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Abstract
Purpose  The purpose of this paper is to study that which beam element should be adopted to achieve the required high accu-
racy and efficiency in different projects. Three kinds of beam elements commonly used to analyze the nonlinear dynamics 
of flexible multibody systems are compared and analyzed, which are fully parameterized beam and gradient-deficient beam 
elements based on the absolute nodal coordinate formulation, and geometrically exact beam element, respectively.
Methods  The governing equations are established based on the fully parameterized beam element, the gradient-deficient 
beam element and the geometrically exact beam element, and the generalized-α implicit time stepping algorithm is used to 
study the dynamic responses of system.
Results and Conclusion  In this study, the solution accuracy and efficiency of the three kinds of element are analyzed in both 
statics and dynamics in detail and compared with each other. It is found that the geometrically exact beam element is superior 
to other two elements when the discretized element is subjected to axial deformation and torsion. Both gradient-deficient 
beam element and geometrically exact beam element show the high accuracy and efficiency when the element is bent. Moreo-
ver, the Young’s modulus and time step have a great effect on displacement responses when the beam element is in dynamic 
state. All the results should be helpful for selection of a high-precision calculation method in engineering applications.

Keywords  Fully parameterized beam element · Gradient-deficient beam element · Geometrically exact beam element · 
Accuracy · Nonlinear large deformation

Mathematics Subject Classification  70E55 · 74H45

Introduction

The investigation of the nonlinear coupling phenomenon 
in nonlinear dynamics is of great significance for a broad 
range of applications, including aerospace, robot and vehicle 
engineering. Due to the larger elastic deformation of flexible 
components, the high accuracy analysis is difficult to achieve 
using either the traditional multi-rigid-body system dynam-
ics or flexible multi-body dynamics with small deformation. 
Therefore, the flexible multi-body dynamics model with 
large displacements and rotations is widely used in nonlinear 

dynamics for its high calculation accuracy and efficiency 
[1–4]. Two commonly used methods are the absolute nodal 
coordinate formulation (ANCF) and the geometrically exact 
formulation (GEF).

Shabana [5] first proposed the ANCF method and fur-
ther established a one-dimensional beam element model, 
which was called as the milestone in the development of 
flexible multi-body system dynamics [6, 7]. Such method 
was first applied to study the dynamics of flexible systems 
with large deformation by Escalona et al. [8]. Based on the 
ANCF method, a three-dimensional beam element [9, 10] 
and a planar beam element of gradient-deficient ANCF 
[11] were proposed, respectively. Gerstmayr et al. [12] 
extended the planar beam element of gradient-deficient 
ANCF to the spatial beam element of gradient-deficient 
ANCF. Subsequently, Schwarze et  al. [13] proposed a 
reduced integration solid shell finite element. To investi-
gate the thermoelastic effect on the deployment of space 
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structure, Wu et al. [14] proposed a new approach based 
on flexible multibody system. Sopanen and Mikkola [15] 
presented an accurately elastic force model to avoid the 
Poisson locking. Omar et al. [16] established a simplified 
model of leaf spring with the ANCF method. Liu et al. 
[17–19] proposed a new hybrid-coordinate formulation 
which was suitable for dealing with the flexible multibody 
systems with large deformation. Tian et al. [20–22] studied 
the dynamic modeling and analyzed the planar flexible 
multi-body systems with clearance and lubricated revolute 
joints. To model composite laminated plates accurately, 
Liu et al. [23] proposed a new type of composite laminated 
plate element of ANCF and derived the efficient formula-
tions to evaluate both the elastic force and the Jacobian.

The other commonly used method was GEF theory, 
which was first proposed by Reissner [24]. Simo and Vu-
Quoc [25] further improved the GEF theory by developing 
the implicit time stepping algorithm, the exact lineariza-
tion of the algorithm and associated configuration update. 
In the field of study for limitation of invariance to rigid-
body rotations, Crisfield et al. [26] proposed a new method 
for the two-node element by obtaining the relative rota-
tion matrix and interpolating the rotation vector. Huang 
et al. [27] demonstrated that the obtained approximation 
is invariant under the superposed rigid body motions, and 
the objectivity of the continuum model is preserved.

