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Abstract
Purpose  Response characteristics of nonlinear systems have been extensively studied for system identification. But all these 
studies mainly employ single tone harmonic excitation. In contrast, there are very few research literatures on the use of multi-
tone harmonic excitation, obviously due to the challenges in more complicated formulation of response characteristics. This 
research intends to identify a polynomial type of damping nonlinearity using Higher-order Frequency Response Functions 
(HoFRFs) and harmonic amplitude measurement data under multi-tone harmonic excitation.
Methods   In the present study, the Volterra series is employed to demonstrate benefits of using multi- tone harmonic excita-
tion for identification of damping nonlinearity. It is shown  a large number of combination tones of higher harmonics are 
formed in the response spectrum. Response harmonic amplitude series are formulated for these harmonics using higher order 
Volterra kernel synthesis for both symmetric and asymmetric forms of damping nonlinearity.
Results and conclusion  A novel parameter estimation algorithm is presented to first estimate the nonlinear parameter and 
then the linear modal parameters of the system using two experiments only, whereas, for single-tone harmonic excitation, 
one would require at least six to eight experiments. The signal strength of higher harmonics is studied for selection of most 
effective frequency combinations in the multi-tone excitation. Numerical simulations with a typical two-tone excitation 
demonstrate that fairly accurate estimates of nonlinear damping parameters and linear modal parameters can be obtained 
with proper selection of frequency pair and excitation level.

Keywords  Damping nonlinearity · Multi-tone harmonic excitation · Volterra series · Higher-order frequency response 
functions · Nonlinear parameter estimation

Abbreviations
A, B	� Excitation force amplitudes
�2	� Second order nonlinear damping 

parameter
�3	� Third order nonlinear damping 

parameter
c1	� Linear damping coefficient
c2	� Square damping coefficient
c3	� Cubic damping coefficient
f (t)	� Excitation force
ξ	� Damping ratio
h1
(
�1
)
	� First order Volterra kernel

h2
(
�1, �2

)
	� Second order Volterra kernel

hn
(
�1, �2,… , �n

)
	� nth order Volterra kernel

H1(�)	� First order Volterra kernel transform
H2(�,�)	� Second order Volterra kernel 

transform
H3(�,�,�)	� Third order Volterra kernel transform
Hn

(
�1,�2,… ,�n

)
	� nth Order Volterra kernel transform 

or Frequency Response Function
k1	� Linear stiffness coefficient
m	� Mass of the system
t	� Time
�	� Non-dimensional time
�1	� Two-tone first driving frequency
�2	� Two-tone second driving frequency
�n	� Natural frequency
�p,q,s,u	� General higher harmonic of �
ΩE	� Non-dimensional excited frequency
Ω1 =

�1

�n

	� Non-dimensional two-tone first 
driving frequency
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Ω2 =
�2

�n

	� Non-dimensional two-tone secnd 
driving frequency

x(t)	� Response function
ẋ(t)	� Velocity of system
ẍ(t)	� Acceleration of system
X	� Amplitude of system
X(m�)	� mth harmonic response amplitude
X(�)	� First harmonic amplitude
X(2�)	� Second harmonic amplitude
X(3�)	� Third harmonic amplitude
�(�)	� Non-dimensional response
��(�)	� Non-dimensional Velocity
���(�)	� Non-dimensional acceleration
�(Ω)	� Non-dimensional first harmonic 

amplitude
�(2Ω)	� Non-dimensional second harmonic 

amplitude
�(3Ω)	� Non-dimensional third harmonic 

amplitude
x1(t)	� First response component
x2(t)	� Second response component
x3(t)	� Third response component
x(t)	� Total response
X
(
m1�1 + m2�2

)
	� Response harmonic amplitude for a 

Combination tone 
(
m1�1 + m2�2

)
X
(
�1

)
	� First harmonic amplitude for a driv-

ing frequency �1

X
(
�2

)
	� First harmonic amplitude for a driv-

ing frequency �2

X
(
2�1

)
	� Second harmonic amplitude for a 

frequency 2�1

X
(
2�2

)
	� Second harmonic amplitude for a 

frequency 2�2

X
(
�1 + �2

)
	� Second harmonic amplitude for a 

combination tone (�1 + �2)

X
(
�1 − �2

)
	� Second harmonic amplitude for a 

combination tone (�1 − �2)

X
(
3�1

)
	� Third harmonic amplitude for a fre-

quency 3�1

X
(
3�2

)
	� Third harmonic amplitude for a fre-

quency 3�2

X
(
2�1 + �2

)
	� Third harmonic amplitude for a com-

bination tone 
(
2�1 + �2

)
X
(
2�1 − �2

)
	� Third harmonic amplitude for a com-

bination tone 
(
2�1 − �2

)
X
(
2�2 + �1

)
	� Third harmonic amplitude for a com-

bination tone 
(
2�2 + �1

)
X
(
2�2 − �1

)
	� Third harmonic amplitude for a com-

bination tone 
(
2�2 − �1

)
�
(
m1Ω1 + m2Ω2

)
	� Non-dimensional response harmonic 

amplitude for a combination tone (
m1Ω1 + m2Ω2

)

�
(
Ω1

)
	� Non-dimensional first harmonic 

amplitude for a driving frequency Ω1

�
(
Ω2

)
	� Non-dimensional first harmonic 

amplitude for a driving frequency 
(
Ω2

)
�
(
2Ω1

)
	� Non-dimensional harmonic ampli-

tude for a frequency 2Ω1

�
(
2Ω2

)
	� Non-dimensional harmonic ampli-

tude for a frequency 2Ω2

�
(
Ω1 + Ω2

)
	� Non-dimensional second harmonic 

amplitude for a combination tone (
Ω1 + Ω2

)
�
(
Ω1 − Ω2

)
	� Non-dimensional second harmonic 

amplitude for a combination tone (
Ω1 − Ω2

)
�
(
3Ω1

)
	� Non-dimensional third harmonic 

amplitude for a frequency 3Ω1

�
(
3Ω2

)
	� Non-dimensional third harmonic 

amplitude for a frequency 
(
3Ω2

)
�
(
2Ω1 + Ω2

)
	� Non-dimensional third harmonic 

amplitude for a combination tone (
2Ω1 + Ω2

)
�
(
2Ω1 − Ω2

)
	� Non-dimensional third harmonic 

amplitude for a combination tone (
2Ω1 − Ω2

)
�
(
2Ω2 + Ω1

)
	� Non-dimensional third harmonic 

amplitude for a combination tone (
2Ω2 + Ω1

)
�
(
2Ω2 − Ω1

)
	� Non-dimensional third harmonic 

amplitude for a combination tone (
2Ω2 − Ω1

)

Introduction

Nonlinear dynamic systems and their related problems 
in many engineering applications have been extensively 
attempted and published articles by many authors in the 
recent past to understand insight into the system, which 
dominates the nonlinear response behavior. Most mechani-
cal structures modelled through damping such as vibration 
isolator, absorber, energy harvester, etc., are often intrin-
sically nonlinear in nature. Nonlinearity in damping form 
exhibits undesired consequences in the system characteri-
zation which imposes constraints on the performance of the 
system. Nonlinear damping can be classified as polynomial 
and non-polynomial functions, and polynomial functions are 
further classified as symmetric and asymmetric.

