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Abstract
In isogeometric analysis (IGA), the non-uniform rational B-spline (NURBS) basis functions are used for depicting the 
geometry and the displacement field. As the NURBS basis functions are non-interpolating in nature, the enforcement of 
essential boundary condition becomes a difficult task. In order to circumvent the above problem, recently the authors Mishra 
and Barik (Comput 232:105869, 2020; Eng Comput 35:351–362, 2019) proposed a new method called NURBS-augmented 
finite-element method (NAFEM). The authors have incorporated the non-uniform rational B-spline (NURBS) basis functions 
for the representation of the geometry and the usual finite-element basis functions are adopted for the field variables as they 
satisfy the Kronecker-Delta property. This simplifies the implementation of the boundary condition to a great extent. In the 
present work, NAFEM is extended for free vibration analysis of plates having different geometries and boundary conditions, 
and the results are found to be in excellent agreement with the existing ones. To showcase the robustness of NAFEM, some 
arbitrary-shaped plates have also been considered, and the new results are presented.

Keywords NURBS-augmented finite-element method (NAFEM) · Finite-element analysis (FEA)

Introduction

The finite-element analysis (FEA) is applied to many dis-
ciplines where engineering structures are concerned. The 
structure’s geometry plays a significant role in the analysis 
and hence its accurate representation is inevitable for more 
realistic analysis. The challenge faced by the researchers to 
deal with the analysis of plates of various geometrical con-
figurations steered to develop many methods and techniques. 
Some researchers proposed techniques for dealing with mul-
tiple planforms when some of the investigators proposed to 
analyze a particular shape of the plate.

A semi-analytic approach is suggested for free vibration 
analysis of annular sector plates [3]. The subparametric 
concept is used in the spline finite-strip method to examine 
plates of general shape for static and free vibration analyses 
[4]. Vibration analysis of plates of general quadrilateral and 
sectorial planforms is carried out by applying the differential 
quadrature method using the geometric mapping technique 
[5]. Kirchhoff plates of arbitrary shape have been studied 
for free vibration using the mapping technique in the finite-
element method [6, 7].

The free vibration analysis of plates of different geom-
etries is presented by Lee [8] using a four-noded plate 
element. He has considered the natural strains based on 
Reissner–Mindlin assumptions taking account of the shear 
deformation and rotatory inertia effect. Shear-deformable 
plates of different geometrical configurations for free vibra-
tion and buckling analyses have been reported employing the 
mesh-free method based on the reproducing kernel particle 
approximate [9]. The vibration of several structural models 
such as rods, thin beams, membranes, and thin plates are 
studied by Cottrell et al. [10] using isogeometric analysis 
(IGA). The authors have considered the rotationless beams 
and plates as three-dimensional solid models and used the 
knot refinement concept to get more accurate and robust 
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results than the corresponding finite elements. Reali [11] 
applied the concept of IGA to study the response of one-
dimensional and two-dimensional problems under vibration.

The amalgamation of the subparametric triangular plate 
bending element with first-order shear deformation theory 
for the analysis of a square plate with a circular cut-out at the 
center is described in [12]. The NURBS-enhanced finite-ele-
ment method (NEFEM) [13] is an improvement to the clas-
sical finite-element method. This method can represent the 
geometry precisely through computer-aided design (CAD) 
description of the boundary with NURBS. In this technique, 
the elements which do not intersect the edge require a stand-
ard finite-element interpolation function and numerical inte-
gration for the analysis. In contrast, the elements which cross 
the NURBS boundary require a specially designed piecewise 
polynomial interpolation function and numerical integration. 
The authors have studied the application of NEFEM to 2D 
Poisson problems and electromagnetic scattering simulation 
showing its advantages compared to the classical isopara-
metric finite-element formulation. A family of elements of 
smooth, curved geometry using rational Bézier functions 
for boundary description has been introduced by Lu [14] by 
which the common shapes such as circles and ellipses are 
described precisely. These elements are suited for analyzing 
discrete bodies undergoing more or less uniform or regular 
deformation.

Irregular shapes thin plates for free vibration have been 
analyzed by quadrature element method (QEM) [15, 16]. 
Free vibration analysis of annular sector plates and graphene 
sheets is performed using eight-node curvilinear domains in 
discrete singular convolution (DSC) method [17, 18].

The direct imposition of inhomogeneous essential bound-
ary conditions to the NURBS control points is found to be 
problematic, leading to significant errors with deteriorated 
rates of convergence [19]. Therefore, the investigators have 
represented an improved formulation for NURBS-based 
isogeometric analysis by employing a transformation method 
to the boundary points, which relates the control variables to 
the collocated nodal values at the essential boundary. Using 
the open knot vectors, the resulting NURBS basis functions 
associated with control points vanish at the periphery. Bazi-
levs et al. [20] explored T-splines, which is a generalization 
of NURBS enabling local refinement, as a basis for IGA. The 
researchers have applied bivariate and trivariate T-splines of 
various degrees to elementary fluid and structural mechan-
ics problems. Hughes et al. [21] have initiated the study of 
efficient quadrature rules for NURBS-based isogeometric 
analysis. A rule of thumb known as the half-point rule has 
emerged, indicating that optimal rules involve several points 
roughly equal to half the number of degrees-of-freedom or 
equivalently half the number of basis functions of the space 
under consideration. The half-point rule is independent of 
the polynomial order of the basis.

The Dirichlet boundary conditions in IGA can be suit-
ably imposed by taking the quasi-interpolation methods into 
account [22]. de Falco et al. [23] have developed GeoPDEs, 
which is a suite of free software tools for applications of IGA 
focusing on providing a common framework for the imple-
mentation of the many IGA methods for the discretization of 
currently studied partial differential equations, mainly based 
on B-splines and NURBS. Different geometric Kirchhoff 
plates have been undertaken for free vibration analysis by a 
moving Kriging interpolation-based mesh-free method [24]. 
Schmidt et al. [25] have presented a methodology enabling 
IGA on trimmed NURBS surfaces. A local reconstruc-
tion technique using a geometric basis has been developed 
and applied to evaluate the finite-element constituents of 
the trimmed knot spans in terms of the underlying control 
variables. The Lagrange multiplier method to impose the 
essential boundary conditions for improving the accuracy of 
the solution in the IGA of thin plates has been used in [26].

The isogeometric static, dynamic, and buckling analyses 
of rectangular and circular-shaped functionally graded mate-
rial (FGM) plates for different boundary conditions have 
been carried out by Tran et al. [27]. Here, higher order shear 
deformation theory (HSDT) model is developed using C1 
continuous elements to improve the accuracy of the solu-
tion and taking the stress distribution without using shear 
correction factors. Blending NURBS with Lagrangian repre-
sentations in IGA has been first developed by Lu et al. [28]. 
In the blended representation, selected boundary edges or 
surfaces of a multivariate NURBS patch are parametrized in 
(rational) Lagrangian form. The Lagrangian parameters are 
obtained by transforming the NURBS representation. The 
transformation, by construction, exactly preserves the origi-
nal geometry, which is helpful in interfacing the NURBS 
domain to finite element domains or for imposing essential 
boundary conditions.

The bending, free flexural vibration, buckling, and flutter 
behavior of square and skew functionally graded material 
(FGM) plates under different boundary conditions using 
NURBS-based finite element is being studied by Valizadeh 
et al. [29]. Further, the isogeometric finite-element analysis 
is incorporated with refined plate theory to study the behav-
ior of functionally graded material square and circular plates 
for static, free vibration and buckling analyses in [30] where 
displacement field is approximated with four degrees-of-
freedom per each control point allowing an efficient solution 
process. The isogeometric locking free plate formulation for 
the bending, buckling, and free vibration analyses of homo-
geneous and functionally graded square, circular and square 
plates with complicated cut-out considering different bound-
ary conditions and gradient index is adopted in [31]. Jüttler 
et al. [32] have initiated G+SMO (Geometry+Simulation 
Modules), an open-source, C++ library for IGA. It is an 
object-oriented template library that implements a generic 
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concept for IGA, based on abstract classes for discretization 
basis, geometry map, assembler, solver, and using the object 
polymorphism and inheritance techniques to provide a com-
mon framework of IGA for a variety of different available 
basis types. Nguyen and Nguyen-Xuan [33] have proposed 
an efficient computational tool based on isogeometric finite-
element formulation of three-dimensional elasticity for static 
and dynamic response of functionally graded square, circu-
lar, annular, and square plates with complicated shaped cut-
outs. The numerical tests have shown that a quartic NURBS 
element can eliminate the shear-locking phenomena. An 
effective formulation combining the extended-isogeometric 
approach and higher order shear deformation theory for 
free vibration analysis of cracked functionally graded mate-
rial plates is presented by Tran et al. [34]. This formula-
tion accounts for the effects of gradient index, crack-length, 
crack-location, length-to-thickness ratio on the natural fre-
quencies and mode shapes of simply supported and clamped 
FGM plates.

