stayed bridge is then 
evaluated. The case study showed that the optimal size of 
the SMA damper for the first mode is insufficient for control 
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other modes. Taking into consideration coupled modes, the 
third part focuses on development of an optimization method 
based on Irvine criterion. The last part centers on the dem-
onstration of the effectiveness of the optimal multi-mode 
design of the SMA damper to control all concerned modes.

Governing Equations for a Small Sag Cable

Consider a cable suspended between two supports A and B 
of different heights subjected to its self-weight (cable with 
a sag profile). The cable is assumed to have a uniform cross-
sectional area Ac along its length L and constituted by an 
isotropic linearly elastic material with young’s modulus Ec . 
The A–B line is inclined of an angle � with respect to the 
horizontal. The strained static profile of the cable is spanned 
by the curvilinear co-ordinate s with s = 0 at A. The cable 
configuration is described in Fig. 1.

By setting the Cartesian co-ordinate system (A, x, y), 
where the y axis is perpendicular to the x axis taken along 
the cable’s chord, the partial differential equations governing 
dynamic equilibrium of sagged stay cable can be written as 
(including the effect of SMA damper):

(1)

�
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(
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T denotes the static stay cable tension’s, � is the additional 
dynamic cable tension, mc is the mass of the cable per unit 
length, g is the acceleration of gravity, � is the Dirac’s delta 
function, while u, v and w are the cable dynamic displace-
ment components in the x, y and z directions, respectively; 
Fe,x , Fe,y and Fe,z are distributed external dynamic loading 
per unit length in the x, y and z directions, respectively.

The cable is subjected to a transverse concentrated force 
Fd generated by the SMA device attached at the location 
xd from the support A in the x direction. Then, using the 
non-linear relationship between the dynamic cable tension 
and dynamic deformation:

The Green–Lagrange deformation is as follows:

The aforementioned non-linear equations are simplified 
enforcing the following assumptions:(i) the transversal fun-
damental frequency of the cable is smaller than its longitu-
dinal fundamental frequency; (ii) the cable vibrates only in 
the xy-plane and its motion in the x-direction is negligibly 
small; (iii) the static profile of the cable can be approximated 
to a parabola; (iv) sag length ratio is sufficiently small with 
respect to unit. These assumptions have been adopted in sev-
eral studies (See [28, 32, 34, 44, 51] for more details). The 
free response of the stay cable is considered in this study, 
because excitations induced by wind lead to initial impulses; 
then the structure vibrates freely according to its natural 
vibration modes. The internal damping of the cable is not 
considered, since stay cables have very extremely low levels 
of inherent structural damping, typically on the order of a 
fraction of one per cent as indicated by several bibliographi-
cal references and full-scale tests [24].

Cable transverse free vibration, taking into account the 
control action with the use of a SMA damper, is governed 
by the following partial differential equation:

The transverse deflection can be approximated using a finite 
modal superposition of the form:
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Fig. 1  Inclined cable with an attached damper
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where �i(t) are non-dimensional modal participation factors 
and �i(x) are a set of modal shape functions, satisfying the 
geometric boundary conditions at the cable’s ends A and B:

To compute the damping and responses of the cable with 
the SMA damper, we assume sinusoidal shape functions:

Substituting (7) into the equation of motion (6), and using a 
standard Galerkin approach under the assumptions of small 
deflections and of linear elastic constitutive behavior results 
in (without external load) :

where

Considering only the first mode of vibration, Eq. 10 reduces 
to

where

Control of the First Vibration Mode 
with an Attached SMA Damper

To describe the superelastic behavior of the SMA damper, 
we consider a one dimensional model proposed by [1]. This 
model presents a shape memory alloy based damper, which 
exploits the superelasticity of nickel–titanium alloys (Ni–Ti) 
wires for energy dissipation. It takes into account one sca-
lar internal variable �s designating the martensite fraction 
and consider the different elastic proprieties between the 
two crystallographic phases of the SMA (austenite and 
martensite).
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The numerical simulations of the constitutive equations 
of the model led to the curve stress strain reported in Fig. 2 
considering the following properties of the element SMA 
presented in Table 1.

The observed curve is formed by two parts. The first 
consists of loading. It contains an elastic deformation from 
zero to �AS

s
 , where the elastic strain is assumed to be lin-

early related to the stress: � = E�e with E is the elastic 
modulus’s austenite and �e is the elastic strain. Then, there 
is conversion of the austenite into martensite oriented from 
�
AS
s

 to �AS
f

 . When the transformation is complete, there is 
again an elastic transformation but the Young modulus 
used is of the martensite. For the unloading case, the steps 
are the same but in reverse and the stresses used are those 
of martensite. As a result one hysteresis loop is formed by 
a closed stress strain curve in the whole loading unloading 
process. This hysteresis loop describes the energy dissipa-
tion ability of the SMA damper and indicates the con-
spicuous damper property of the SMA materials.