The identification technique provides an explicit analyti-
cal relationship between the output response and the system 
parameters in a nonlinear system. System identification will 
have two parts in the literature of nonlinear and linear system 
identification: parametric and nonparametric identification. 
Nonlinearities are commonly described in mechanical and 
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structural systems using polynomial and non-polynomial 
forms (Nayfeh [1]). An approach for identifying nonlinear 
systems is described based on multiple-input/single-output 
(MI/SO) linear processes used to reverse dynamic systems 
constructed for proposed nonlinear differential equations of 
motion (Duffing, Van der Pol, Mathieu, and Dead-Band) by 
Bendat et al. [2]. Tiwari and Vyas [3] suggested approaches 
for estimating nonlinear parameters of rolling element bear-
ings based on the analysis and measurement of signals from 
bearing housing vibration. Balachandran et al. [4] studied 
nonlinear interactions between structural modes of pair of 
quadratically and cubically coupled oscillators with damping 
nonlinearity. They discovered that the frequency relationship 
between the two modes of oscillation for quadratically con-
nected oscillators is two-to-one, but the frequency relationship 
between the two modes of oscillation for cubically coupled 
oscillators is one-to-one. Khan and Balachandran [5] extended 
their research using bispectral analysis and higher order spec-
tra. Bikdash et al. [6] used Melnikov equivalent damping coef-
ficients for linear plus quadratic damping and linear plus cubic 
damping to study the nonlinear roll dynamics of ships.

Volterra series is employed to analyze nonlinear system 
response behavior from input–output mapping in the field of 
non-parametric system identification by Volterra [7]. George 
[8] introduced a concept of generalized FRFs for linear study 
in frequency domain analysis. Boyd and Chua [9] extended 
their linear FRFs concept to general FRFs for nonlinear 
applications. Bedrosian and Rice [10] proposed a method 
of harmonic probing to derive higher-order FRFs, which is 
confined to only continuous nonlinear systems under sin-
gle input harmonic excitation. Later on, Worden et al. [11] 
extended the Bedrosian and Rice harmonic probing method 
to multi-input and multi-output Volterra series through the 
definition of higher-order direct and cross kernels employed 
to depict the connection among the frequencies of multi-
inputs. Marmarelis and Naka [12] studied Winer's theory 
of single input to multi-input and multi-output for nonlinear 
systems, and experimentally applied to biological systems 
Boaghe and Billings [13] use the single-input multi-output 
(SIMO) Volterra series to investigate the subharmonic 
region that can develop from nonlinear oscillations, bifur-
cation, and chaos. Higher-order FRFs are generated by the 
multidimensional Fourier transform of Volterra kernels 
(Rough [14], Schetzen [15]), which are used to forecast the 
response of several nonlinear effects such as higher harmon-
ics and jump phenomena. Chatterjee and Vyas [16] devised 
a parameter estimation technique based on a recursive itera-
tion using the Volterra series; convergence and error analysis 
for a cubic stiffness nonlinear system has been discussed.

Chatterjee [17] also studied the Volterra series for crack 
severity and structural degradation in nonlinear systems with 
a bilinear oscillator. Cheng et al. [18] investigated Volterra 
series-based techniques and their applicability in various 

nonlinear models and problem-solving methodologies. Noel 
and Kerschen [19] reviewed past and recent advances in non-
linear system identification and applications, highlighted 
their benefits and drawbacks, and suggested future research 
avenues in this field. The researchers discussed various non-
linear methods, such as the perturbation technique [20] and 
the Harmonic Balance Method [21–24], for response repre-
sentation of many nonlinear system applications.

However, authors also studied response analysis of the 
nonlinear system in the frequency domain concept is derived 
from the Volterra series such as Nonlinear Output Frequency 
Response Functions (NOFRF) by Lang and Billings [25]; they 
also discussed Output Frequency Response Functions (OFRF) 
in [26] and its applications in mechanical systems such as isola-
tors, energy harvesters, etc. [27–30]. Nonlinear MDOF model, 
cantilever beam with breathing crack modeled as bilinear stiff-
ness, and nonlinear electric circuit models are studied using 
HOFRFs to estimate nonlinear parameters by Lin et al. [31].

Recently, authors are showing more interest in a system 
with damping nonlinearity. Adhikari and Woodhouse [32] 
studied the identification of a non-viscously damped sys-
tem with exponentially decaying function by a perturbation 
method. Xiao et al. [33] analysed the vibration isolator sub-
jected to force and base excitation with cubic damping non-
linearity to suppress the vibration at resonance. Shum [34] 
exploited the nonlinear viscous damping parallel to a tuned 
mass damper for vibration absorber application. Nonlinear 
damping systems with cubic and fifth power terms are stud-
ied the generation of isolated resonance curves (IRCs) in the 
response spectrum by Habib et al. [35]. Chatterjee and Chintha 
[36] studied response characteristics of the system with cubic 
damping nonlinearity using the Volterra series to investigate 
the nonlinear parameter with the concept of a measurability 
ratio. Further, their study extended to system identification of 
asymmetric damping nonlinearity [37]. Silveira et al. [38] stud-
ied the SDOF oscillator with piecewise asymmetrical damping 
using the harmonic balance method and explored the effect of 
an asymmetric ratio on over and under damping cases.

However, most of the literature mentioned above focuses 
on the single-input Volterra series, which only allows limited 
FRF measurement in a single experiment. In contrast, the 
multi-tone Volterra series can generate huge distinct har-
monics at different combination tones in the response series 
(Chatterjee [39] and [41]). We have devised a systematic 
identification and parameter estimation approach for symmet-
ric and asymmetric damping nonlinearity systems using two-
tone excitation in this proposed work. Section 2 consists of 
response formulation using Volterra series and higher-order 
FRFs and characteristic behavior of the system in terms of 
response spectrum. The signal strength of higher harmonics, 
parameter estimation algorithm, and numerical simulation 
and error analysis for cubic damping nonlinearity in Sect. 3 
and for square damping nonlinearity in Sect. 4 are presented.
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Volterra Series Response Representation 
under Harmonic Excitation

Volterra series representation for a general nonlinear 
dynamic system with input excitation force f (t) and output 
response x(t) can be expressed in the following form:

where hn
(
�1, �2,… , �n

)
 are known as nth order Volterra ker-

nels and x1(t) , x2(t) are the response components given by

Fourier Transform of the Volterra kernels hn
(
�1, �2,… , �n

)
 

gives the nth order frequency response functions (FRFs)

For any general nonlinear dynamic system acted 
upon by a single-tone harmonic excitation with 
f (t) = A cos (�t) =

A

2
ej�t +

A

2
e−j�t , the first three response 

components, following Eqs. (2–4), become

Total response, x(t) can be then written in the following 
form:

(1)x(t) = ∫
∞

−∞

h1
(
�1
)
f (t − �1)d�1 +…

∞

∫
−∞

…

∞

∫
−∞

hn
(
�1, �2,… , �n

)
f
(
t − �1

)
… f

(
t − �n

)
d�1 … d�n = x1(t) + x2(t) +⋯ + xn(t) +…

(2)x1(t) = ∫
∞

−∞

h1
(
�1
)
f (t − �1)d�1

(3)

x2(t) =

∞

∫
−∞

∞

∫
−∞

h2
(
�1, �2

)
f
(
t − �1

)
f
(
t − �2

)
d�1d�2 and so on

(4)

Hn

(
�1,�2,… ,�n

)
=

∞

∫
−∞

…

∞

∫
−∞

hn
(
�1, �2,… , �n

) n∏
i=1

e−j�i�id�1 …d�n

(5)x1(t) =
A

2
H1(�)e

j�t +
A

2
H1(−�)e

−j�t

(6)
x2(t) =

A2

2
H2(�,−�) +

A2

4
H2(�,�)e

j2�t +
A2

4
H2(−�,−�)e

−j2�t

(7)

x3(t) =
A3

8
H3(�,�,�)e

j3�t

+
3A3

8
H3(�,�,−�)e

j�t

+
3A3

8
H3(�,−�,−�)e

−j�t

+
A3

8
H3(−�,−�,−�)e

−j3�t

where Hp,q
n (�) = Hn(�,�,…

⏟⏟⏟
p times

,−�,−�,…)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

q times

 , �p,q = (p − q)� 

and nCq =
n!