Vázquez [35] has presented a new design for the imple-
mentation of IGA in Octave and MATLAB package for the 
solution of partial differential equations. Compared to the 
previous version [23], the new design is more efficient in 
terms of memory consumption and computational time. 
Massarwi and Elber [36] have developed tools for approxi-
mation and local re-parameterization of trimmed elements 
for three-dimensional problems based on volumetric mod-
eling via volumetric representations (V-reps). A differential 
quadrature hierarchical finite-element method (DQHFEM) 
is proposed for vibration, and bending analyses of Mind-
lin plates with curvilinear domains [37]. The non-uniform 
rational Lagrange (NURL) alternative basis, which are 
interpolation functions to represent NURBS geometries for 
IGA, has been reported in [38]. The authors have incorpo-
rated the same basis functions to carry out the in-plane and 
flexural vibration of thin plates to overcome the difficulties 
of IGA using NURBS on coping with Dirichlet boundary 
conditions. Free vibration analysis of conical and cylindrical 
shells and annular plates made of composite, functionally 
graded materials (FGM), and carbon nanotube reinforced 
(CNTR) composite using FSDT via discrete singular con-
volution method is carried out in [39]. A comprehensive 
review on trimming in IGA has been showcased in [40] in 
the context of design, data exchange, and computational 
simulation. Employing the Fourier expansion method, 
sector-like thin plates having simply supported radial edges 
have been analyzed for transverse vibration adopting a semi-
analytical approach [41]. Antolin et al. [42] have demon-
strated a novel approach for the construction of isogeometric 
numerical methods for elliptic PDEs on trimmed geometries. 
Improved Fourier series method (IFSM) is used by Liu et al. 
[43] for free in-plane vibration of arbitrarily shaped straight-
sided quadrilateral and triangular plates. They have solved 

the problems by mapping the arbitrarily shaped plates into 
a unit square plate and following the usual modeling of 
vibration problems for rectangular plates. Alihemmati and 
Beni [44] have proposed a mesh-free Galerkin method for 
analysis of plates of triangular and polygonal geometries. 
Recently, Sahoo and Barik [45–47] have analyzed curved 
and straight-edged stiffened plates for free vibration and 
dynamic response to moving loads. They have employed 
an isoparametric finite element with shear deformation to 
accomplish this task.

The aero-thermo-elastic panel flutter response of a func-
tionally graded plate having cracks in the supersonic flow 
field has been analyzed by Khalafi and Fazilati [48]. The 
authors have incorporated IGA along with Nitsche technique 
which based is on FSDT. The parametric instability response 
of laminated composite plates under uniform in-place load-
ing has been carried out for the first time in [49]. Here, the 
authors have incorporated the IGA-based FEM formulation 
for addressing the instability of the panels. The response 
of a perforated flat panel having an externally bonded two-
steered patch of variable stiffness has been presented in 
[50]. Khalafi and Fazilati [51] studied the free vibration of a 
repaired perforated plate. They have incorporated the FSDT 
of plates for the multi-patch modeling approach. The free 
vibration and linear flutter analyses of laminated square and 
skew shaped plates have been carried out in [52]. The for-
mulation is based on the FSDT in-conjunction with an aero-
dynamic loading model. Free vibration analysis of laminated 
composite plates having curved perforations has been exten-
sively reported in [53]. The researchers have considered an 
IGA formulation with Nitsche method using FSDT. Liu et al. 
[54] proposed the in-plane free vibration of arbitrary plates 
having various end conditions using Improved Fourier Series 
Method (IFSM). Here, the authors have mapped the plates to 
a unit square plate and the usual procedure adopted in case 
of rectangular plates is used for the solution. A NURBS-
based multi-patch IGA formulation with FSDT has been 
presented in [55]. Do and Lee [56] studied the free vibra-
tion response of FGM plates with cut-outs by incorporating 
IGA. Here, the authors have formulated a quasi-3D higher 
order shear deformation theory(HSDT).

The researchers continuously endeavor to have analytical 
solutions to the arbitrary shape thin-plate analysis. But the 
analytical expressions become too complex and unmanage-
able when it is attempted for plates having curved edges and 
other than rectangular or straight-sided planforms. In the 
numerical method of analysis, FEM was predominant so far 
in formulating new elements to model the arbitrary shape of 
the plates. Isoparametric element was considered a success-
ful one in dealing with the non-rectangular plate geometries, 
though it is deficient in describing the exact curved edges. 
Moreover, as this element is based on Mindlin’s theory, the 
shear strain term leads to the shear-locking problem when 
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applied to thin plates and needs special attention of reduced 
integration.

There was a significant change of approach when the 
Computer-Aided Design (CAD) was developed to represent 
the geometry accurately, and this was embedded into FEA 
[57] through the concept of IGA, where the researchers 
employed the NURBS basis functions for representation of 
the geometry as well as the field variables required for the 
analysis. As the NURBS basis functions are non-interpolat-
ing in nature, the enforcement of essential boundary condi-
tion was found to be difficult and seeks special treatment 
[58–64].

In the present work, the above mentioned boundary con-
dition imposition problem is alleviated by replacing the 
NURBS with classical finite-element basis function to repre-
sent the field variables. The NURBS basis functions are only 
used for describing the geometry, and the four-noded ACM 
(Adini, Clough and Melosh [65]) plate bending element hav-
ing 12 degrees of freedom is considered for the displacement 
field. The interpolating nature of the ACM plate bending 
element helps in enforcing the essential boundary condition 
similar to the classical finite element method, making the 
whole process simpler. The NAFEM has been successfully 
applied to analyses of arbitrarily shaped plates [1, 2, 66, 67]. 
The present work is an extension of NAFEM for analyzing 
plates of different planforms under various end conditions 
for free vibration.

Problem Statement

The equation of equilibrium for an elastic system under free 
vibration in matrix form is given by

where [K] is the global elastic-stiffness matrix, [M] is the 
global consistent mass matrix, {𝛿} is the displacement vec-
tor, 

{
𝛿
}
 is the acceleration vector. Equation (1) can be solved 

using the standard matrix analysis once the element matrices 
are assembled into the global matrices.

(1)[K]{𝛿} + [M]
{
𝛿
}
= {0},

Finite-Element Formulation

NURBS Basis Function

Given a knot vector S =
{

s1, s2, s3, ...sn+p+1

}
 , the associated 

set of B-spline basis functions 
{

Ni,p

}n

i=1
 are defined recur-

sively by the Cox–de-Boor formula [68], starting with the 
zeroth order basis function (p = 0) as

and for a polynomial order p ≥ 1

where n is the number of basis functions and p is the order of 
the basis functions. The fractions of the form 0/0 are defined 
as zero.

Mapping of the Plate

The use of NURBS basis functions for representation of 
geometry introduces the concept of parametric space which 
is absent in the conventional finite-element formulation 
[68]. The consequence of this additional space is that an 
additional mapping is performed to operate in the parent 
element coordinates. First, the parent space is mapped to 
the parametric space and then to the physical space (Fig. 1).

The mapping from parametric to physical space is given 
by

where p and q are the order, n and m are the number of con-
trol points, Pi,j are the control points and Rp,q

i,j
(s, t) is the 

bivariate NURBS basis function defined as

(2)Ni,0 =

{
1 if si ≤ s ≤ si+1

0 otherwise,

(3)

Ni,p(s) =
s − si

si+p − si

Ni,p−1(s)

+
si+p+1 − s

si+p+1 − si+1

Ni+1,p−1(s),

(4)
[
X
]
=

n∑

i=1

m∑

j=1

Pi,jR
p,q

i,j
(s, t),

Fig. 1  Mapping between 
domains/spaces
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where Ni(s) and Mj(t) are the univariate B-spline basis func-
tions of order p and q corresponding to the knot vectors in 
the respective directions and 

{
wi,j

}n,m

i=1,j=1
 , where wi,j > 0 are 

the set of NURBS weights. The mapping from parent to 
parametric space is given by [68]

For complex geometries the physical space may be divided 
into simple patches and then those patches are mapped to 
the parent space through the parametric space. As a typi-
cal example the physical space defined by the coordinates 
ACDB is divided into two patches namely ACFE and EFDB 
as shown in Fig. 2. The parent space is then mapped to the 
patches in the physical space through the parametric space 
and the procedure is followed as before to compute the stiff-
ness matrix of each patch. The stiffness matrices of all the 
patches are assembled to form the global stiffness matrix 
of the whole plate. Thus the analysis of the plates having 
complicated geometry can be made simpler by subdividing 

(5)R
p,q

i,j
(s, t) =

Ni(s)Mj(t)wi,j
∑n

ī=1

∑m

j̄=1
Nī(s)Mj̄(t)wī,j̄

,

(6)s(𝜉) =

(
si+1 − si

)
𝜉 +

(
si+1 − si

)

2

(7)t(𝜂) =

(
ti+1 − ti

)
𝜂 +

(
ti+1 − ti

)

2
.

them into more amenable patches which can be dealt with 
ease [1].