To investigate the performance of the SMA damper, 
using the model described above, on the mitigation of a 
stay cable first mode vibration, we proceed with solving 
the equation of motion (12) of the combined stay cable/
SMA damper system. The device was installed on the 
cable at location xd = 0.1L from the left end. Since the 
SMA damper force cannot be decoupled due to its hyster-
etic performance, a nonlinear property occurs in the com-
bined stay cable/SMA damper system. Thus, a Newmark 
numerical method programmed in MATLAB is developed 
to compute the dynamic response of the cable. The con-
sidered stay cable used to carry out this investigation is 
the longest cable (S16) in Rades-La Goulette cable-stayed 
bridge in Tunisia. The geometrical and material properties 
of the cable (S16) are summarized in Table 2.

It is seen from Fig. 3 that the SMA damper accom-
plishes a significant reduction of the first mode response, 
thanks to hysteretic performance, as compared to the case 
without the damper. Dissipating the energy coming from 
the motion of the stay cable, the SMA damper can effec-
tively enhance the damping capacity of the cable. It can 
be also observed that when the SMA is installed the vibra-
tion amplitude is reduced very quickly. However, it can 
be noted from this simulation that the SMA damper is 
not able to control the small vibration, because the SMA 
deformation is smaller than 1% . In this zone, the SMA 

Table 1  Material parameters of the element SMA

E [MPa] �
AS
s

 [MPa] �
AS
f

 [MPa] �
SA
s

 [MPa] �
SA
f

 [MPa]

50000 500 600 250 200
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has purely an elastic behavior and the hysteresis is not 
yet built. Nevertheless, in practice, this is not a real dis-
advantage, since one focuses on the large vibrations for 
cable-stayed bridges [34].

Optimal SMA Damper Size for Control 
the First Vibration Mode

In this study, we address high energy dissipation and com-
plete deformation recovery ability as well provided by the 
SMA damper model. To determine the parameters leading 
to a maximum damping capacity, reference is made to a 
criterion developed in [34], which is based on the energy 
balance. The optimal parameters of the device in free 
vibration are selected in a way to maximize the force gen-
erated by the SMA damper which is expressed as follows:
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Fig. 2  Behavior and hysteresis of the one-dimensional model
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Fig. 3  First mode control with the SMA damper

Table 2  Geometrical and mechanical design properties of the stay 
cable (S16) of the Rades-La Goulette cable-stayed bridge

L [m] � [ ◦] T [kN] Ec [GPa] Ac [ cm2] mc [kg/m]

55.4 16.5 4313.5 190 55.5 44
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In witch v(xd, t) denotes the cable transverse displacement 
at the attached point xd , RSMA is the damper wire radius, 
LSMA represents the length the of the SMA device, �s is a 
scalar internal variable representing the martensite fraction 
and �L is the maximum residual strain, issue from additive 
decomposition of the total strain �:

where �e is the elastic strain.
According to (13), the damper capacity is strongly related 

to the SMA parameters (length and wire diameter) as well as 
its attached point. The position leading to a maximum force 
generated by the actuator is 0.5 L as shown in Fig. 4. How-
ever, it is wise to choose for practical reasons a location as 
close as possible to the deck side anchorage. The considered 
location is xd = 0.1 L from the support A in the x direction.

It’s clear that the maximum damper force increases with 
the increase of the wire diameter and the decrease of the 
length of the device. To approve this numerically, we pro-
ceed first by fixing the length at LSMA = 300 mm and vary-
ing the damper radius RSMA as 2 mm, 4 mm and 10 mm, 
then the radius is fixed at 2 mm and the length was ranged. 
The choice takes into account the objectives cited above, 
searching for a high energy dissipation and complete defor-
mation recovery ability and avoiding the displacement to 
be limited by passing solely through the original point. The 
decay responses of the first mode in the followed 15 s for dif-
ferent sectional areas are plotted for comparison in Fig. 5. It 
shows that the damping of the stay cable transverse vibration 

(13)Fd(t) = E�R2
SMA

(

v(xd, t)

LSMA

− �s�Lsign(�)

)

(14)� = �
e + �L�ssgn(�)

increases when the damper diameter increases; Decreasing 
the length of the SMA damper, the amplitude of the cable 
transverse vibration decreases accompanied by an increase 
in the surface of the hysteresis loop, as shown in Fig. 6. This 
numerical results confirm the analytical deduction drawn 
from Eq. (13). Hence, for a damper located at 10% of cable 
length from the left anchorage, the optimum SMA damper 
parameters set for control the first mode vibration are P1: 
LSMA = 300 mm and RSMA = 10 mm.