(n−q)!q!

Response amplitude of mth harmonic X(m�) , from 
Eq. (8), can be obtained as

First three harmonic amplitudes, from Eq. (9), become

For a system with polynomial form of damping nonlin-
earity given by

The higher order FRFs, applicable for single-tone excita-
tion, can be synthesized as given in [36]. Synthesis formulas 
for the second- and third-order FRFs are given below.

Nonlinear Response Representation Under 
Multi‑Tone Excitation

A multi-tone excitation is given by

For the sake of simplicity and as a representa-
tive example, we consider a two-tone excitation, 
f (t) = A cos

(
�1t

)
+ B cos

(
�2t

)
, and formulate the 

(8)

x(t) = x1(t) + x2(t) +⋯ =

∞∑
n=1

(
A

2

)n ∑
p+q=n

nCqH
p,q
n
(�)ej�p,qt

(9)X(m�) =

∞∑
i=1

2
(
A

2

)m+2i−2
m+2i−2Ci−1H

m+i−1,i−1

m+2i−1
(�)

(10)
X(�) = AH1(ω) +

3

4
A3H3(�,�,−�) +

5

8
A5H5(�,�,�,−�,−�) +…

(11)X(2�) =
A2

2
H2(�,�) +

A4

2
H4(�,�,�,−�) +…

(12)

X(3�) =
A3

4
H3(�,�,�) +

5

16
A5H5(�,�,�,�,−�) +…

(13)mẍ(t) + c1ẋ(t) + c2ẋ
2(t)+c3ẋ

3(t) +⋯ + k1x(t) = f (t)

(14)H2(�,�) = c2�
2H

2

1
(�)H1(2�)

(15)H3(�,�,�) = H3
1
(�)H1(3�)

[
4c2

2
�4H1(2�) + jc3�

3
]

f (t) = A cos
(
�1t

)
+ B cos

(
�2t

)
+ C cos

(
�3t

)
+…
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response series. The procedure is general and can be 
extended to any larger multi-tone excitation. Taking

Schetzen [15] demonstrated that the kernels could 
be symmetric without sacrificing generality. That is if 
n = 2,then h2

(
�1, �2

)
= h2

(
�2, �1

)
 , and for n = 3, then 

h3
(
�1, �2, �3

)
= h2

(
�3, �2, �1

)
 .  Similarly, it  is wor th 

noting that kernel transforms also be symmetric. If 
n = 2, H2

(
�1,�2

)
= H2

(
�2,�1

)
 and for n = 3, then 

H3

(
�1,�2,�3

)
= H3

(
�3,�2,�1

)
 . Using this property of 

symmetry number of terms could be reduced to a minimum 
in the below equations (Eq. 17–19).

The response components under the two-tone excitation, 
can be obtained as

Similarly,

(16)
f (t) = A cos

(
�1t

)
+ B cos

(
�2t

)
=

A

2

(
ej�1t + e−j�1t

)

+
B

2

(
ej�2t + e−j�2t

)

(17)
x1(t) =

A

2
ej�1tH1

(
�1

)
+

B

2
ej�2tH1

(
�2

)
+

A

2
e−j�1tH1

(
−�1

)
+

B

2
e−j�2tH1

(
−�2

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

complex conjugate terms

(18)

x2(t) =
A2

2
H2

(
�1,−�1

)
+

B2

2
H2

(
�2,−�2

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

dc terms

+
A2

4
H2

(
�1,�1

)
ej2�1t +

B2

4
H2

(
�2,�2

)
ej2�2t

+
AB

2
H2

(
�1,�2

)
ej(�1+�2)t +

AB

2
H2

(
�1,−�2

)
ej(�1−�2)t

+
AB

2
H2

(
�2,−�1

)
ej(�2−�1)t +

A2

4
H2

(
−�1,−�1

)
e−j2�1t

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
complex conjugate terms

+
AB

2
H2

(
−�1,−�2

)
e−j(�1+�2)t +

B2

4
H2

(
−�2,−�2

)
e−j2�2t

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
complex conjugate terms

(19)

x3(t) =

{
3A3

8
H3

(
�1,�1,−�1

)
+

3AB2

4
H3

(
�1,�2,−�2

)}
ej�1t

+

{
3B3

8
H3

(
�2,�2,−�2

)
+

3BA2

4
H3

(
�1,−�1,�2

)}
ej�2t

+

{
A3

8
H3

(
�1,�1,�1

)}
ej3�1t +

{
B3

8
H3

(
�2,�2,�2

)}
ej3�2t

+

{
3A2B

8
H3

(
�1,�1,�2

)}
ej(2�1+�2)t +

{
3B2A

8
H3

(
�1,�2,�2

)}
ej(2�2+�1)t

+

{
3A2B

8
H3

(
�1,�1,−�2

)}
ej(2�1−�2)t +

{
3B2A

8
H3

(
−�1,�2,�2

)}
ej(2�2−�1)t

+ Complex conjugate terms

Thus we see that in addition to excitation frequencies, 
�1 and �2 , there will be many higher harmonics or com-
bination tones in the nonlinear response. Second response 
component, x2(t) will have a dc component and four higher 
harmonics, 2�1 , 2�2,�1 + �2 and �1 − �2 . The third 
response component, x3(t) will have six higher harmonics; 
3�1, 3�2, 2�1 + �2, 2�1 − �2, 2�2 + �1 and 2�2 − �1 . 
Similarly proceeding, we can show that many more com-
bination harmonics of higher order will be generated in the 
higher order response components. Response amplitude for 
a general higher order combination tones can be obtained as

(20)

X
(

m1�1 + m2�2
)

=
∞
∑

i=1

1
2n+2i−3

∑

p+s=i−1
Am1+2pBm2+2s

Cm1+p,p,m2+s,sH
m1+p,p,m2+s,s
n+2i−2 (�)
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where Cm1+p,p,m2+s,s
=

N!

(m1+p)!(p)!(m2+s)!s!
 with N =

(
m1 + p

)

+p +
(
m2 + s

)
+ s

and     �

[H
m1+p,p,m2+s,s

n+2i−2
(�) = Hn

⎛⎜⎜⎜⎜⎝
�1,…
⏟⏟⏟

(m1+p) times

,−�1,…
⏟⏟⏟
p times

, �2,…
⏟⏟⏟

(m2+s) times

,−�2,…
⏟⏟⏟
s times

,

⎞⎟⎟⎟⎟⎠
.

such that n = ||m1
|| + ||m2

||, and p + s = i − 1.