Mesh Generation

The mesh for the plate is generated using the knot refine-
ment technique of [68]. In this, the plate geometry is gen-
erated first using the NURBS (Fig. 3a), and then applying 
the h-refinement technique [23, 68], the desired meshes can 
be obtained. Figure 3 shows the different stages of mesh 
generation for a typical semi-circular semi-elliptical plate 
which has also been used as an example problem in this 
paper. For detail of this technique, Section 2.1.4 of [69] may 
be referred.

Displacement Interpolation Function

For the proposed element, the four-noded rectangular non-
conforming ACM plate bending element with 12 degrees-of-
freedom is taken as the basic element. As the element is in 
𝜉-𝜂 plane the shape functions and the nodal parameters for 
the displacements and slopes are expressed in terms of the 
coordinates 𝜉 − 𝜂 unlike the x − y coordinates of the parent 
ACM element [6]. The shape functions for the displacement 
field for the jth node are given as

Fig. 2  Mapping of complex 
shaped geometry through differ-
ent domains/spaces
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where s0 = 𝜉sj and t0 = 𝜂tj.
The detailed formulation is presented in Section 2.4 of 

[1, 2].

Strain–Displacement Matrix

The strain–displacement matrix is given by [B] = [T][B̄] , 

where [B̄] =

[
𝜕Nw

𝜕𝜉

𝜕Nw

𝜕𝜂

𝜕2Nw

𝜕𝜉2

𝜕2Nw

𝜕𝜂2

𝜕2Nw

𝜕𝜉 𝜕𝜂

]T
 and [T] = 

[
[TF1

] [TF2
]
]

 ;  [TF1
] = −[J6]−1[J5][J4]−1[J1]−1  , 

[TF2
] = [J6]−1[J3]−1.

The detail formulation of the above can be referred from 
Section 2.5 of [1, 2].

(8)

[
N

j
w N

j

𝜃𝜉
N

j

𝜃𝜂

]
=

1

8

×

⎡⎢⎢⎣
(s0 + 1)(t0 + 1)

(
2 + s0 + t0 − 𝜉2 − 𝜂2

)
sj(s0 + 1)2(s0 − 1)(t0 + 1)

tj(s0 + 1)(t0 + 1)2(t0 − 1)

⎤⎥⎥⎦
T

,

Stiffness Matrix

Total potential energy of the plate element is given by

Applying the principle of minimum potential energy and 
making appropriate substitutions for strain vector ( 

{
𝜖(x, y)

}
 ), 

the stress vector ( 
{
𝜎(x, y)

}
 ) and the displacement field (w—

Eq. (8) of [1]), we have

where 
{
𝛿
}
 is the vector of nodal displacements, 

{
P
}

e
 is the 

vector of nodal forces and [K]e is the plate element stiffness 
matrix given by

(9)Πp =
1

2 ∬
{
𝜖(x, y)

}T {
𝜎(x, y)

}
dx dy −∬ wTdx dy.

(10)[K]e
{
𝛿
}
=
{

P
}

e
,

(11)[K]e = ∬ [B]T[D][B] dx dy.

Fig. 3  Mesh generation of a 
typical semi-circular semi-
elliptical plate
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Since the NURBS basis is a function of s and t, Eq. (11) 
becomes

Again since [B] is a function of 𝜉 and 𝜂 , Eq. (12) becomes

The integration is carried out numerically by adopting 2 × 2 
Gaussian quadrature formula.

Consistent Mass Matrix

Reproducing the procedures adopted in [7], the consistent 
mass matrix of the plate element is formulated on the basis 
of the lateral displacement w. The acceleration of a point in 
the middle plane of the plate in terms of the interpolation 
function given in Sect. 2.4 of [1, 2] can be expressed as

Hence, the inertia force for a small volume dV  at that point 
is given by

where 𝜌 is the mass density of the plate material. If 
{

FI

}
 is 

the nodal inertia force parameter, then the contribution of 
inertia in the equation of motion can be obtained from the 
principle of virtual work and can be expressed as

The above equation with the help of Eq. (15) can be rewrit-
ten as

from which

where [M]e is the mass matrix of the bare plate element and 
for constant thickness t, it is given by

(12)[K]e = ∬ [B]T[D][B]
|
|
|
J4
|
|
|
ds dt.

(13)[K]e = ∬ [B]T[D][B]
|
|
|
J1
|
|
|

|
|
|
J4
|
|
|
d𝜉 d𝜂.

(14)
{

f̈
}
=
{

ẅ
}
=
[
Nw

] {
𝛿
}

.

(15)
{

fI
}
= 𝜌 dV

[
Nw

] {
ẅ
}
= 𝜌 dV

[
Nw

] {
𝛿
}

.

(16)
{
d𝛿T

}{
FI

}
= ∫v

{
df T

}{
fI
}

.

(17)

{
d𝛿T

}{
F

I

}

= ∫
v

{d𝛿T}
[
N

w

]
𝜌 dV{𝛿}

(18)
{F

I
} = 𝜌∫

v

[
N

w

]T[
N

w

]
dV{𝛿}

= [M]
e
{𝛿},

Boundary Conditions

Following the procedure similar to the case of static and 
buckling analysis [1, 2], the stiffness of the boundary is 
given by

where

and Jacobian,

This boundary stiffness matrix contributes to that element 
to which the boundary belongs to.

Solution Procedure

The solution procedure adopted in the free vibration analy-
ses of plates are presented in this section. The equilibrium 
equation for the free vibration is given by Eq. (1). Consider-
ing the motion as harmonic motion, the solution of Eq. (1) is

(19)

[M]e = 𝜌∫v

[Nw]
T[Nw] dV = 𝜌 t ∫ ∫ [Nw]

T[Nw] dx dy

= 𝜌 t ∫ ∫ [Nw]
T[Nw]

|
|
|
J4
|
|
|
ds dt

= 𝜌 t ∫ ∫ [Nw]
T[Nw]

|
|
|
J1
|
|
|

|
|
|
J4
|
|
|
d𝜉 d𝜂.

(20)[Kb] = ∫ [Nb]
T [Nk]

|
|
|
Jb
|
|
|
d𝜆1,

(21)[Nb] =

⎡
⎢
⎢
⎣

1 0 0

[10pt]0 cos 𝛽 sin 𝛽

[10pt]0 − sin 𝛽 cos 𝛽

⎤
⎥
⎥
⎦

⎧
⎪
⎪
⎨
⎪
⎪
⎩

[Nw]

[8pt]
𝜕[Nw]

𝜕x

[10pt]
𝜕[Nw]

𝜕y

⎫
⎪
⎪
⎬
⎪
⎪
⎭

(22)=

⎡
⎢
⎢
⎣

kw 0 0

[10pt]0 k𝛼 cos 𝛽 k𝛼 sin 𝛽

[10pt]0 − k𝛽 sin 𝛽 k𝛽 cos 𝛽

⎤
⎥
⎥
⎦

⎧
⎪
⎪
⎨
⎪
⎪
⎩

[Nw]

[10pt]
𝜕[Nw]

𝜕x

[8pt]
𝜕[Nw]

𝜕y

⎫
⎪
⎪
⎬
⎪
⎪
⎭

(23)
|
|
|
Jb
|
|
|
=

ds1

d𝜆1

.