From the above researches, it can be found that both 
the ANCF method and the GEF theory developed rapidly 
and widely used. To analyze the difference between the 
two theories, Romero [28] studied and compared the two 
methods in statics, they proposed that the ANCF theory 
should be considered for the codes that do not work with 
rotation variables, and when the concentrated moments 
and imposed rotations are needed to be sustained by the 
structural models, the GEF theory is suitable because 
these features cannot be achieved by the ANCF element. 
Subsequently, Bauchau et al. [29] performed a compara-
tive analysis of both the computational accuracy and effi-
ciency of the two methods on the two-dimensional plane. 
However, only some static response in two-dimensional 
plane are concerned, the systematic study on statics and 
dynamics which is much closer to the practical engineer-
ing have not been studied yet, especially the responses of 
the three-dimensional model.

Motivated by the aim mentioned above, the governing 
equations are established based on the ANCF fully param-
eterized beam element, the ANCF gradient-deficient beam 
element and the GEF beam element. Both the static and 
dynamic responses of the three-dimensional flexible multi-
body system with large deformation are simulated in detail, 
the characteristics of each element type for analyzing the 
nonlinear dynamics of flexible multibody systems are 
provided. Based on the results, the appropriate choice of 

formulation for high calculation accuracy and efficiency in 
different applications is also given.

Theoretical Model of the Beam Element 
and Computational Strategy

ANCF Fully Parameterized Beam Element

The schematic of the three-dimensional fully parameterized 
beam element with two nodes is shown in Fig. 1, which is 
described by the absolute node coordinates.

The position vector of any point on the element can be 
expressed as [5, 6] 

where ξ = x/l, η = y/l, ζ = z/l, x, y, z are the local coordinates 
of the element, respectively, l is the length of the element. 
Generalized coordinates of the element can be expressed as

where ri,x, ri,y, ri,z represent the partial derivative vector of 
the position vector r along ξ, η, ζ direction, respectively, 
that is, ri,x = əri/əx, ri,y = əri/əy, ri,z = əri/əz. It can be found 
from Eq. (2) that there is one position vector and three slope 
vectors are defined on one node. The shape function of the 
beam element can be expressed as

where S1 = 1 − 3ξ2 + 2ξ3, S2 = l (ξ − 2ξ2 + ξ3), S3 = l (η − ξ 
η), S4 = l (ζ − ξ ζ), S5 = 3ξ2 − 2ξ3, S6 = l (− ξ 2 + ξ3), S7 = l 
ξ η, S8 = l ξ ζ.

(1)r = eS(�, �, � )

(2)e =
[
ri ri,x ri,y ri,z rj rj,x rj,y rj,z

]

(3)S =
[
S1 S2 S3 S4 S5 S6 S7 S8

]T

Fig. 1   The three-dimensional fully parameterized beam element
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In addition, it can be obtained by reference [5, 9] for more 
details on the ANCF fully parameterized beam element.

ANCF Gradient‑Deficient Beam Element

The schematic of the ANCF gradient-deficient beam element 
described by absolute node coordinates is shown in Fig. 2.

Generalized coordinates of the element can be expressed 
as [30] 

Both nodes include one position vector r and its partial 
derivative vector along ξ direction. The position vector of any 
point on the centerline can be expressed as

The shape function of beam elements is expressed as

where S1 = 1 − 3ξ2 + 2ξ3, S2 = l (ξ − 2ξ2 + ξ3), S3 = 3ξ2 − 2ξ3, 
and S4 = l (− ξ2 + ξ3).

In addition, it can be obtained by reference [30] for more 
details on the ANCF gradient-deficient beam element.

Three‑Dimensional GEF Beam Element

Figure 3 shows the configurations of the three-dimensional 
beam element, which are described by three reference basis 
vectors denoted by k1, k2, k3 and three body basis vectors 
denoted by λ1, λ2, λ3.