Response Spectrum Characterization Of Symmetric 
And Asymmetric Damping Nonlinearity

The presence of various combination tones or higher har-
monics will depend on whether the damping nonlinearity 
is symmetric or asymmetric. The simplest model of an 

asymmetric damping nonlinearity would be the one with 
the only square term given by

The nonlinear system given by Eq. (21) is excited by a 
two-tone harmonic force, f (t) = A cos

(
�1t

)
+ B cos

(
�2t

)
 , 

and the response x(t) is computed using RK-4 numerical 
method and considering the following parameters: m = 1.0, 
c1 = 0.1, k1 = 1.0 and A = 1.0.The nonlinear parameter c2 is 
taken as 0.02, 0.05, 0.08 and 0.1 in the numerical study. The 
FFT spectrum of the corresponding response (Fig. 1) shows 
the characteristic presence of different harmonics at frequen-
cies �1,�2, 2�1 , 2�2,�1 + �2 and �1 − �2 . Here, excitation 
frequencies are selected as �1∕�n = 0.8 and �2∕�n = 0.6 
such that no combination tones are formed near the reso-
nance frequency. It can be seen that the peak amplitudes of 

(21)
mẍ(t) + c1ẋ(t) + c2ẋ

2(t) + k1x(t) = A cos
(
𝜔1t

)
+ B cos

(
𝜔2t

)

Fig. 1   Response spectrum of nonlinear system with asymmetric(square) damping under two-tone excitation, ( �1∕�n = 0.8,�2∕�n = 0.6)
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the higher harmonics are much smaller than the peak ampli-
tudes at driving frequencies, �1∕�n = 0.8 and �2∕�n = 0.6

Similarly, simplest model of a symmetric damping non-
linearity would be considered as cubic term given by

Here, we select the two-tone excitation frequencies at 
�1∕�n = 0.5 and �2∕�n = 0.4 so that no combination tones 
appear near the resonance frequency. Figure 2 shows the 
response spectrum for.

cubic damping nonlinearity ( c3 varying between 
0.05 to 0.2), where peaks can be seen at driv-
ing frequencies �1,�2 and combination tones 

(22)
mẍ(t) + c1ẋ(t) + c3ẋ

3(t) + k1x(t) = A cos
(
𝜔1t

)
+ B cos

(
𝜔2t

)

3�1, 3�2, 2�1 + �2, 2�1 − �2, 2�2 + �1 and 2�2 − �1
 . Here also 

peak amplitudes of the higher harmonics are much smaller 
than the peak amplitudes at driving frequencies.

The signal strength or amplitude of the higher order har-
monics will be smaller and smaller as the order increases 
for a weakly nonlinear system and hence we will limit our 
response series up to third order response component, x3(t) 
only.

All the harmonic and super harmonic amplitudes can be 
formulated using Eq. (20) for a general model with both 
cubic and square terms given by

Amplitude series for driving harmonics become

Amplitude series for second-order harmonics are

Similarly, 3-rd order harmonic amplitude series can be 
written as follows:

(23)
mẍ(t) + c1ẋ(t) + c2ẋ

2(t) + c3ẋ
3(t) + k1x(t) = A cos

(
𝜔1t

)
+ B cos

(
𝜔2t

)

(24a)X
(
�1

)
= AH1

(
�1

)
⏟⏞⏟⏞⏟

1st term

+
3A3

4
H3

(
�1,�1,−�1

)
+

3AB2

2
H3

(
�1,�2,−�2

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

2nd term

+ higher order terms

(24b)X
(
�2

)
= BH2

(
�2

)
⏟⏞⏟⏞⏟

1st term

+
3B3

4
H3

(
�2,�2,−�2

)
+

3A2B

2
H3

(
�1,−�1,�2

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

2nd term

+ higher order terms

(25a)X
(
2�1

)
=

A2

2
H2

(
�1,�1

)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

1st term

+
A4

2
H4

(
�1,�1,�1,−�1

)
+

3A2B2

2
H4

(
�1,�1,�2,−�2

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

2nd term

+ higher order terms

(25b)X
(
2�2

)
=

B2

2
H2

(
�2,�2

)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

1st term

+
B4

2
H4

(
�2,�2,�2,−�2

)
+

3A2B2

2
H4

(
�1,−�1,�2,�2

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

2nd term

+ higher order terms

(25c)X
(
�1 + �2

)
= ABH2

(
�1,�2

)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

1st term

+
3A3B

2
H4

(
�1,�1,−�1,�2

)
+

3AB3

2
H4

(
�1,�2,�2,−�2

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

2nd term

+ higher order terms

(25d)X
(
�1 − �2

)
= AB

(
�1,−�2

)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

1st term

+
3A3B

2
H4

(
�1,�1,−�1,−�2

)
+

3AB3

2
H4

(
�1,−�2,−�2,−�2

)
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2nd term

+ higher order terms
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(26a)X
(
3�1

)
=

A3

4
H3

(
�1,�1,�1

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

1st term

+
5A5

16
H5

(
�1,�1,�1,�1,−�1

)
+

5A3B2

4
H5

(
�1,�1,�1,�2,−�2

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

2nd term

+higher order terms

(26b)X
(
3�2

)
=

B3

4
H3

(
�2,�2,�2

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

1st term

+
5A2B3

4
H5

(
�1,−�1,�2,�2,�2

)
+

5B5

16
H5

(
�2,�2,�2,�2,−�2

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

2nd term

+higher order terms

(26c)X
(
2�1 + �2

)
=

3A2B

4
H3

(
�1,�1,�2

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

1st term

+
5A4B

4
H5

(
�1,�1,�1,−�1,�2

)
+

15A2B3

8
H5

(
�1,�1,�2,�2,−�2

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

2nd term

+higher order terms

Fig. 2   Response spectrum of nonlinear system with symmetric (cubic) damping under two-tone excitation, ( �1∕�n = 0.5 and �2∕�n = 0.4)
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It can be noted that all these amplitude series involve 
a large number of higher order FRFs. These higher order 
FRFs can be synthesized in terms of first-order FRFs and 
the nonlinear parameters, c2 and c3 , and the formulation is 
explained and presented in detail in Appendix-A. The syn-
thesis formulae for second order FRFs are

(26d)
X
(
2�1 − �2

)
=

3A2B

4

(
�1,�1,−�2

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
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+
5A4B

4
H5
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�1,�1,�1,−�1,−�2

)
+

30A2B3
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H5
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2nd term

+ higher order terms
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Formation of third order FRFs for above equation 
Eq. (23) are.
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Parameter Estimation Algorithm 
for Symmetric (Cubic) Damping Nonlinearity

For a nonlinear system with cubic damping nonlinearity 
only, the equation of motion under two-tone harmonic exci-
tation becomes

The equation can be normalized into a non-dimensional 
form as

where

with the normalized form of nonlinear damping parameter 
�3 given by

The parameter estimation algorithm aims primarily 
to find out the nonlinear parameter, �3 and then the linear 
modal parameters, �n and � . Same excitation amplitude is 
considered here for both the tones such that, � = 1 . Equa-
tion (31) given above indicates that the parameter �3 not 
only depends on the cubic damping parameter c3 but it also 
depends on the excitation level, A. This means that even 
when the nonlinear parameter, c3 is very small, the param-
eter �3 can be increased to the desired value by adjusting 
the excitation level. The response harmonic amplitudes for 
a general combination tone, 

(
m1Ω1 + m2Ω2

)
 , can be written 

in a non-dimensional form as

(28i)
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The response amplitudes, for the eight harmonics that 
appear in the nonlinear response up to 3rd response compo-
nent, then becomes

Thus we have nine unknowns, eight FRF values H1

(
Ω1

)
 , 

H1

(
Ω2

)
 , H1

(
3Ω1

)
 , H1

(
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)
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)
 , 
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)
 , H1
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)
 and the cubic nonlinear 

parameter, �3 , where as we have eight equations (Eq. 33a–h). 
In case the last unknown �3 can be obtained along with FRFs 
at driving frequencies H1

(
Ω1

)
 and H1

(
Ω2

)
 then from equa-

tions (Eq. 33c–h), we can easily estimate the six unknown 
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FRFs of higher harmonics. Thus we need one more equa-
tion, which can be obtained through measuring single-tone 
response amplitude at any of the six higher harmonics, i.e., 
3Ω1, 3Ω2, 2Ω1 + Ω2, 2Ω1 − Ω2, 2Ω2 + Ω1 and 2Ω2 − Ω1   . 
From Figs. 1 and 2, it is to be noted that harmonic amplitude 
at these higher harmonics will be much smaller in compari-
son to the response amplitude at driving frequencies. To get 
a better estimate of �3 , the response amplitude of the selected 
higher harmonic should be as large as possible to reduce the 
undesirable effect of noise in the measured signal.