(24){𝛿} = H{𝜓}ei𝜔t,
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where {𝜓} is a normalized vector of the order of {𝛿} , H is the 
weighting parameter of {𝜓} and 𝜔 is the natural frequency 
of vibration in radians per second. On substitution, the equi-
librium equation becomes

This is a generalized eigenvalue problem and is solved by 
the simultaneous iteration algorithm of [70] and its solution 
is the eigenvalue 𝜔2 and the eigenvector {𝜓} . The skyline 
[71] technique is adopted for the storage of global elastic-
stiffness matrix [K] and the mass matrix [M] . In this process 
of storage, the matrix is stored in a single array eliminating 
the zero entries if any within the band thus reducing the 
storage requirement of the computer.

Numerical Examples

The free vibration analyses of a number of plates having 
different shapes and boundary conditions are carried out 
using the simultaneous iteration algorithm of [70] and the 
results obtained are compared with the existing ones. The 
results are presented in tabular form with a mesh division of 
32 × 32 for the whole plate. Figures of typical plates show-
ing mesh divisions of 8 × 8 along with the nodes (asterisk) 
are presented for each case. The abbreviations used in the 
table for the boundary conditions (S—simply supported, 
C—clamped, and F—free) are depicted in the anti-clockwise 
direction starting from the left edge of the plate.

Rectangular Plates

The convergence study for the different mesh sizes for the 
simply supported and clamped rectangular plate of aspect 
ratio 1 (square plate) is presented in Table 1 where excellent 

(25)[K]{𝜓} = 𝜔2[M]{𝜓}.

convergence of results is obtained with increasing mesh divi-
sions of the plate. The free vibration results of rectangular 
plates having aspect ratios 0.4, 1.0, 1.5 and 2.5 and under 
different support conditions are presented in Table 2. The 
results are compared with that of analytical method [72] and 
they are found to be in excellent agreement. First ten natural 
frequency results of a simply supported rectangular plate 
having different thicknesses have been presented in Table 3. 
In another case, the effect of thickness to width ratio (h/b) on 
the natural frequencies of antisymmetric modes of a rectan-
gular plate have has presented in Table 4. The present results 
are in excellent agreement with Classical Plate Theory (CPT 
[73]) and that of Lim et al. [74]. The variation of the natural 
frequency with respect to the change in thickness to breadth 
(h/b ratio) is found to be negligible. A typical rectangular 
plate having 8 × 8 mesh is shown in Fig. 4. It is observed 
that the frequency parameter increases with the increase in 
aspect ratio. The frequency parameter is found to be more for 
the all edges clamped plate in comparison to other support 
conditions. The first four mode shapes for rectangular plates 
under simply supported and clamped conditions are shown 
in Figs. 5, 6, 7, 8, 9, 10, 11 and 12. 

Free Vibration of Circular Plates

The free vibration analysis of circular plates (Fig. 13) with 
three different boundary conditions (completely free, simply 
supported and clamped) are carried out and the results com-
pared in Tables 5, 6 and 7 with the published ones are found 
to be in well agreement. It is observed that the dimension-
less natural frequencies of a fully clamped circular plate is 
more in comparison to a simply supported and completely 
free circular plates.

Table 1  Convergence study for 
dimensionless natural 
frequencies (
𝛽1 = (𝜔2

a
4𝜌h∕D)

1

4

)
 of a 

rectangular plate under different 
boundary condition (aspect ratio 
a∕b = 1)

 B∗ method

Mesh B
∗ 1 2 3 4 5 6

 Clamped end [72] 35.992 73.413 73.413 108.27 131.64 132.24

2 × 2  Present 32.039 86.689 86.693 4454.9 4638.7 4738.5

4 × 4 34.188 69.099 69.099 95.444 120.18 121.9

8 × 8 35.446 71.989 71.991 103.55 129.16 130.05

16 × 16 35.844 73.017 73.02 106.92 130.89 131.56

32 × 32 35.949 73.32 73.328 107.89 131.4 132.04

 Simply supported [72] 19.7392 49.3480 49.3480 78.9568 98.6960 98.6960

2 × 2  Present 17.71 45.536 45.789 45.789 71.041 72.286

4 × 4 19.136 47.192 47.192 71.276 94.454 94.497

8 × 8 19.578 48.728 48.728 76.562 97.406 97.408

16 × 16 19.698 49.189 49.189 78.314 98.366 98.342

32 × 32 19.729 49.307 49.308 78.793 98.61 98.634
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Free Vibration of Skew Rhombic Plates

Skew rhombic plates (Fig.  14) having different skew 
angles ( 𝛼 anti-clockwise from y-axis, aspect ratio a/b = 
1.0) and support conditions are analyzed and the results 

are presented in Tables 8, 9 an 10 with a mesh division of 
32 × 32 and the results are compared with those of [6, 58] 
and they agree well. From the results, it is observed that 
the frequency parameter for a skew rhombic plate increases 
with the skew angle and is highest under fully clamped 
condition. The first four mode shapes of skew rhombic 
plate having skew angle 𝜃 = 30◦ for simply supported and 
SCSC boundary conditions are presented in Figs. 15, 16, 
17, 18, 19, 20, 21 and 22.

Annular Sector Plate

The free vibration analysis of an annular sector plate 
(Fig. 23) having sector angle 𝛼 = 90◦ , with different aspect 
ratios ( ri∕ro , ri—inner radius, ro—outer radius) and under 
different boundary conditions is carried out. The results 
obtained are presented in Tables 11, 12 are found to be in 
excellent agreement with Barik [7] than Mukhopadhyay [3]. 
It is observed that the frequency parameter for an annular 
sector plate is highest under fully clamped condition. The 
first four mode shapes of annular sector plates having aspect 
ratio ri∕ro = 0.25 under CSSS and simply supported bound-
ary conditions are presented in Figs. 24, 25, 26, 27, 28, 29, 

Table 2  Dimensionless natural 
frequencies (
𝛽1 = (𝜔2

a
4𝜌h∕D)

1

4

)
 of a 

rectangular plate under different 
boundary condition

A
∗ support condition, B∗ method, D∗ CCCC, E∗ SSSS, G∗ CFFF

N
∗ present, M∗ Leissa [72]

A
∗ a/b B

∗ 1 2 3 4 5 6

D
∗ 0.4 N

∗ 23.626 27.732 35.275 46.466 61.292 63.064

M
∗ 23.646 27.817 35.446 46.702 61.554 63.100

1.0 N
∗ 35.949 73.32 73.328 107.89 131.4 132.04

M
∗ 35.992 73.413 73.413 108.27 131.64 132.24

1.5 N
∗ 60.702 93.667 148.63 149.36 178.99 226.99

M
∗ 60.772 93.860 148.82 149.74 179.66 226.92

2.5 N
∗ 147.67 173.31 220.46 290.5 382.68 394.85

M
∗ 147.80 173.85 221.54 291.89 384.71 394.37

E
∗ 0.4 N

∗ 11.441 16.16 24.043 35.057 41.026 45.673

M
∗ 114.4487 16.1862 24.0818 35.1358 41.0576 45.7950

1.0 N
∗ 19.729 49.308 49.321 78.814 98.611 98.604

M
∗ 19.7392 49.3480 49.3480 78.9568 98.6960 98.6960

1.5 N
∗ 32.058 61.622 98.619 110.9 128.02 177.06

M
∗ 32.0762 61.6850 98.6960 111.0330 128.3049 177.6529

2.5 N
∗ 71.508 101.0 150.2 219.11 256.44 285.46

M
∗ 71.5564 101.1634 150.5115 219.5987 256.6097 286.2185

G
∗ 0.4 N

∗ 3.5 4.7603 8.0723 13.801 21.536 23.046

M
∗ 3.5107 4.7861 8.1146 13.882 21.638 23.731

1.0 N
∗ 3.4711 8.5051 21.289 27.195 30.955 54.166

M
∗ 3.4917 8.5246 21.429 27.331 31.111 54.443

1.5 N
∗ 3.4534 11.661 21.468 39.328 53.542 61.627

M
∗ 3.4772 11.676 21.618 39.492 53.876 61.994

2.5 N
∗ 3.4279 17.963 21.396 57.226 60.127 105.95

M
∗ 3.4562 17.998 21.563 57.458 60.581 106.54

Fig. 4  A typical rectangular plate with having 8 × 8 mesh
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30 and 31. The frequency parameter increases with the 
increase in the aspect ratio ri∕ro and is found to be maximum 
for fully clamped end condition in comparison to others.

L-Shaped Plate

The free vibration analysis of L-shaped plate (Fig. 32) under 
different boundary conditions is performed and the results 
obtained are presented in Tables 13, 14 which agree well 

with the existing ones. The minor variation of results can be 
attributed to the manner in which the boundary condition are 
imposed in each case. This issue of implementation of the 
support conditions is well documented in Shojaee et al. [58]. 
It is observed that the dimensionless natural frequencies of 
a fully clamped L-shaped plate is more in comparison to a 
simply supported and completely free one.