Then, a numerical investigation which seeks to compare 
the performance of the optimal SMA damper size with a 
magnetorheological (MR) damper on the vibration miti-
gation of the considered cable is carried out. The idea of 
comparing the two devices amounts to the fact that the MR 
damper is filled with smart materiel (MR fluid) and also is 
able to reproduce hysterical behavior. An hysteretic regular-
ized Bingham model (HRB) proposed and developed in [44] 
is used to describe the force velocity response of the MR 
device. The damping force defined for every piston velocity 
vd ∈ [−vm, vm] by

where v0 denotes the regularization parameter, which has 
a velocity dimension and controls the exponential growth 
of the damping force, vh is a scale factor having the dimen-
sion of a velocity which defines the width of the hysteresis 
loop and vm denotes the maximum reached velocity of the 
damper piston, vd is the piston velocity, F0 is the offset in 

(15)

FHRB
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Fig. 4  Position effect of the attached SMA damper on the cable dynamic response
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the damping force due to the presence of the accumulator, 
Fy denotes the frictional force related to the yield stress of 
the MR fluid (generally depending on the applied magnetic 
field) and Cv the damping coefficient. The latter is defined as 
the slope of the damping force versus the piston velocity and 
is related to the plastic viscosity of the MR fluid.

The obtained hysteresis loop depicted in Fig. 7 is com-
posed of an upper curve relating to the force variation 
with respect to the decreasing velocities, and a lower curve 
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corresponding to the force variation with increasing veloc-
ities.The six parameters F0 , Fy , Cv , v0 , vh and vm of the 
HRB model are identified by fitting the model predictions 
with reported experimental data (see [44]).

The MR damper used operates with step by step power 
supply. To switch from one input current to another, the 
device requires a control law, as shown in Fig. 8. We point 
out that the value of Fy is sensitive to the change of the elec-
trical current supplied to the damper. However, we use the 
MR damper for a single step current, that of the maximum 
input current (2A) which leads to a passive consideration of 
the damper configuration.

Figure 9 left outlines the vibratory response of cable con-
trolled by MR damper described by HRB model as well as 
the standard Bingham model. It can be observed from Fig. 9 
right the force evolutions computed by considering the HRB 
model and the Bingham model. It is worth noting that the 
cable vibration is damped more effectively when using the 
HRB model.

Figure 10 compares the modal contributions of the first 
vibration mode �1(t) controlled with MR damper considering 
Bingham model and HRB model as well as the optimized 
SMA damper. Modal contributions have been obtained by 
solving Eq. 12. According to Fig. 10, it can be observed 
that the largest vibration response using the optimized SMA 
damper model decay speed than the one obtained using 
MR damper for both cases. Thus, through these results, we 
highlight a better performance of a passive designed SMA 
absorber compared to the MR absorber. These findings are 
important given that MR damper needs an external power 
supply which making it less recommended in practice.

Optimal SMA Damper Size for Control 
Coupled Modes

Governing Equations for Coupled System

Considering the equation of motion (10) and the sinusoidal 
modal shape given in (9), the elements in the Eq. (10) are 
calculated as follows:

Fig. 7  Hysteretic regularized Bingham model (HRB)

Fig. 8  MR damper at various 
input currents

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
Velocity (m/s) 

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

M
R

 fo
rc

e 
(N

)

2.0 A
1.2 A
0A



1351Journal of Vibration Engineering & Technologies (2023) 11:1343–1358 

1 3

0 5 10 15

Time (s)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
1
(t

)
HRB model
Bingham model

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15

velocity (m/s) 

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

M
R

 d
am

pe
r 

F
or

ce
 (

N
)

HRB model
Bingham model

Fig. 9  Control of the first stay cable free vibration: comparison between the HRB model and the Bingham model (current 2A)
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The equations of the system (18) take the form:

(16)�
L

0

�i(x)�j(x)dx =

{

L∕2 if i = j

0 if i ≠ j

(17)�
L

0

�
��
i
(x)�j(x)dx =

{

−
(i�)2

2L
if i = j

0 if i ≠ j

(18)

�
L

0

(

�j(x)�
L

0

�i(x)dx

)

dx =

{

L2

(i�)2
(cos(i�) − 1)2 if i = j

(L)2

ij(�)2
[cos(j�) cos(i�) − cos(j�) − cos(i�) + 1] if i ≠ j

(19)