Figure 3a, b shows the signal strength of these combi-
nation tones or higher harmonics for a range of nonlinear 
parameter, �3 = 0.05–0.25, respectively, for two pairs of 
driving frequencies. The variation pattern is almost linear, 
which can be justified by the Eq. (33c–h) where the har-
monic amplitudes are proportional to �3 , for a given pair of 
driving frequencies.

It can be noted that the signal strength for the combi-
nation tone, 2Ω1 − Ω2 , is highest and far greater than any 
other harmonic amplitude for all the pair of multi-tone 
excitation frequencies. Harmonic amplitudes are obtained 
through the Fourier filtering for different nonlinearity levels 
�3 = 0.05 to 0.2 at specific harmonics and for two pairs of 
driving frequencies are shown in Fig. 4.

Following observations can be made from Fig. 4a–d

1.	 One can note that signal strength of the pair of two-tone 
excitation frequency Ω1 = 0.6,Ω2 = 0.5 is better than 
the other pair of frequency Ω1 = 0.5,Ω2 = 0.4.

2.	 It is also observed that signal strength is highest for the 
combination tone of 

(
2Ω1 − Ω2

)
 in comparison to all 

other higher harmonics for both the driving frequencies.

So we focus on Eq. (33f) associated with the combina-
tion tone 2Ω1 − Ω2 . Here it is to be noted that if we can get 
FRF H1

(
2Ω1 − Ω2

)
 , we can obtain an estimate of nonlinear 

parameter, �3.This can be done if we make an independent 
measurement of �

(
2Ω1 − Ω2

)
 from response under a single-

,tone excitation with Ω =
(
2Ω1 − Ω2

)
 and then approximat-

ing �
(
2Ω1 − Ω2

)
≈ H1

(
2Ω1 − Ω2

)
.

Now we can get the estimate of �3 as

where |||H1

(
Ω1

)|||,
|||H1

(
Ω2

)||| and
|||H1

(
2Ω1 − Ω2

)||| are the pre-
viously approximated values of the respective FRFs.

Now, with the estimated value of �3 , we can find 
the remaining five FRFs, i.e., H1

(
3Ω1

)
 , H1

(
3Ω2

)
 , 

H1

(
2Ω1 + Ω2

)
 , H1

(
2Ω2 + Ω1

)
 , H1

(
2Ω2 − Ω1

)
 , using Eqs. 

(33cd, e, g, h).These series of actions can be summarized in 
an algorithm consisting of following steps.

Step 1: Measure response time history, �(t) under two-
tone excitation and using Fourier Filtering, we first compute 
the harmonic amplitudes, �

(
Ω1

)
 and �

(
Ω2

)
 . Now, approxi-

mate �
(
Ω1

)
≈ H1

(
Ω1

)
 and �

(
Ω2

)
≈ H1

(
Ω2

)
.

Step 2: Measure response time history, �(t) using single-
tone excitation at Ω = 2Ω1 − Ω2 and using Fourier filtering, 
compute harmonic amplitude, �

(
2Ω1 − Ω2

)
 . Then approxi-

mate to get an estimate H1

(
2Ω1 − Ω2

)
≈ �

(
2Ω1 − Ω2

)
 with 

single-tone excitation.
Step 3: Using Eq. (34), obtain an estimate of nonlinear 

parameter, �3.

(34)�3 =
4
|||�
(
2Ω1 − Ω2

)|||
3Ω2

1
Ω2

|||H1

(
Ω1

)|||
2|||H1

(
Ω2

)|||
|||H1

(
2Ω1 − Ω2

)|||

Fig. 3   Variation of higher harmonic amplitudes with respect to nonlinear parameter �3
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Fig. 4   Variation of harmonic amplitude for different nonlinearity level �3 for two sets of two-tone excitation frequencies Ω1 = 0.5,Ω2 = 0.4 , and 
Ω1 = 0.6,Ω2 = 0.5

Table 1   Harmonic amplitudes 
for excitation frequency pair 
Ω1 = 0.5 and Ω2 = 0.4

Specific harmonic Frequency 
value

Harmonic amplitudes for

�3 = 0.05 �3 = 0.10 �3 = 0.15 �3 = 0.2

2Ω2 − Ω1 0.3 0.006187 0.01240 0.01816 0.023616
Ω2 0.4 1.188592 1.188428 1.18853 1.188666
Ω1 0.5 1.328636 1.326607 1.32426 1.321430
2Ω1 − Ω2 0.6 0.012299 0.024479 0.03591 0.046937
3Ω2 1.2 0.002952 0.005940 0.00891 0.011684
2Ω2 + Ω1 1.3 0.007908 0.016181 0.02405 0.032686
2Ω1 + Ω2 1.4 0.008056 0.016144 0.02435 0.032539
3Ω1 1.5 0.002949 0.005807 0.00875 0.011762
Singe-tone at 2Ω1 − Ω2 0.6 1.551768 1.546405 1.540699 1.534558
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Step 4: Using Eq. (33c, d, e, g, h), estimates the FRF 
values H1

(
3Ω1

)
 , H1

(
3Ω2

)
 , H1

(
2Ω1 + Ω2

)
 , H1

(
2Ω2 + Ω1

)
 , 

H1

(
2Ω2 − Ω1

)
.

Step 5: using all eight FRF values, a curve fitting proce-
dure [42] will give an estimate of non-dimensional natural 
frequency Ωn and modal damping parameter, ξ.

Numerical Simulation and Error Analysis

We first consider excitation frequency pair to 
b e  Ω1 = 0.5 and Ω2 = 0.4  w i t h  ξ  =  0 . 0 5  a n d 
�3 = 0.05, 0.1, 0.15 and 0.2 . Response is computed by 
numerical integration of the differential equation (Eq. 30) 
and harmonic amplitudes are obtained using Fourier filter-
ing of the response time history. The values of the harmonic 
amplitudes are given in Table 1 below.

A sample step by step calculation for estimation of non-
linear damping parameter and linear modal parameters is 
demonstrated below for a typical value of �3 = 0.2.

Step 1: First, we measure response time history, �(t) under 
two-tone excitation and using Fourier Filtering, and com-
puted the harmonic amplitude, and approximated it as

Step 2:Measure response time history, �(t) using single-
tone excitation at Ω = 2Ω1 − Ω2 and using Fourier filtering, 
then approximate as

H1

(
Ω1

)
≈ �

(
Ω1

)
= 1.321430

H1

(
Ω2

)
≈ �

(
Ω2

)
= 1.188666

H1

(
2Ω1 − Ω2

)
≈ �

(
2Ω1 − Ω2

)
with single − tone = 1.53410

Step 3: This gives an estimate of �3 using Eq. (34) as �3 = 
0.19648 (error in estimate = 1.75).