Table 3  First ten natural frequencies of a simply supported rectangular plate having different thickness (Young’s modulus E = 70 × 109 N∕m2 , 
density 𝜌 = 2700 kg∕m3 , Poisson’s ratio 𝜈 = 0.3 , length of plate = 0.6 m , breadth of plate = 0.4 m)

Mode Thickness of plate = 0.00625 m Thickness of plate = 0.0125 m

number Exact Present [75] Exact Present [75]

1 136.5 136.49 135.8 273.1 272.97 271.7

2 262.6 262.36 259.9 525.2 524.71 519.8

3 420.1 420.01 417.6 840.3 840.03 835.2

4 472.7 472.16 466.8 945.4 944.33 933.7

5 546.2 545.03 535.9 1092.5 1090.1 1071.9

6 756.35 753.82 733.7 1512.7 1507.6 1467.5

7 766.85 766 757.1 1533.7 1532 1514.4

8 892.9 892.37 888.3 1785.8 1784.7 1776.6

9 1018.9 1016.2 997.8 2037.9 2032.5 2024.2

10 1050.4 1046.3 1012.1 2100.9 2092.5 2263.4

Mode Thickness of plate = 0.025 m Thickness of plate = 0.05 m

number Exact Present [75] Exact Present [75]

1 546.2 545.95 543.5 1092.5 1091.9 1087

2 1050.4 1049.4 1039.7 2100.9 2098.8 2079.4

3 1680.7 1680.1 1670.5 3361.5 3358.9 3341

4 1890.8 1888.7 1867.5 3781.7 3777.3 3735

5 2185 2180.1 2143.7 4370.1 4360.3 4278.4

6 3025.4 3015.3 2935.1 6050.8 6030.6 5870.2

7 3067.4 3064 3028.7 6134.8 6127.9 6057.5

8 3571.6 3569.5 3553.3 7143.3 7138.6 7106.5

9 4075.9 4064.9 4048.3 8151.82 8129.3 7982.4

10 4201.9 4185.1 4526.9 8403.9 8370.6 8096.7

Table 4  Effect of thickness ratio (h/b) on the natural frequencies of antisymmetric modes of rectangular plates

Support a/b m, n h/b ratio

condition 0.005 0.01 0.02

Present [73] Present [73] Present [73] [74] CPT [73]

SSSS 0.5 1,1 1.962277 1.962988 1.962277 1.961786 1.962277 1.956665 1.963495 1.963495

SCSC 1 3,2 22.231423 22.30661 22.231423 22.25712 22.231423 22.06286 22.31424 22.31424

SSSC 2 4,1 32.816831 32.89453 32.816831 32.87303 32.816831 32.87303 32.89686 32.89686

SSSF 0.5 1,4 5.901229 5.898097 5.901229 5.884730 5.901229 5.833354 5.908996 5.908996

SCSF 1 2,1 6.637901 6.610726 6.637901 6.609886 6.637901 6.598192 6.637068 6.637068

SFSF 2 2,3 23.348821 23.29759 23.348821 23.28252 23.348821 23.19873 23.38027 23.38027
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Fig. 5  Mode 1 of rectangular plate having aspect ratio a∕b = 1.0 for 
CCCC boundary condition

Fig. 6  Mode 2 of rectangular plate having aspect ratio a∕b = 1.0 for 
CCCC boundary condition

Fig. 7  Mode 3 of rectangular plate having aspect ratio a∕b = 1.0 for 
CCCC boundary condition

Fig. 8  Mode 4 of rectangular plate having aspect ratio a∕b = 1.0 for 
CCCC boundary condition
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Fig. 9  Mode 1 of rectangular plate having aspect ratio a∕b = 1.0 for 
SSSS boundary condition

Fig. 10  Mode 2 of rectangular plate having aspect ratio a∕b = 1.0 for 
SSSS boundary condition

Fig. 11  Mode 3 of rectangular plate having aspect ratio a∕b = 1.0 for 
SSSS boundary condition

Fig. 12  Mode 4 of rectangular plate having aspect ratio a∕b = 1.0 for 
SSSS boundary condition
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Semi-circular Semi-elliptical Plate

The free vibration analysis of a plate consisting of a semi-
circle and semi-ellipse (Fig. 33) is carried out for differ-
ent boundary conditions and aspect ratios b/a (where a is 
the radius of the semi-circle and the semi-minor axis of the 
semi-ellipse and b is the semi-major axis of the semi-ellipse) 
and the results are presented in Table 15. The boundary con-
ditions are depicted with C—clamped, S—simply supported 

and F—free end in the anti-clockwise direction starting 
from the left edge of the plate in the following sequence 
AB–BD–DE–EA. It is observed that the dimensionless 
natural frequencies of a fully clamped semi-circular semi-
elliptical plate is highest in comparison to other ends. The 
first four mode shapes of semi-circular semi-elliptical plate 
having aspect ratio a∕b = 1.125 under clamped and CSFF 
boundary conditions are presented in Figs. 34, 35, 36, 37, 
38, 39, 40 and  41.

Fig. 13  A typical circular plate with having 8 × 8 mesh

Table 5  Dimensionless natural frequencies 
(
𝛽1 = (𝜔2

a
4𝜌h∕D)

1

4

)
 of a 

completely free circular plate

A
∗ mode , B∗ present, D∗ Shojaee et al. [58],

E
∗ Bui and Nguyen [76]

A
∗

B
∗ *D

∗
E
∗

MKI EFG

4 2.3147 2.3135 2.2133 2.3375

5 2.3149 2.3135 2.3362 2.3375

6 3.0005 2.9976 2.9776 3.0343

7 3.5264 3.5232 3.5478 3.6007

8 3.5227 3.5232 3.5478 3.6007

9 4.5227 4.5167 4.5084 4.6167

10 4.5227 4.5167 4.5084 4.6167

11 4.6714 4.6652 4.7297 4.8818

12 4.6714 4.6654 4.7684 4.8818

13 5.7846 5.7744 5.9089 6.0586

14 5.7846 5.7744 5.9176 6.0586

Table 6  Dimensionless natural frequencies 
(
𝛽1 = (𝜔2

a
4𝜌h∕D)

1

4

)
 of a 

fully clamped circular plate

A
∗ mode, B

∗ present, E
∗ Hinton [77], D

∗ Shojaee et  al. [58], G
∗ 

Cheung et al. [4], H∗ Liew et al. [9]

A
∗

B
∗

D
∗

E
∗

H
∗

G
∗

1 3.197 3.1951 3.1962 3.2041 3.1947

2 4.6108 4.6069 4.6109 4.6313 4.6119

3 4.6108 4.6069 4.6109 4.6313 4.6119

4 5.9033 5.8968 5.9059 5.9376 5.9110

5 5.9036 5.8970 5.9059 5.9376 5.9110

6 6.3038 6.2958 6.3064 6.3475 6.3411

7 7.1375 7.1278 7.1442 7.1877 7.2146

8 7.1376 7.1278 7.1442 7.1877 7.2146

9 7.7932 7.7790 7.7987 7.8832 7.8721

10 7.7932 7.7790 7.7987 7.8832 7.8721

Table 7  Dimensionless natural frequencies 
(
𝛽1 = (𝜔2

a
4𝜌h∕D)

1

4

)
 of a 

simply supported circular plate

A
∗ mode, B∗ present, D∗ Shojaee et al. [58], E∗ Bui and Nguyen [76], 

G
∗ Cheung et al. [4]

A
∗

B
∗

D
∗

E
∗

G
∗

EFG SFSM

1 2.2208 2.2208 2.2159 2.2246 2.2197

2 3.7264 3.7252 3.7043 3.7371 3.7256

3 3.7264 3.7252 3.7060 3.7371 3.7256

4 5.0557 5.0541 5.1647 5.1456 5.0537

5 5.0586 5.0541 5.1795 5.1457 5.0537

6 5.4484 5.4431 5.9071 5.9184 5.4626

7 6.3136 6.3082 6.0480 6.4274 6.3482

8 6.314 6.3082 6.4444 6.4274 6.3282

9 6.9576 6.9456 7.4871 7.4705 6.9950

10 6.9603 6.9456 7.4871 7.4705 6.9950
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Rectangular Plate with Curved Edges