(L)2

ij(�)2
[cos(j�) cos(i�) − cos(j�) − cos(i�) + 1] =

⎧

⎪

⎨

⎪

⎩

0 if i pair and j pair

0 if i pair and j impair
4(L)2

ij(�)2
if i impair and j impair

(20)

L2

(i�)2
(cos(i�) − 1)2 =

{

0 if i pair
4(L)2

i�)2
if i impair

Considering the first three mode of vibration and substitut-
ing Eqs. (16)–(18) into Eq. (10), the non-dimensional modal 
participation factors projected, respectively, on the first, sec-
ond and third mode are found to be

Written the previous equations in matrix form:

where

�̃ =

⎛

⎜

⎜

⎜

⎝

mc
L

2
0 0

0 mc
L

2
0

0 0 mc
L

2

⎞

⎟

⎟

⎟

⎠

is the mass matrix,
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⎛

⎜

⎜

⎜

⎝

T
�
2
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+

4�2L2

�2
0

4�2L2

3�2

0 4T
�
2

2L
0

4�2L2

3�2
0 9T

�
2

2L
+

4�2L2

�2

⎞

⎟

⎟

⎟

⎠

 is the stiffness 

matrix and

(21)
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𝜋
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2L
+
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�
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4𝜆2L2

3𝜋2
𝛼3(t) = −Fd(t)𝜙1(xd)

mc

L

2
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4𝜋2T

2L
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Fig. 11  Comparison between non-controlled modes and controlled modes with SMA damper using parameters set P1
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is the force vector. It is useful to observe that the antisym-
metric modes of vibration of the transversal dynamical equa-
tions (22) are coupled.

Control of the First Three Coupled Modes 
with the SMA Damper Optimized for a Single Mode

To analyze the effect of optimized SMA damper parameters 
P1 used to control the first mode of the transverse cable 
dynamic response, the non-dimensional modal participation 
factors for the three modes of the stay cable are obtained by 
solving (22) and considering that the SMA damper is incor-
porated as previously considered at xd = 0.1 L.

Figure  11 illustrates the evolution of the first three 
modes coupled transverse free vibration, where the cable 
is equipped with the SMA actuator superimposed with the 
non-controlled modes. It’s observed that the SMA damper 
is unable to control the three modes as well as the case of 
decoupling modes, even worse the presence of the SMA 
damper leads to an enormous increase in the vibration ampli-
tude for the three modes considered. This result imposes the 
use of other optimization settings for a multi-modal control.

Optimization Criterion to Control Multiple Modes

The optimization criterion considered here is based on the 
calculation of an aerodynamic instability coefficient known 
in the literature by the Scruton number Sc that quantifies the 
additional damping to the cable. According to Irvine [18], 
a cable is aerodynamically stable, especially if he is excited 
by the wind or spouse wind / rain phenomenon, though its 
Scruton number is above a given threshold value S0 =10 [18, 
50]. This number is expressed as

where � is the air density, D is the cable diameter and � is 
the equivalent damping coefficient that depends on the geo-
metrical parameters of the actuator. Thus, an optimization 
criterion is formulated as follows:

The calculation of equivalent damping coefficient requires 
the determination of the force provided by the SMA damper. 
It is described by a non-linear hysteresis loop, as shown in 
Fig. 12. The damping force is expressed on different parts 
of the hysteresis.

where sgn is the sign function; k1 et k2 are the respective 
slopes of the segments ab and bc; vda and Fda are the dis-
placement and the damper force developed at point a; vdb et 
Fdy are the displacement and the damper force developed 
at point b; vdc et Fdc are the maximal displacement and the 
damper force developed at pointc. The damping coefficient 
� is given by [25]

where ΔEdi is twice the area of the parallelogram abcd 
shown in Fig. 12, Essi is the deformation energy of the sys-
tem cable/ SMA damper associated with the appropriate 
vibration mode and Esci means the double surface of the 
trapezium oabcvdc shown in Fig. 12. ΔEdi , Essi et Esci are 
formed as follows:

where � = Fda∕Fdy , � = k1∕k2 , k = k1∕T .
The criterion (25) allows to take into account the multi-

modal effect given that the force Fd depends on SMA geo-
metric parameters and also on the displacement v(xd, t) 
of the cable at the point xd as indicated in Eq. 13. Since 

(24)Sc =
mc�

�D2

(25)max
Sc>S0

𝜉(RSMA, LSMA)

(26)