The position vectors of the point before and after deforma-
tion are assumed as x0 = (x0, y0, z0)T and x = (x, y, z)T, respec-
tively. From the geometric relationship, the position vector 
can be derived as [8]

(4)e =
[
ri ri,x rj rj,x

]

(5)r(�) = eS(�)

(6)S =
[
S1 S2 S3 S4

]T

(7)
{

x0 =
(
x0, y0, z0

)T
= r0 + y0�

0

1
+ z0�

0

2

x = (x, y, z)T = r + y0�1 + z0�2

where r0 and r are functions of x0, respectively. The expres-
sion of the deformation gradient tensor can be written as 
[31]

where represents the derivative along x direction.
To obtain the six objective strain metrics of the spatial 

GEF beam element, the translational strain vector γ and rota-
tional strain vector κ are introduced as the following [32].

where R is the functions of x0, ε is the axial strain, γ1 and γ2 
are shear strains of the beam element at the current reference 
frame (λ1, λ2, λ3). κ1 is the torsional strains, κ2 and κ3 are the 
bending strains of the beam element at the current reference 
frame (λ1, λ2, λ3). κ0 and γ0 denote the curvature and the 
strain vector of the beam element at the initial configuration, 
respectively.

In addition, it can be obtained by reference [24, 25] for 
more details on the three-dimensional GEF beam element.

Computational Strategy

The assembly of both ANCF fully parameterized beam 
element and geometrically exact beam element can be car-
ried out is similar to the traditional finite element method. 
The nodal coordinate on the finite element can be easily 
transformed into the generalized coordinate on the flexible 
multibody system. Then the final dynamic equations of the 

(8)F =
dx

dx0
=
[
r� + y0�

�
1
+ z0�

�
2
�1 �2

]

(9)

� =

⎧⎪⎨⎪⎩

�

�1
�2

⎫⎪⎬⎪⎭
= RTr� − �0, � =

⎡⎢⎢⎣

0 −�3 �2
�3 0 −�1
−�2 �1 0

⎤
⎥⎥⎦
= RTR − �0

o X

Y

Z

i j
ri

rj

ri,x rj,x

Fig. 2   The gradient-deficient beam element
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Fig. 3   Configurations of three-dimensional beam element
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constrained rigid-flexible multibody system [33, 34] can be 
expressed as:

where M, q, F, Q, Φ, Φq, and λ denote the total mass matrix, 
the generalized coordinate vectors, the elastic force, the 
generalized external force vector, the system constraint 
equation, Jacobi matrix for generalized coordinates and the 
Lagrange multiplier vector, respectively.

Since the step limitation can be induced by the condi-
tional convergence characteristics of the explicit integration 
algorithm and the implicit integral algorithm is always used 
to analyze such dynamic equations of the system, the trans-
formation of the dynamic equations is required. The gener-
alized-a implicit integral algorithm proposed by Arnold and 
Brüls [35] is applied here, during which the equations are 
discretized into algebraic equations by the finite difference 
method. The iterative equations can be expressed as

where the subscript n + 1 represents the value of the variable 
at n + 1 step during the iteration. Tian et al. [36] and Liu 
et al. [37] reported that the superiority of the generalized-a 
implicit integral algorithm was exhibited in dealing with the 
dynamics of the flexible multibody system with clearance 
joints.

Results and Discussion

Static Response of the Beam Element

To investigate the accuracy and efficiency of the ANCF fully 
parameterized beam element, the ANCF gradient-deficient 
beam element and the GEF beam element, A representative 
numerical example of three-dimensional cantilever beam is 
adopted. The theoretical model is shown in Fig. 4. Because 
the cross-sectional deformation of beam is not involved 

(10)
{

Mq̈ + F(q) + ΦT
q
𝜆 = Q(q, q̇)

Φ(q, t) = 0

(11)

{
Mq̈n+1 + F

(
qn+1

)
+ ΦT

q
𝜆n+1 − Q

(
qn+1, q̇n+1

)
= 0

Φ
(
qn+1, tn+1

)
= 0

in the ANCF gradient-deficient beam element, only the 
displacement response of point A is studied, which is the 
geometric center of the free end section. In addition, the 
static responses calculated by the ABAQUS finite element 
software are regarded as the exact solutions, and the canti-
lever beam is divided into ten B32 elements. The geometric 
and material parameters of the cantilever beam are listed in 
Table 1.