A rectangular plate having curved edges (Fig. 42) is ana-
lyzed for different boundary conditions and aspect ratios 

r1∕r2 (where r1 and r2 are the semi-major and semi-minor 
axes of the plate respectively) and the results are presented 
in Table 16. The boundary conditions are depicted with 
C—clamped, S—simply supported and F—free end in 

Table 8  Frequency parameters 
𝜆 = 𝜔a

2(𝜌 h∕D)
1

2 for skew 
rhombic plate

B
∗ skew angle 𝜃 , D∗ method, E∗ Barik [6], H∗ SSSS, I∗ CCCC, A∗ support condition, G∗ present

A
∗

B
∗

D
∗ 1 2 3 4 5 6

H
∗ 30◦ G

∗ 24.92 52.592 71.726 83.652 122.41 122.67

E
∗ 25.0219 52.5501 71.9398 83.5642 122.031 122.558

45◦ G
∗ 34.985 66.194 99.978 107.47 140.01 168.0

E
∗ 35.6320 66.1028 99.9479 108.844 139.403 167.678

60◦ G
∗ 64.004 104.59 146.93 193.69 208.69 244.57

E
∗ 66.3452 104.637 147.839 194.135 213.670 245.783

I
∗ 30◦ G

∗ 46.029 81.457 105.0 118.79 164.12 165.12

E
∗ 45.9824 81.3367 104.849 118.479 163.449 164.744

45◦ G
∗ 65.515 106.18 147.46 156.84 195.16 228.8

E
∗ 65.4204 105.950 146.859 156.569 193.976 228.140

60◦ G
∗ 121.2 176.52 228.89 286.32 303.41 346.91

E
∗ 121.274 176.750 229.394 287.224 303.618 347.786

Table 9  Frequency parameters 
𝜆 = 𝜔a

2(𝜌 h∕D)
1

2 for skew 
rhombic plate

A
∗ support condition, D∗ method, K∗ Shojaee et al. [58], G∗ present, L∗ SFSF, M∗ SCSC, N∗ CFCF, B∗ skew 

angle 𝜃

A
∗

B
∗

D
∗ 1 2 3 4 5 6

L
∗ 15◦ G

∗ 1.0337 1.6699 3.6437 4.2006 5.1348 6.7129

K
∗ 1.0334 1.6707 3.6461 4.1994 5.1354 -

30◦ G
∗ 1.2317 1.7937 3.6474 5.0086 6.2133 6.6335

K
∗ 1.2314 1.7960 3.6510 5.0093 6.2220 –

45◦ G
∗ 1.6627 2.0654 4.0119 6.0416 7.9786 8.2241

K
∗ 1.6689 2.0809 4.0185 6.0717 8.0323 –

60◦ G
∗ 2.5604 2.6872 5.4412 7.3132 10.103 13.68

K
∗ 2.6198 2.7716 5.4780 7.4916 10.3010 –

M
∗ 15◦ G

∗ 3.1076 5.7388 7.5528 9.5059 11.329 13.801

K
∗ 3.1107 5.7466 7.5640 9.5336 11.3575 –

30◦ G
∗ 3.7398 6.5043 9.4063 10.182 13.919 14.392

K
∗ 3.7492 6.5167 9.4408 10.2251 13.9867 –

45◦ G
∗ 5.2965 8.45 12.431 13.843 16.907 19.524

K
∗ 5.3457 8.4902 12.5526 14.0132 17.1946 –

60◦ G
∗ 9.7212 13.8220 18.865 23.761 27.013 29.697

K
∗ 10.0306 14.1209 19.6326 25.5291 28.0936 –

N
∗ 15◦ G

∗ 2.3657 2.7686 4.5391 6.5378 7.1302 8.0125

K
∗ 2.3665 2.7710 4.5453 6.5396 7.1366 –

30◦ G
∗ 2.7769 3.0955 5.0069 7.4906 8.2049 8.6228

K
∗ 2.7784 3.1015 5.0246 7.5045 8.2327 –

45◦ G
∗ 3.6974 3.8569 6.2328 8.781 10.391 11.543

K
∗ 3.7121 3.8944 6.2790 8.8629 10.5569 –

60◦ G
∗ 5.8303 5.8973 9.7416 11.74 14.711 19.52

K
∗ 6.0571 6.0758 9.9485 12.3071 15.6104 –
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Table 10  Frequency parameters 
𝜆 = 𝜔a

2(𝜌 h∕D)
1

2 for skew 
rhombic plate

A
∗ support condition, B∗ skew angle 𝜃 , D∗ method, G∗ present, K∗ Shojaee et al. [58], O∗ CFFF

A
∗

B
∗

D
∗ 1 2 3 4 5 6

O
∗ 15◦ G

∗ 0.3631 0.8808 2.2532 2.6676 3.431 5.27

K
∗ 0.3632 0.8814 2.2531 2.6686 3.4321 –

30◦ G
∗ 0.3981 0.9528 2.5641 2.627 4.1885 5.125

K
∗ 0.3985 0.9545 2.5652 2.6286 4.1916 –

45◦ G
∗ 0.4571 1.1367 2.7347 3.1992 5.1345 5.9777

K
∗ 0.4579 1.1458 2.7427 3.2118 5.1444 –

60◦ G
∗ 0.5347 1.6199 3.0975 4.6171 5.9878 8.1663

K
∗ 0.5394 1.6433 3.1657 4.6804 6.0773 –

Fig. 14  A typical skew rhombic plate having 8 × 8 mesh

Fig. 15  Mode 1 of skew plate having aspect ratio a∕b = 1.0 and skew 
angle 𝜃 = 30◦ under SSSS boundary condition

Fig. 16  Mode 2 of skew plate having aspect ratio a∕b = 1.0 and skew 
angle 𝜃 = 30◦ under SSSS boundary condition

Fig. 17  Mode 3 of skew plate having aspect ratio a∕b = 1.0 and skew 
angle 𝜃 = 30◦ under SSSS boundary condition

Fig. 18  Mode 4 of skew plate having aspect ratio a∕b = 1.0 and skew 
angle 𝜃 = 30◦ under SSSS boundary condition

Fig. 19  Mode 1 of skew plate having aspect ratio a∕b = 1.0 and skew 
angle 𝜃 = 30◦ under SCSC boundary condition
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the anti-clockwise direction starting from the left edge of 
the plate in the following sequence AB–BD–DE–EA. It is 
observed that the natural frequency for a rectangular plate 
with curved edges increases with the increase in the aspect 
ratios r1∕r2 and is highest for fully clamped edge condition. 

First four mode shapes of the plate having aspect ratio 
r1∕r2 = 1.5 under clamped and CCSS boundary conditions 
are shown in Figs. 43, 44, 45, 46, 47, 48, 49 and  50.

Dome-Shaped Plate

A typical plate resembling the shape of a dome is considered 
by taking one of the edges straight and its opposite edge as 
the top of a dome (Fig. 51). The free vibration analysis of 
this dome-shaped plate is carried out for different bound-
ary conditions and aspect ratio r1∕r2 where r1 is half the 
length of the straight edge and r2 is the semi-minor axis of 
the dome. The results obtained are presented in Table 17. 
The boundary conditions are depicted with C—clamped, 
S—simply supported and F—free end in the anti-clockwise 
direction starting from the left edge of the plate in the fol-
lowing sequence EA–AB–BD–DE. It is observed that the 
natural frequency for a dome-shaped plate increases with 
the increase in the aspect ratios r1∕r2 and is highest for fully 
clamped edge condition. First four mode shapes of the plate 
having aspect ratio r1∕r2 = 1.5 under different clamped and 
CCCS boundary conditions are shown in Figs. 52, 53, 54, 
55, 56, 57, 58 and  59. The dimensionless natural frequency 
increases with the increase in aspect ratio and was found to 
be maximum for all edges clamped condition.