Step 4: Now Eqs. (33c, d, e, g, h) give H1

(
3Ω1

)
= H1(1.5)

= 0.8305

Step 5:These five first-order FRF values with previously 
obtained three FRF values provide a set of total eight FRF 
values, which upon curve fitting (shown in Fig. 5) gives 
Ωn = 1.0078 ( error = 0.78%) and ξ = 0.0518 (error = 3.6%).

The error in estimating eight FRF values is only signifi-
cant in the frequency range of 0.6–1.2, as shown in Fig. 5. 
As a result, no measurement is recommended in the same 
frequency range.

Estimated values of modal parameters for a two-tone 
excitation frequency pair, Ω1 = 0.5 and Ω2 = 0.4 at differ-
ent values of �3 such as normalised natural frequency (which 
is Ωn = 1 ) and damping ratio (which is � = 0.5 ) from curve 
fitting procedure [42] are listed in Table 2. Error estimation 
in natural frequency is insignificant. Error estimation in the 
linear damping ratio is little bit higher.

Proceeding in the same manner with two-tone excitation 
frequency pair,Ω1 = 0.6 and Ω2 = 0.5 , harmonic ampli-
tudes are measured and listed in Table 3 and corresponding 
estimates of linear and nonlinear parameters are listed in 
Table 4.

Error estimation in natural frequency and nonlinear 
parameter is fairly good. Estimation error in linear damp-
ing ratio in comparison with the excitation frequency pair 
Ω1 = 0.5 and Ω2 = 0.4 is more.

The following observations can be made from Fig. 6:

1.	 Fairly good estimates are obtained for a differ-
ent nonlinear parameters �3 at 0.05, 0.1, 0.15, 0.2. 
Estimate of nonlinear parameter �3 for a pair of fre-

H1

(
3Ω2

)
= H1(1.2) = 2.2131

H1

(
2Ω1 + Ω2

)
= H1(1.4) = 1.0641

H1

(
2Ω2 + Ω1

)
= H1(1.3) = 1.48545

H1

(
2Ω2 − Ω1

)
= H1(0.3) = 1.07345

Fig. 5   Curve fitting of first-order FRFs from measured har-
monic amplitudes for �3 = 0.2 and at excitation frequency pair, 
Ω1 = 0.5 and Ω2 = 0.4

Table 2   Estimated values of linear and nonlinear parameters for dif-
ferent levels of nonlinear damping, �3 atexcitation frequency pair, 
Ω1 = 0.5 and Ω2 = 0.4

Parameter �3 = 0.05 �3 = 0.1 �3 = 0.15 �3 = 0.2

�3 0.0503 0.1009 0.1491 0.1965
Ωn 1.0006 1.0003 1.0038 1.0078
ξ 0.0629 0.0651 0.0273 0.0518
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quency Ω1 = 0.5,Ω2 = 0.4(< 1.76% error) is better 
than the other pair of frequencies Ω1 = 0.6,Ω2 = 0.5 
(< 12% error). But the signal strength of second pair 

( Ω1 = 0.6,Ω2 = 0.5 ) of frequency is better than the first 
pair ( Ω1 = 0.5,Ω2 = 0.4) is shown in Fig. 4.

2.	 Estimate of natural frequency Ωn is fairly good,the 
error is less than 0.8% for pair of frequency 
Ω1 = 0.5,Ω2 = 0.4 , and for other pair of frequency 
Ω1 = 0.6,Ω2 = 0.5 is less than 4.2%. But for damping 
ratio(ξ) error is good at lower �3 , and increasing at high 
value of �3

Parameter Estimation Algorithm for Square 
Damping Nonlinearity

Similarly, for a nonlinear system with square damping non-
linearity only, the equation of motion under two-tone har-
monic excitation becomes

The equation can be normalized into a non-dimensional 
form as

where the normalized form of nonlinear damping parameter 
�2 given by

The response amplitudes, for the six harmonics that 
appear in the nonlinear response up to 3rd response com-
ponent, then becomes

(35)
mẍ(t) + c1ẋ(t) + c2ẋ

2(t) + k1x(t) = A cos
(
𝜔1t

)
+ B cos

(
𝜔2t

)

(36)
���(�) + 2���(�) + �(�) + �2��

2(�) = cos
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)
+ � cos

(
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)

(37)�2 =
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2
n

k2
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3
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1

(
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)
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(
−Ω1

)
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2
�3Ω1Ω

2
2
H3

(
Ω1,Ω2,−Ω2
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+ Higher order terms

Table 3   Harmonic amplitudes 
for excitation frequency pair 
Ω1 = 0.6 and Ω2 = 0.5

Specific harmonic Frequency 
value

Harmonic amplitudes for

�3 = 0.05 �3 = 0.10 �3 = 0.15 �3 = 0.2

2Ω2 − Ω1 0.4 0.018390 0.035152 0.055342 0.073642
Ω2 0.5 1.326507 1.323164 1.319498 1.314871
Ω1 0.6 1.680999 1.669697 1.654398 1.635992
2Ω1 − Ω2 0.7 0.042218 0.084405 0.125887 0.168664
3Ω2 1.5 0.002902 0.005838 0.008847 0.011710
2Ω2 + Ω1 1.6 0.009807 0.019963 0.029510 0.039412
2Ω1 + Ω2 1.7 0.011439 0.022883 0.034574 0.045733
3Ω1 1.8 0.004557 0.009019 0.013569 0.018136
Single-tone at 2Ω1 − Ω2 0.7 1.91419 1.87893 1.84091 1.80234

Table 4   Estimated values of linear and nonlinear parameters for dif-
ferent levels of nonlinear damping, �3 at excitation frequency pair, 
Ω1 = 0.6 and Ω2 = 0.5

Parameter �3 = 0.05 �3 = 0.1 �3 = 0.15 �3 = 0.2

�3 0.0436 0.0902 0.0141 0.1970
Ωn 0.9628 0.9630 0.9594 0.9581
ξ 0.0724 0.09207 0.1188 0.1803

Fig. 6   Estimation of percentage error for different levels of nonlinear 
damping parameter �3
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Similar to cubic nonlinear damping, but here we 
have seven unknowns, six FRF values H1

(
Ω1

)
 , H1

(
Ω2

)
 , 

H1

(
2Ω1

)
 , H1

(
2Ω2

)
 , H1

(
Ω1 + Ω2

)
 , H1

(
Ω1 − Ω2
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 , and 

the square nonlinear parameter, �2 , whereas we have six 
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Fig. 7   Variation of higher harmonic amplitudes with respect to nonlinear parameter �2 , �2
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equations (Eq. 38a–f). Thus we need one more equation, 
which can be obtained through measuring single-tone 
response amplitude at any of the four higher harmonics, 
i.e., 2Ω1, 2Ω2,Ω1 + Ω2 and Ω1 − Ω2 . From Fig. 1, it is to 
be noted that harmonic amplitude at these higher harmonics 
will be much smaller in comparison to the response ampli-
tude at driving frequencies. To get a better estimate of �2 , the 
response amplitude of the selected higher harmonic should 
be as large as possible to reduce undesirable effect of noise 
in the measured signal.

Figure 7a–c shows the signal strength of these combi-
nation tones or higher harmonics for a range of nonlinear 
parameter, �2 = 0.02–0.1, respectively for three pairs of 
driving frequencies. The variation pattern is almost linear, 
which can be justified by the Eq. (38c–f) where the har-
monic amplitudes are proportional to �2 , for a given pair 
of driving frequencies. It can be seen that in Fig. 7a, c that 
the signal strength for the combination tone, Ω1 − Ω2 , is 
highest for the first pair ( Ω1 = 0.8,Ω2 = 0.6) and third pair 

( Ω1 = 0.8,Ω2 = 0.7) of driving frequencies, whereas in 
Fig. 7b, second pair ( Ω1 = 0.7,Ω2 = 0.6 ) of driving fre-
quency having highest signal strength for the combination 
tone, Ω1 + Ω2 in comparison with other higher harmonic 
combination tones.