For the axial deformation of the cantilever beam includ-
ing axial tension and compression, a concentrated load F 
is applied on the point A along x direction. The displace-
ments of point A calculated by different elements are listed 
in Table 2, in which Poisson’s ratio λ = 0.3 and concentrated 
force of 1 kN, 10 kN, − 1 kN and – 10 kN are adopted. It 
can be found from Table 2 that the result calculated by GEF 
beam element has a good agreement with the exact solu-
tion no matter the beam is in tension or compression state, 
while the results based on both ANCF fully parameterized 
beam element and ANCF gradient-deficient beam element 
are smaller than the exact solution.

Due to the three-dimensional constitutive relation applied 
in ANCF fully parameterized beam element, the plane cross-
section assumption is not applicable in the three-dimen-
sional model and part of the energy provided by the external 
force is transformed into the deformation of the cross sec-
tion, which leads to the smaller results of the ANCF fully 
parameterized beam element. The large-strain assumption is 
the factor that induces the smaller value of ANCF gradient-
deficient beam element. The computational efficiency of 
the ANCF fully parameterized beam element is lower than 
that of the GEF beam element due to the longer time of 
calculating elastic force by the triple integral. Besides, the 
computational efficiency of the ANCF fully parameterized 
beam element is also lower than that of the ANCF gradient-
deficient beam element due to the less degree of freedom of 
the ANCF gradient-deficient beam element. As a result, both 
the high calculation accuracy and efficiency can be achieved 
by the GEF beam element in the axial deformation of the 
cantilever beam.

For the plane bending deformation of the cantilever 
beam, the concentrated load along z direction is applied on 
the point A. The results are listed in Table 3, in which the 
cases with two values of λ are included to study the effect of 
Poisson’s ratio. The displacements of point A along x and z 
direction are denoted by u and w, respectively. Table 3 shows 

x

y
z

o

L
b
hA

Fig. 4   Theoretical model of the cantilever beam

Table 1   Geometric and material parameters of the cantilever beam

Young’s 
modulus E 
(Pa)

Density ρ 
(kg/m3)

Width b 
(m)

Height h 
(m)

Beam length 
L (m)

7.2 × 1010 2.7 × 103 0.01 0.01 1
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that the result calculated by ANCF fully parameterized beam 
element becomes more accurate when the effect of Poisson’s 
blocking is removed by reducing λ from 0.3 to 0. Because 
the cross-sectional deformation of beam can be calculated 
by the precise geometric nonlinear relation in GEF beam 
element and that is not involved in the ANCF gradient-defi-
cient beam element, the results based on the ANCF gradient-
deficient beam element and the GEF beam element are not 
affected by the Poisson’s ratio. In comparison, the results 
obtained by both ANCF gradient-deficient beam element 
and GEF beam element are closer to the exact results than 
that of ANCF fully parameterized beam element.

For the bending deformation in three-dimension case, two 
concentrated loads of − 50 N are applied simultaneously 
along y direction and z direction on point A. The results 
are provided in Table 4, in which the cases with two values 
of λ are adopted. Apparently, the results based on both the 
ANCF gradient-deficient beam element and the GEF beam 
element are in good agreement with the exact solutions in 
three directions, but the results based on the ANCF fully 

parameterized beam element are relatively poor, especially 
when λ is 0.3.

The pure bending deformation of the cantilever beam is 
also studied by applying the moment M on point A around 
the z-axis. The angle of rotation α of the free end in this case 
can be expressed as [38] 

where M, EI, L denote the applied moment, flexural rigid-
ity and beam length. Equation (12) shows that the angle 
of rotation increases with the increasing moment, it can be 
found that 360° angle of rotation can be obtained when M is 
2πEI/L, which is the typical nonlinear large deformation and 
can be regarded as the exact solution in the case of bending 
deformation of the cantilever beam.