Rectangular Plate with One-Side Curved Edge

A rectangular plate with one side being curved is analyzed 
by considering the rectangular portion as patch-1 ( 32 × 32 
mesh) and the remaining portion as patch-2 ( 32 × 32 mesh) 

Fig. 20  Mode 2 of skew plate having aspect ratio a∕b = 1.0 and skew 
angle 𝜃 = 30◦ under SCSC boundary condition

Fig. 21  Mode 3 of skew plate having aspect ratio a∕b = 1.0 and skew 
angle 𝜃 = 30◦ under SCSC boundary condition

Fig. 22  Mode 4 of skew plate having aspect ratio a∕b = 1.0 and skew 
angle 𝜃 = 30◦ under SCSC boundary condition

Fig. 23  A typical annular plate with 8 × 8 mesh
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Table 11  Frequency parameters 
𝜆 = 𝜔a

2(𝜌 h∕D)
1

2 for clamped 
annular sector plate

B
∗ method, H∗ Barik [7] , M∗ present, I∗ Mukhopadhyay [3]

r
i
∕r

o
B
∗ 1 2 3 4 5

0.25 M
∗ 52.61 87.82 123.51 136.61 167.62

I
∗ 52.01 87.60 121.18 136.01 166.65

H
∗ 52.58 87.72 123.43 136.38 167.21

Table 12  Frequency parameters 
𝜆 = 𝜔a

2(𝜌 h∕D)
1

2 for annular 
sector plate

 A∗ support condition, B∗ method, D∗ CSSS, E∗ SSSS, H∗ Barik [7], M∗ present, I∗ Mukhopadhyay [3], G∗ 
SSSS

A
∗

r
i
∕r

o
B
∗ 1 2 3 4 5

D
∗ 0.25 M

∗ 32.21 64.15 88.53 107.48 133.47

I
∗ 32.18 64.41 88.35 107.91 133.91

H
∗ 32.21 64.11 88.50 107.19 133.22

0.5 M
∗ 48.70 72.868 111.15 161.68 167.58

I
∗ 48.74 73.34 111.82 166.90 193.20

H
∗ 48.69 72.81 111.03 161.22 167.49

E
∗ 0.25 M

∗ 28.401 56.542 85.093 97.394 124.01

I
∗ 28.345 56.719 84.687 97.653 123.949

H
∗ 28.407 56.507 85.077 97.225 123.669

0.5 M
∗ 47.188 68.05 102.91 150.26 166.64

I
∗ 47.142 68.264 103.224 150.747 165.734

H
∗ 47.182 67.986 102.732 149.938 166.556

Fig. 24  Mode 1 of annular sector plate having ri∕ro = 0.25 under 
CSSS boundary condition

Fig. 25  Mode 2 of annular sector plate having ri∕ro = 0.25 under 
CSSS boundary condition
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Fig. 26  Mode 3 of annular sector plate having ri∕ro = 0.25 under 
CSSS boundary condition

Fig. 27  Mode 4 of annular sector plate having ri∕ro = 0.25 under 
CSSS boundary condition

Fig. 28  Mode 1 of annular sector plate having ri∕ro = 0.25 under 
SSSS boundary condition

Fig. 29  Mode 2 of annular sector plate having ri∕ro = 0.25 under 
SSSS boundary condition
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under different boundary conditions and aspect ratios a/b 
(a—length of the rectangular portion, b—breadth of the 
rectangular portion). The nodes of the rectangular portion 
(patch-1) are represented with asterisk and the remaining 
portion (patch-2) with circular markers respectively. The 
results obtained are presented in Table 18. A typical rectan-
gular plate with one-side curved edge consisting of a rectan-
gular portion as patch-1 ( 4 × 4mesh) and the remaining as 

Fig. 30  Mode 3 of annular sector plate having ri∕ro = 0.25 under 
SSSS boundary condition

Fig. 31  Mode 4 of annular sector plate having ri∕ro = 0.25 under 
SSSS boundary condition

Fig. 32  A typical L-shaped plate with 8 × 8 mesh

Table 13  Dimensionless natural frequencies 𝛽1 = (𝜔2
a

4𝜌h∕D)
1

4 of a 
completely free L-shaped plate

N
∗ Shojaee et al. [58], P∗ mode, M∗ present, O∗ Bui et al. [78]

P
∗

M
∗

N
∗

O
∗

MKI EFG

4 3.4342 4.0267 3.9694 3.9796

5 4.1301 4.1354 4.1284 4.1790

6 5.8074 5.3302 5.2122 5.2253

7 5.8876 5.8005 5.7019 5.8294

8 7.7005 7.7589 7.6153 7.7726

9 7.7573 7.8008 7.7838 7.8009

10 8.9589 8.2518 8.1233 8.0450

11 9.5363 9.5159 9.2627 9.5221

12 9.8932 9.8811 9.7246 9.8178

13 9.9772 9.9610 9.9391 10.0634

14 11.1 10.9044 10.3906 10.8019

15 11.222 11.2379 11.0938 11.2012
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Table 14  Dimensionless natural 
frequencies 𝛽1 = (𝜔2

a
4𝜌h∕D)

1

4 
of a L-shaped plate

N
∗ Shojaee et al. [58], P∗ mode, A∗ end condition, M∗ present, O∗ Bui et al. [78]

P
∗

A
∗

M
∗

N
∗

O
∗

A
∗

M
∗

N
∗

MKI EFG

1 Simply sup-
ported

6.9113 6.7498 6.8204 6.7649 Clamped 9.258 9.0559

2 7.4543 7.8268 7.9560 8.0319 9.7297 10.2628

3 8.9911 8.8766 8.4489 8.8821 11.057 11.0427

4 10.409 10.8610 10.4509 10.8853 12.29 12.7108

5 11.582 11.5428 11.1064 11.5584 13.681 13.5290

6 12.158 13.0360 13.2219 13.0156 14.443 15.2262

7 13.097 13.4206 13.3820 13.7309 15.525 15.6192

8 13.572 14.0258 13.9620 14.0279 15.846 16.3538

9 14.358 14.0280 14.0655 14.0442 16.599 16.4143

10 14.885 15.1483 15.2255 15.1630 17.013 17.4016

a

b

b

A

B D

E

Fig. 33  A typical semi-circular semi-elliptical plate with 8 × 8 mesh

Fig. 34  Mode 1 of semi-circular semi-elliptical plates having aspect 
ratio a∕b = 1.125 under CCCC boundary condition

Fig. 35  Mode 2 of semi-circular semi-elliptical plates having aspect 
ratio a∕b = 1.125 under CCCC boundary condition

Fig. 36  Mode 3 of semi-circular semi-elliptical plates having aspect 
ratio a∕b = 1.125 under CCCC boundary condition
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patch-2 ( 4 × 4 mesh) is shown in Fig. 60. It is observed that 
the natural frequency for a rectangular plate with one-side 
curved edge increases with the increase in the aspect ratios 
a/b and is highest for fully clamped edge condition.

Conclusions

In the present formulation, NURBS basis functions are used 
to represent the exact shape of the arbitrary thin plates. In 
contrast to the isogeometric analysis, the use of classical 
finite-element basis functions as field variables helps in 

Fig. 37  Mode 4 of semi-circular semi-elliptical plates having aspect 
ratio a∕b = 1.125 under CCCC boundary condition

Fig. 38  Mode 1 of semi-circular semi-elliptical plates having aspect 
ratio a∕b = 1.125 under CSFF boundary condition

Fig. 39  Mode 2 of semi-circular semi-elliptical plates having aspect 
ratio a∕b = 1.125 under CSFF boundary condition

Fig. 40  Mode 3 of semi-circular semi-elliptical plates having aspect 
ratio a∕b = 1.125 under CSFF boundary condition

Fig. 41  Mode 4 of semi-circular semi-elliptical plates having aspect 
ratio a∕b = 1.125 under CSFF boundary condition
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Table 15  Dimensionless natural 
frequencies 𝛽1 = 𝜔2

b
2(𝜌h∕D)

1

2 
of semi-circular semi-elliptical 
plate

 A∗support condition , B∗ SSSS, D∗ CCCC, E∗ CFCS, G∗ CFFF, H∗ CSFF, I∗ CCFF, L∗ CCSS

A
∗ b/a 1 2 3 4 5 6

B
∗ 1.125 5.8944 16.009 17.141 30.14 30.502 35.814

1.25 6.9351 18.15 20.719 34.283 35.745 42.984

D
∗ 1.125 12.2189 24.619 26.162 41.063 41.598 47.963

1.25 14.359 28.047 31.55 46.808 48.794 57.591

E
∗ 1.125 8.6824 12.164 22.316 22.966 30.694 38.841

1.25 9.7251 14.08 25.671 26.856 34.674 45.576

 G∗ 1.125 1.2519 3.6539 7.2739 11.476 12.997 19.439

1.25 1.3794 4.2165 8.0403 13.801 14.777 21.608

H
∗ 1.125 2.5488 8.2121 9.3186 17.326 20.947 22.649

1.25 2.9102 9.3931 10.883 19.836 24.567 26.262

I
∗ 1.125 2.8922 8.5393 11.181 17.856 23.068 25.468

1.25 3.3743 9.7046 13.326 20.422 26.295 30.766

L
∗ 1.125 8.9319 20.076 21.511 35.501 35.804 41.439

1.25 10.521 22.764 25.991 40.347 41.904 49.789

Fig. 42  A typical rectangular plate with curved edges having 8 × 8 
mesh

Fig. 43  Mode 1 of rectangular plate with curved edges having aspect 
ratio r1∕r2 = 1.5 under CCCC boundary condition