 For a square damping nonlinearity, the harmonic ampli-
tudes obtained through the Fourier filtering at different val-
ues of a nonlinear parameter β2, for the three pairs of two-
tone excitation frequencies are shown in Fig. 8a–d Following 
observations can be made from Fig. 8a–d:

1.	 One can note that the signal strength of the pair of two-
tone excitation frequencies Ω1 = 0.8,Ω2 = 0.7 is bet-
ter than the other two pairs ( Ω1 = 0.8,Ω2 = 0.6 and 
Ω1 = 0.7,Ω2 = 0.6 ) of frequencies.

2.	 Thes signal strength is highest for the combination tone 
of 
(
Ω1 − Ω2

)
 in comparison to the other higher harmon-

ics for both the driving frequencies.

Fig. 8   Variation of harmonic amplitude for different nonlinearity level �2
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So we considered the Eq.  (38f), associated with the 
combination tone Ω1 − Ω2 and first we obtain the FRF 
H1

(
Ω1 − Ω2

)
 , which is further used to an estimate of the 

nonlinear parameter, �2 . This can be done if we make an 
independent measurement of �

(
Ω1 − Ω2

)
 from response 

under a single-tone excitation with Ω =
(
Ω1 − Ω2

)
 and then 

approximating �
(
Ω1 − Ω2

)
≈ H1

(
Ω1 − Ω2

)
.

Now we can get the estimate of �2 as

where |||H1

(
Ω1

)|||,
|||H1

(
Ω2

)|||and
|||H1

(
Ω1 − Ω2

)||| are the previ-
ously approximated values of the respective FRFs.

Now, with the estimated value of �2 , we can find the 
remaining three FRFs, i.e., H1

(
2Ω1

)
 , H1

(
2Ω2

)
 , H1

(
Ω1 + Ω2

)
 

using Eq. (38c, d, e). These series of actions can be summa-
rized in an algorithm consisting of following steps:

Step 1: Measure response time history, �(t) under two-
tone excitation and using Fourier Filtering, we first compute 
the harmonic amplitudes, �

(
Ω1

)
 and �

(
Ω2

)
 . Now, approxi-

mate �
(
Ω1

)
≈ H1

(
Ω1

)
 and �

(
Ω2

)
≈ H1

(
Ω2

)
.

Step 2: Measure response time history, �(t) using single-
tone excitation at Ω = Ω1 − Ω2 and using Fourier filtering, 
compute harmonic amplitude, �

(
Ω1 − Ω2

)
 . Then approxi-

mate to get an estimate H1

(
Ω1 − Ω2

)
≈ �

(
Ω1 − Ω2

)
 with 

single-tone excitation.
Step 3: Using Eq. (39), obtain an estimate of nonlinear 

parameter, �2.
Step 4: Using Eqn.. (38c–e), estimate the FRF values 

H1

(
2Ω1

)
 , H1

(
2Ω2

)
 and H1

(
Ω1 + Ω2

)
,

Step 5: using all six FRF values, a curve fitting procedure 
[42] will give an estimate of non-dimensional natural fre-
quency Ωn and modal damping parameter, ξ.

Following a similar step-by-step procedure for the two-
tone excitation frequency pair, Ω1 = 0.7 and Ω2 = 0.6 , 
here, the signal strength is highest for the combination tone (
Ω1 + Ω2

)
 to estimate the nonlinear parameter �2.

(39)�2 =

|||�
(
Ω1 − Ω2

)|||
Ω1Ω2

|||H1

(
Ω1

)|||
|||H1

(
−Ω2

)|||
|||H1

(
Ω1 − Ω2

)|||
,

Table 5   Harmonic amplitudes 
for excitation frequency pair 
Ω1 = 0.8 and Ω2 = 0.6

Specific harmonic Frequency 
value

Harmonic amplitudes for

�2 = 0.02 �2 = 0.05 �2 = 0.08 �2 = 0.1

Ω1 − Ω2 0.2 0.04248 0.10534 0.16879 0.21081
Ω2 0.6 1.55927 1.58512 1.55246 1.55543
Ω1 0.8 2.67765 2.71038 2.71185 2.73534
2Ω2 1.2 0.01882 0.04805 0.07525 0.09578
Ω1 + Ω2 1.4 0.04188 0.10354 0.16644 0.20835
2Ω1 1.6 0.03022 0.07418 0.11866 0.14963
Single-tone at Ω1 − Ω2 0.2 1.04157 1.04157 1.04156 1.04155

Fig. 9   Curve fitting of first-order FRFs from measured har-
monic amplitudes for �2 = 0.08 and at excitation frequency pair, 
Ω1 = 0.8 and Ω2 = 0.6

Fig. 10   Estimation of percentage error for different levels of nonlin-
ear damping parameter �2
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Numerical Simulation and Error Analysis

We first consider excitation frequency pair to 
b e  Ω1 = 0.8 and Ω2 = 0.6  w i t h  ξ  =  0 . 0 5  a n d 
�2 = 0.02, 0.055, 0.08 and 0.1 . Response is computed by 
numerical integration of the differential equation (Eq. 36) 
and harmonic amplitudes are obtained using Fourier filter-
ing of the response time history. The values of the harmonic 
amplitudes are given in Table 5 below.

A sample step by step calculation for estimation of non-
linear damping parameter and linear modal parameters is 
demonstrated below for a typical value of �2 = 0.08.

Step 1: First, we measured response time history, �(t) 
under two-tone excitation and using Fourier Filtering, com-
puted the harmonic amplitude, and approximated it as

Step 2: Measured response time history, �(t) using single-
tone excitation at Ω = Ω1 − Ω2 and using Fourier filtering 
and then approximated as

Step 3:This gives an estimate of �2 using Eq.  (39) as 
�2 = 0.99726 (error in estimate = 0.27443%).

S t e p  4 :  N o w  E q .  ( 3 8 c – e )  g i v e s 
H1

(
2Ω1

)
= H1(1.6) = 0.62877

H1

(
Ω1

)
≈ �

(
Ω1

)
= 2.71185

H1

(
Ω2

)
≈ �

(
Ω2

)
= 1.55246

H1

(
Ω1 − Ω2

)
≈ �

(
2Ω1 − Ω2

)
with single − tone = 1.04156

Step 5: These three first-order FRF values with previ-
ously obtained three FRF values provide a set of total six 
FRF values, which upon curve fitting (shown in Fig. 9) 
gives Ωn = 0.99726(error = 0.27%) and ξ = 0.05070 
(error = 1.39%) (Fig. 10). 

Estimated values of nonlinear parameter �2 for a two-tone 
excitation frequency pair, Ω1 = 0.8 and Ω2 = 0.6 at differ-
ent values of �2 and model parameters, normalised natural 
frequency (which is Ωn = 1 ) and damping ratio (which is 
� = 0.5 ) from curve fitting procedure are listed in Table 6.

Harmonic amplitude obtained through fourier filter for the 
pair of two-tone excitation frequency Ω1 = 0.7 and Ω2 = 0.6 
is listed in Table 7.

Estimated values of nonlinear parameter �2 at different 
values and modal parameters, natural frequency Ωn , and 
damping ratio ξ for the pair of two-tone excitation frequency 
pair, Ω1 = 0.7 and Ω2 = 0.6 is shown in Table 8.