To compare the high calculation accuracy and conver-
gence rate, the beam is divided into 10, 20 and 30 elements, 
the results based on the above three elements are shown 
in Table 5. Table 5 shows that the number of convergence 

(12)� =
ML

EI

Table 2   Displacements of point 
A when the cantilever beam is 
in axial deformation state

F (kN) Displacement (mm)

ABAQUS ANCF- full ANCF-deficient GEF

1 1.3889 × 10–1 1.3661 × 10–1 1.3722 × 10–1 1.3889 × 10–1

10 1.3889 1.3636 1.3697 1.3889
− 1 − 1.3889 × 10–1 − 1.3664 × 10–1 − 1.3725 × 10–1 − 1.3889 × 10–1

− 10 − 1.3889 − 1.3664 − 1.3725 − 1.3889

Table 3   Displacements of point 
A when the cantilever beam is 
in plane bending state

F (N) Poisson’s ratio Direction Displacement (m)

ABAQUS ANCF-full ANCF- deficient GEF

− 10 0 u − 1.8354 × 10–3 − 1.8316 × 10–3 − 1.8420 × 10–3 − 1.8422 × 10–3

w − 5.5333 × 10–2 − 5.5195 × 10–2 − 5.5380 × 10–2 − 5.5383 × 10–2

− 100 0 u − 1.2545 × 10–1 − 1.1647 × 10–1 − 1.2567 × 10–1 − 1.2568 × 10–1

w − 4.4119 × 10–1 − 4.2375 × 10–1 − 4.4109 × 10–1 − 4.4112 × 10–1

− 10 0.3 u − 1.8354 × 10–3 − 1.0139 × 10–3 − 1.8420 × 10–3 − 1.8423 × 10–3

w − 5.5334 × 10–2 − 4.1082 × 10–2 − 5.5380 × 10–2 − 5.5384 × 10–2

− 100 0.3 u − 1.2545 × 10–1 − 7.6532 × 10–2 − 1.2567 × 10–1 − 1.2568 × 10–1

w − 4.4119 × 10–1 − 3.4829 × 10–1 − 4.4109 × 10–1 − 4.4113 × 10–1

Table 4   Displacements of point 
A when the cantilever beam is 
in three-dimensional bending 
state

λ Direction Displacement (m)

ABAQUS ANCF-full ANCF- deficient GEF

0 u − 7.4206 × 10–2 − 7.0279 × 10–2 − 7.4186 × 10–2 − 7.4196 × 10–2

v − 2.4337 × 10–1 − 2.3637 × 10–1 − 2.4335 × 10–1 2.4337 × 10–1

w − 2.4337 × 10–1 − 2.3637 × 10–1 − 2.4335 × 10–1 − 2.4337 × 10–1

0.3 u − 7.4207 × 10–2 − 4.3395 × 10–2 − 7.4186 × 10–2 − 7.4198 × 10–2

v − 2.4337 × 10–1 − 1.8746 × 10–1 − 2.4335 × 10–1 − 2.4337 × 10–1

w − 2.4337 × 10–1 − 1.8746 × 10–1 − 2.4335 × 10–1 − 2.4337 × 10–1
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element of both ANCF gradient-deficient beam element and 
GEF beam element are 20. The results of both the ANCF 
gradient-deficient beam element and the GEF beam element 
are closer to the exact result of 360º than that of ANCF fully 
parameterized beam element. While for the ANCF fully 
parameterized beam element with different Poisson’s ratio, 
the element number larger than 30 is required to achieve con-
vergence. As a result, the GEF beam element has the high 
calculation accuracy and efficiency. The diagram of non-
linear large deflection curves calculated by the GEF beam 
element is shown in Fig. 5, from which the configuration of 
the beam caused by different various moment can be found 
intuitively.

For the torsion deformation of the cantilever beam, the 
torque T is applied to the free end around x-axis. Due to the 
neglect of the cross section, the ANCF gradient-deficient 
beam element is not considered to solve the response in this 
case. The beam has also been divided into 10, 20 and 30 

elements, the results based on other two types of elements 
are given in Table 6 under the conditions of T = − 10 Nm 
and T = − 100 Nm. Table 6 shows that there are good agree-
ments between the results of the GEF beam element and 
ABAQUS, and the results converge faster when the beam is 
only discretized into ten elements for GEF beam element. 
In comparison, the results of the ANCF fully parameterized 
beam element are quite different from the exact solutions 
whether Poisson’s ratio exists or not.