Fd(t) =
⎧

⎪

⎪

⎨

⎪

⎪

⎩

k1v(xd , t) on the parts (oab, oa′b′)
(k1 − k2)vdb sgn(v(xd , t)) + k2v(xd , t) on the parts (bc, b′c′)
(k1 − k2)(vdb − vdc sgn(v(xd , t)) + k1v(xd , t) on the parts (cd, c′d′)
(k1 − k2)vda sgn(v(xd , t)) + k2v(xd , t) on the parts (da, d′a′)

(27)� =
ΔEdi

4�(Essi + Esci)

(28)Essi = k1v
2
db
+ k1[�vdc + (2 − �)vdb](vdc − vdb)

(29)ΔEdi = k1vdb(1 − �)(1 − �)(vdc − vdb)

(30)Esci =
T�2i2v2

dc

kL sin2(i�xd∕L)

Fig. 12  Hysteresis loop produced by a SMA damper
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displacement depends on all evoked modes (according to 
7), the area of the hysteresis is indirectly dependent on the 
three modes.

Multi‑modal Control Using Optimally Designed SMA 
Damper

The numerical resolution of the optimization criterion 
shown in (25) was developed to determine the optimal size 

for multi-modal control ( RSMA and LSMA ). Simulations are 
based on the mathematical bisection method (Dichotomy). 
The optimization constraints satisfy: The considered RSMA 
and LSMA should be positive values and the length of the 
damper must be greater than the practical length (20 cm). 
The non-construction of hysteresis was the stop test. The 
optimized parameters obtained are : RSMA = 20 mm and 
LSMA = 850 mm, which will be noted in the following by 
P2.
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Fig. 14  Dynamic response of coupled three modes using the parameter sets P2



1355Journal of Vibration Engineering & Technologies (2023) 11:1343–1358 

1 3

The hysteresis curve of the total force provided by the 
SMA damper for both parameter sets P1 and P2 is shown 
in Fig. 13. Figure 14 presents the dynamic responses of 
the first three modes and the damping force produced 
for each mode considering parameter sets P2. The cor-
responding damping ratios are �1 = 0.458% , �2 = 1.7% , 

�3 = 2.4% . Those associated with parameter sets P1 are: 
�1 = 0.0042% , �2 = 0.015% , �3 = 0.034%.

Figure 15 shows the evolution of the first three modal par-
ticipation of the stay cable (S16) using specific parameter P2 
to control coupled modes. These curves are compared with 
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those corresponding to parameter P1 optimized for the first 
mode. It follows from the comparison that the implementa-
tion of parameter sets P2 results in a much better damping 
than parameter sets P1 optimized for a single mode.

In addition, it mounted in Fig. 16 that optimized set-
tings for multi-modal control P2 lead to a simultaneous 
control of the first three modes. These results are explained 
by the fact that the formulated optimization criterion (25) 
is not satisfied by considering the parameter sets P1, 
since the Scruton numbers obtained for each mode are: 
Sc1 = 0.21 , Sc2 = 0.76 , Sc3 = 1.74 . It turns out that when 
the damper size is optimized only for the first mode, the 
Scruton numbers are not enough for suppressing multi-
mode vibration which much be greater than 10 . However, 
the corresponding Scruton numbers using parameter sets 
P2 are: Sc1 = 23.31 , Sc2 = 86.53 , Sc3 = 122.17 . Thus lead-
ing to a spectacular reduction in the amplitudes of all con-
cerned modes .

Conclusions

The purpose of this work is to demonstrate the effectiveness 
of a passive SMA damper with superelastic properties to 
control coupled multi-mode vibrations. The following con-
clusions are reported:

• Numerical simulations carried on the longest cable in the 
Rades-La Goulette cable-stayed bridge show the capabil-
ity of SMA devise to reduce strongly the first vibration 
mode thanks to its excellent propriety of energy dissipa-
tion.

• The capacity of SMA damper is closely linked to its geo-
metric parameters. To achieve high energy dissipation, 
the damper size is optimized for the concerned mode 
through a parametric study.

• The damping performance of the optimally designed 
SMA damper is numerically investigated in comparison 
with a magnetorheological damper. The passive designed 
SMA absorber is able to provide supplemental modal 
damping compared to MR absorber. These findings are 
important given that MR damper operates with a step by 
step power supply which making it less recommended in 
practice.

• Optimized parameters for a single mode are insufficient 
to mitigate simultaneously three coupled modes of vibra-
tion.

• An optimization criterion is analytically formulated aim-
ing at a multi-modal control. The parameters optimized 
result in a high level damping to the concerned modes. 
The numerical simulations demonstrate that the passive 
SMA damper shows an efficiency to control coupled 
multi-modal vibrations of the stay cable by its super-
elastic property. This result is important, since the fun-
damental operation of the passive dampers is generally 
designed to reduce only one mode of vibration.
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