Fig. 44  Mode 2 of rectangular plate with curved edges having aspect 
ratio r1∕r2 = 1.5 under CCCC boundary condition

Journal of Vibration Engineering & Technologies (2023) 11:1241–12701262



 

1 3

Fig. 45  Mode 3 of rectangular plate with curved edges having aspect 
ratio r1∕r2 = 1.5 under CCCC boundary condition

Fig. 46  Mode 4 of rectangular plate with curved edges having aspect 
ratio r1∕r2 = 1.5 under CCCC boundary condition

Fig. 47  Mode 1 of rectangular plate with curved edges having aspect 
ratio r1∕r2 = 1.5 under CCSS boundary condition

Fig. 48  Mode 2 of rectangular plate with curved edges having aspect 
ratio r1∕r2 = 1.5 under CCSS boundary condition
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Fig. 49  Mode 3 of rectangular plate with curved edges having aspect 
ratio r1∕r2 = 1.5 under CCSS boundary condition

Fig. 50  Mode 4 of rectangular plate with curved edges having aspect 
ratio r1∕r2 = 1.5 under CCSS boundary condition

Table 16  Dimensionless natural 
frequencies 𝛽1 = 𝜔2

r
2

1
(𝜌h∕D)

1

2 
of rectangular plate with curved 
edges

 A∗ support condition, B∗ CCCC, D∗ SSSS, E∗ CCSS, G∗ CCFF, H∗ SSFF, I∗ CFFF, L∗ SSSF, M∗ CSSS

A
∗

r1∕r2 1 2 3 4 5 6 7 8

B
∗ 1.0 14.134 23.315 33.887 38.459 43.245 58.743 58.994 63.533

1.5 27.55 35.421 49.442 69.429 72.169 80.743 94.773 95.484

2.0 46.908 53.968 66.89 85.987 110.93 126.04 134.28 141.19

D
∗ 1.0 7.3318 15.175 22.634 28.422 31.421 46.045 46.447 47.485

1.5 13.523 21.305 34.669 47.434 53.288 56.504 71.594 76.741

2.0 22.305 30.252 43.753 62.621 82.123 86.511 91.575 107.21

E
∗ 1.0 10.429 19.081 27.909 33.375 37.037 52.247 52.556 55.269

1.5 19.8 27.869 41.773 59.09 60.948 68.214 81.928 86.859

2.0 33.22 40.918 54.51 73.79 97.995 103.07 111.46 126.68

G
∗ 1.0 2.8495 8.3219 11.976 18.674 20.857 28.712 34.411 36.12

1.5 4.8798 10.859 20.595 27.786 31.08 43.456 43.944 59.028

2.0 7.6477 13.855 24.822 38.949 46.722 55.639 59.254 75.281

H
∗ 1.0 1.6442 6.492 8.8147 15.984 16.653 24.873 29.506 30.196

1.5 2.4926 8.5386 16.328 21.616 25.11 36.108 39.161 52.153

2.0 3.2803 10.624 20.936 32.211 34.291 46.204 49.297 64.614

I
∗ 1.0 1.0944 3.6698 6.7572 12.843 13.083 19.451 23.165 26.049

1.5 1.1367 5.1211 7.0296 16.988 18.711 29.228 32.929 33.365

2.0 1.1668 6.5901 7.2224 19.772 21.19 37.187 39.442 48.513

L
∗ 1.0 5.0872 12.975 13.883 24.908 26.973 29.987 40.091 42.02

1.5 7.4109 17.519 22.027 33.046 35.978 52.311 54.648 62.043

2.0 9.6324 22.004 32.615 42.074 46.534 63.925 68.056 88.887

M
∗ 1.0 8.3939 17.95 23.328 32.686 33.707 48.022 50.102 51.567

1.5 14.422 24.086 39.341 47.996 58.558 59.562 75.612 84.279

2.0 23.108 32.987 48.762 69.767 82.619 93.463 95.397 111.13
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Fig. 51  A typical dome-shaped plate having 8 × 8 mesh

Fig. 52  Mode 1 of a plate in the shape of a dome having aspect ratio 
r1∕r2 = 1.5 under CCCC boundary condition

Fig. 53  Mode 2 of a plate in the shape of a dome having aspect ratio 
r1∕r2 = 1.5 under CCCC boundary condition

Fig. 54  Mode 3 of a plate in the shape of a dome having aspect ratio 
r1∕r2 = 1.5 under CCCC boundary condition
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Fig. 55  Mode 4 of a plate in the shape of a dome having aspect ratio 
r1∕r2 = 1.5 under CCCC boundary condition

Fig. 56  Mode 1 of a plate in the shape of a dome having aspect ratio 
r1∕r2 = 1.5 under CCCS boundary condition

Fig. 57  Mode 2 of a plate in the shape of a dome having aspect ratio 
r1∕r2 = 1.5 under CCCS boundary condition

Fig. 58  Mode 3 of a plate in the shape of a dome having aspect ratio 
r1∕r2 = 1.5 under CCCS boundary condition
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imposing the boundary conditions easily which is the main 
drawback of isogeometric analysis. Further, the knot refine-
ment technique of the NURBS basis function takes care of 
the mesh generation. The free vibration analysis of arbi-
trary-shaped plates are carried out and the results obtained 
are found to be well in agreement with the published ones. 
To showcase the robustness of NAFEM, some complicated 
shaped plates (semi-circular semi-elliptical, rectangular 
plate with curved edges, dome-shaped plate, and L-shaped 
plate) have been considered for the free vibration analysis 
and the new results are presented. Further, a rectangular 
plate with one side being curved is analyzed by considering 
the rectangular portion as patch-1 and the remaining por-
tion as patch-2 thereby showing the capability of NAFEM 
to analyze complex geometries by splitting them into more 
amenable patches which can be dealt with ease.

Fig. 59  Mode 4 of a plate in the shape of a dome having aspect ratio 
r1∕r2 = 1.5 under CCCS boundary condition

Table 17  Dimensionless natural 
frequencies 𝛽1 = 𝜔2

r
2

1
(𝜌h∕D)

1

2 
of a dome-shaped plate

 A∗ support condition, B∗ CCCC, D∗ SSSS, E∗ CCSS, G∗ CCFF, H∗ CCCS, I∗ CSSS

A
∗

r1∕r2 1 2 3 4 5 6 7 8

B
∗ 1.0 9.1039 17.639 19.373 29.21 30.301 34.332 43.842 44.664

1.5 15.899 24.357 35.576 40.616 47.75 55.82 61.401 74.044

2.0 25.914 34.621 46.604 61.915 67.627 80.227 81.078 97.924

D
∗ 1.0 4.6349 11.605 12.793 21.312 22.464 25.554 34.247 34.844

1.5 7.8681 15.206 24.419 27.949 34.561 42.717 46.682 56.276

2.0 12.528 20.342 31.379 44.646 45.44 57.43 61.991 73.976

E
∗ 1.0 6.8313 14.875 15.841 25.378 26.774 29.599 39.263 40.263

1.5 11.641 20.158 30.208 34.412 40.945 50.352 54.313 64.8

2.0 18.655 27.71 40.071 54.416 55.802 69.066 71.775 87.618

G
∗ 1.0 2.2746 6.4523 8.5505 12.995 17.583 18.405 22.15 28.586

1.5 3.7276 9.3549 15.14 19.229 23.879 31.667 36.052 39.882

2.0 5.6329 12.023 22.002 26.435 33.461 40.076 46.647 57.521

H
∗ 1.0 8.1858 16.51 17.434 27.704 29.806 30.449 41.248 43.232

1.5 12.673 22.831 31.417 37.465 42.773 54.98 57.353 65.759

2.0 19.391 30.276 44.168 55.839 58.865 71.782 75.814 92.654

I
∗ 1.0 5.6979 13.438 13.859 23.234 25.468 26.336 36.351 37.51

1.5 8.7584 17.481 25.557 30.768 36.252 47.174 49.331 57.007

2.0 13.273 22.568 34.981 45.035 49.436 59.743 65.969 79.006
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