According to the above analyses, the suitable element can 
be selected to solve the static response of the flexible multi-
body system with large deformation. The GEF beam element 
has the highest accuracy among the three beam elements 
when the beam is in axial tension, axial compression and tor-
sion states. Both the ANCF gradient-deficient beam and the 
GEF beam element have the higher accuracy and efficiency 
than that of the ANCF fully parameterized beam element 
when the beam is bent. It is necessary to note that the GEF 
beam element is the best choice as the cross-sectional defor-
mation of beam needs to be considered.

Dynamic Response of the Beam Element

To study the accuracy of beam element in dynamics, both 
the three-dimensional simple and double pendulum models 
are investigated. Due to the ignorance of the cross-sectional 
deformation, the ANCF gradient-deficient beam element 
cannot be adopted to solve the three-dimensional dynamic 
response. In addition, since commercial software cannot 
directly simulate the dynamics of the flexible multi-body 
system with large deformation, the simulation of commercial 
software is not be adopted in the model. Therefore, only the 
results of the ANCF fully parameterized beam element and 
the GEF beam element are analyzed in this section, and the 

Table 5   Angles of rotation of 
the free end when the cantilever 
beam is in pure bending state

Element 
number

Angles of rotation (°)

ANCF-full (λ = 0) ANCF-full (λ = 0.3) ANCF- deficient GEF

10 226.95987 196.59371 360.02526 357.65866
20 334.81350 258.00076 360.22077 359.97302
30 354.55729 265.55132 360.22002 359.97382

Fig. 5   Diagram of nonlinear large deflection curves with different 
external moment

Table 6   Angles of rotation of 
the free end when the cantilever 
beam is in torsion state

T (Nm) Element 
number

Angles of rotation (°)

ABAQUS ANCF-full (λ = 0) ANCF-full (λ = 0.3) GEF

10 10 14.6740 10.1536 6.3462 14.6739
20 14.6739 11.2874 7.6534 14.6739
30 14.6739 13.1453 8.1678 14.6739

100 10 213.061 198.211 164.586 213.261
20 213.211 205.332 168.427 213.261
30 213.239 209.432 176.567 213.261
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dynamic responses simulated by the GEF beam element with 
time step of 10–4 s are used as reference values.

The Simple Pendulum Model

The dynamic response of the simple pendulum is dis-
cussed first. The simple pendulum has a dimension of 
1 m × 0.01 m × 0.01 m as shown in Fig. 6, in which an ideal 
spherical hinge is used to constrain the fixed end. The den-
sity, Poisson’s ratio and Young’s modulus are 2700 kg/m3, 
0.3 and 3 × 107 Pa, respectively, and the flexible body is 
divided into ten elements in calculation. Applying the initial 
condition of θ = 90° and releasing it, the dynamic behaviors 
of the simple pendulum are induced by gravity.

The displacements of point B which is the geometric 
center of the free end section along x, y and z direction 
are shown in Fig. 7a. The results based on the ANCF fully 
parameterized beam element with time step of 10–2 s and 

10–4 s are denoted by the red solid line and blue long dotted 
line, respectively. The results obtained by the GEF beam 
element with time step of 10–2 s and 10–4 s are represented 
by the blue short dotted line and the red dotted line, respec-
tively. Figure 7a1 shows that there is a small difference 
between the displacement along x direction of the ANCF 
fully parameterized beam element and the GEF beam ele-
ment, while the varying tendency has a good consistency. 
In Fig. 7a2, the displacements along y direction of both 
elements are zero, which means that the dynamic behavior 
occurs only in x–z plane. In Fig. 7a3, two apparent features 
can be found, one is that four curves have good consistency 
at the initial stage and the difference occurs after about 1.5 s, 
the peaks of the GEF beam element are higher than that of 
the ANCF fully parameterized beam element at the later 
stage. It is the effect of the deviation accumulates with time 
that leads to the gradual increase in the difference. The other 
feature is that the different time step has an effect on the 
calculation accuracy. The smaller time step allows a higher 
iteration accuracy and calculation accuracy during computa-
tion, but the simulation time will be longer. 

Subsequently, the Young’s modulus of the simple pen-
dulum is transformed into 7 × 1011 Pa from 3 × 107 Pa to 
enhance the stiffness of simple pendulum and other calcula-
tion conditions remain unchanged. The displacements are 
shown in Fig. 7b, in which the line types of the curve are 
the same meaning with the above description. We can find 
that there is a good agreement among the four curves along 
x, y, z direction, even though the time steps are different, 
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Fig. 6   The schematic of the simple pendulum

Fig. 7   Displacements of point B along x, y, z direction. The Young’s moduli are (a1–a3) 3 × 107 Pa and (b1–b3) 7 × 1011 Pa, respectively
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because the influence of nonlinear factor is weakened by the 
enhanced stiffness.

The Double Pendulum Model

To further study the accuracy of the ANCF fully param-
eterized beam element and the GEF beam element used in 
three-dimensional model, the displacement responses of 
the double pendulum are analyzed, the corresponding sche-
matic diagram is shown in Fig. 8, in which two flexible rods 
are connected by a ball joint. At the initial moment, both 
rods are kept in the horizontal plane, i.e., x–y plane and 
released, the dynamic behaviors are caused by gravity. Two 
kinds of Young's modulus are used for calculation and both 
flexible rods are divided into ten elements, respectively, the 
time step of 10–4 s is adopted, other material and geometric 

parameters of the rod are the same as those of the accuracy 
simple pendulum.

The displacements of point C which is the geometric 
center of the section along x, y, z direction based on the two 
beam elements are shown in Fig. 9, in which the Young’s 
modulus of 2 × 108 Pa and 7.2 × 1010 Pa for both rods are 
applied, respectively. The simulation results of the ANCF 
fully parameterized beam element and the GEF beam ele-
ment are denoted by the red solid line and blue dotted line, 
respectively. Figure 9a shows that the two curves are differ-
ent at the later stage when Young’s modulus is small, while 
the consistency becomes better with the increase of Young’s 
modulus as shown in Fig. 9b. Such phenomenon is similar 
with the situation of the simple pendulum, which is also 
caused by decreasing elastic deformation of the flexible body 
and the weakened the nonlinear factor.

As a result, it can be concluded that the ANCF fully 
parameterized beam element and the GEF beam element 
have higher accuracy for solving dynamic system with large 
stiffness, while the GEF beam element is the best choice 
when the stiffness is small.

Conclusions

To achieve the required high accuracy and efficiency in 
different projects of flexible multibody system with non-
linear large deformation, the characteristics and applicable 
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Fig. 8   Schematic diagram of the double pendulum

Fig. 9   Displacements of point C along x, y, z direction. The Young’s moduli of both rods are (a1–a3) 2 × 108 Pa and (b1–b3) 7.2 × 1010 Pa, 
respectively
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conditions of the commonly used beam elements which are 
ANCF fully parameterized beam element, ANCF gradient-
deficient beam element and GEF beam element are provided 
by analyzing both static and dynamic models.

In the statics of the flexible multibody system with non-
linear deformation, the displacement responses of the canti-
lever beam under axial deformation, torsion and bending are 
analyzed in detail. The GEF beam element is recommended 
first when the discretized element is subjected to axial ten-
sion, axial compression and torsion. When the element is 
bent, both ANCF gradient-deficient beam and GEF beam 
element have the high accuracy and efficiency. In addition, 
the GEF beam element is the unique choice when the defor-
mation of element section is considered.

For dynamics, the cases of both the simple and double 
pendulums are analyzed. It can be found that the Young’s 
modulus and time step in calculation have a great effect on 
the displacement response due to the factor of nonlinear 
deformation. The results of the ANCF fully parameterized 
beam element and the GEF beam element have good con-
sistency when the Young’s modulus is large. While the GEF 
beam element is the best choice for the small Young’s modu-
lus. All the results are helpful for the selection of beam ele-
ments to achieve high accuracy and efficiency of multibody 
system with nonlinear large deformation.
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