Harmonic amplitude obtained through fourier filter for the 
pair of two-tone excitation frequency Ω1 = 0.8 and Ω2 = 0.7 
is listed in Table 9.

Proceeding the similar manner, and estimated the val-
ues of nonlinear parameter �2 at different values and 
modal parameters, natural frequency Ωn , and damping 
ratio ξ for the pair of two-tone excitation frequency pair, 
Ω1 = 0.8 and Ω2 = 0.7 is shown in Table 10.

The following observations can be made from Fig. 10.

1.	 Fairly good estimates are obtained for a different 
nonlinear parameters �2 at 0.02, 0.05, 0.08, 0.1. Esti-
mate of nonlinear parameter �2 for a pair of frequency 
Ω1 = 0.8,Ω2 = 0.7 (< 1.38% error) is better than the 
other pair of frequencies Ω1 = 0.8,Ω2 = 0.6 (< 1.9% 
error), for Ω1 = 0.7,Ω2 = 0.6 (< 3.06% error). Signal 
strength of third pair ( Ω1 = 0.8,Ω2 = 0.7 ) of frequency 
is also better than the other two pairs.

H1

(
2Ω2

)
= H1(1.2) = 2.16303

H1

(
Ω1 + Ω2

)
= H1(1.4) = 1.02703

Table 6   Estimated values of linear and nonlinear parameters for dif-
ferent levels of nonlinear damping, �2 at excitation frequency pair, 
Ω1 = 0.8 and Ω2 = 0.6

Parameter �2 = 0.02 �2 = 0.05 �2 = 0.08 �2 = 0.1

�2 0.0203 0.0490 0.0801 0.0991
Ωn 1.0034 1.0005 0.9973 0.9973
ξ 0.0359 0.0332 0.0717 0.0628

Table 7   Harmonic amplitudes 
for excitation frequency pair 
Ω1 = 0.7 and Ω2 = 0.6

Specific harmonic Frequency 
value

Harmonic amplitudes for

�2 = 0.02 �2 = 0.05 �2 = 0.08 �2 = 0.1

Ω1 − Ω2 0.1 0.02566 0.06411 0.10245 0.12818
Ω2 0.6 1.55549 1.56282 1.55587 1.55551
Ω1 0.7 1.94258 1.94304 1.94312 1.94337
2Ω2 1.2 0.01899 0.04733 0.07609 0.09524
Ω1 + Ω2 1.3 0.03612 0.08984 0.14441 0.17949
2Ω1 1.4 0.01889 0.04753 0.07661 0.09488
Single-tone at Ω1 − Ω2 1.3 1.45520 1.45342 1.45020 1.44673
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2.	 Estimate of natural frequency Ωn is fairly good, error 
estimates of a pair of frequencies are Ω1 = 0.8,Ω2 = 0.7 
(< 0.34% error),Ω1 = 0.7,Ω2 = 0.6 (< 0.44% error), 
Ω1 = 0.8,Ω2 = 0.7 (< 0.18% error). But for damp-
ing ratio (ξ), error is optimum at �2 = 0.05 and 0.08 
for pair of frequencies Ω1 = 0.8,Ω2 = 0.7 and 
Ω1 = 0.7,Ω2 = 0.6

Conclusion

The present work discusses a novel method for nonlinear 
damping parameter estimation using multi-tone harmonic 
excitation for both symmetric and asymmetric form of 
damping nonlinearity. Response harmonic amplitudes are 
formulated using Volterra series and higher order kernel 
synthesis. A novel parameter estimation algorithm is devel-
oped to estimate nonlinear damping parameter and linear 
modal parameters. It is shown that multi-tone excitation 
generates large number of combination tones in the nonlin-
ear response. Response amplitudes at these higher harmon-
ics are measured and linear and nonlinear parameters are 
estimated by solving the set of nonlinear equations relating 
first order FRFs and the parameters. The main advantage of 
proposed method is that the number of experiments needed 
is only two instead of many more as required for single-tone 
excitation cases. Numerical simulations with a typical two-
tone excitation demonstrate that fairly accurate estimates of 
nonlinear damping parameter and linear modal parameter 
can be obtained with proper selection of frequency pair and 

excitation level. Although the procedure is demonstrated 
here for polynomial forms of damping, it can be extended 
for some of the non-polynomial damping forms also as dis-
used in [40]
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Appendix‑A: Synthesis of Higher Order FRFs  The Volterra series 
response representation for a general nonlinear system under multi-
tone harmonic excitation is given by

Then the response series in velocity ẋ(t) becomes

(A.1)

xn(t) = x1(t) + x2(t) +…

=

∞∑
n=1

1

2n

∑
Ap+qBs+uCp,q,s,uH

p,q,s,u
n

(�)ej�p,q,s,ut

(A.2)x(t) =

∞∑
n=1

1

2n

∑
Ap+qBs+uCp,q,s,uH

p,q,s,u
n

(�)ej�p,q,s,ut

Table 8   Estimated values of linear and nonlinear parameters for dif-
ferent levels of nonlinear damping, �2 at excitation frequency pair, 
Ω1 = 0.7 and Ω2 = 0.6

Parameter �2 = 0.02 �2 = 0.05 �2 = 0.08 �2 = 0.1

�2 0.0203 0.0490 0.0801 0.0991
Ωn 0.9958 0.9956 0.9974 0.9960
ξ 0.0397 0.0548 0.0432 0.0413

Table 9   Harmonic amplitudes 
for excitation frequency pair 
Ω1 = 0.8 and Ω2 = 0.7

Specific harmonic Frequency 
value

Harmonic amplitudes for

�2 = 0.02 �2 = 0.05 �2 = 0.08 �2 = 0.1

Ω1 − Ω2 0.1 0.05962 0.14882 0.23829 0.30223
Ω2 0.7 1.94282 1.94247 1.94258 1.94341
Ω1 0.8 2.71197 2.71052 2.71200 2.71170
2Ω2 1.4 0.01908 0.04800 0.07605 0.09518
Ω1 + Ω2 1.5 0.04713 0.11857 0.18740 0.23333
2Ω1 1.6 0.03036 0.07403 0.12023 0.15105
Single-tone at Ω1 − Ω2 0.1 1.01011 1.01011 1.01011 1.01011

Table 10   Estimated values of linear and nonlinear parameters for dif-
ferent levels of nonlinear damping, �2 at excitation frequency pair, 
Ω1 = 0.8 and Ω2 = 0.7

Parameter �2 = 0.02 �2 = 0.05 �2 = 0.08 �2 = 0.1

�2 0.0200 0.050 0.0800 0.1014
Ωn 1.0018 0.9986 1.0003 0.9983
ξ 0.0260 0.0475 0.0485 0.0773
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where Hp,q,s,u
n (�) = Hn

⎛
⎜⎜⎜⎝
�1 …
⏟⏟⏟
p times

,−�1 …
⏟⏟⏟
q times

, �2 …
⏟⏟⏟
s times

,−�2 …
⏟⏟⏟
u times

,

⎞
⎟⎟⎟⎠

Cp,q,s,u =
n!

p!q!s!u!
 , where n = p + q + s + u

Now, for a general polynomial nonlinearity up to cubic term for multi-
tone excitation, equation of motion becomes

Substituting Eqs. (A.1–A.3) in Eq. (A.4), one obtains

(A.3)

ẋ(t) =

∞∑
n=1

1

2n
Ap+qBs+u

j∑
p+q+s+u=n

𝜔p,q,s,uCp,q,s,uH
p,q,s,u
n

(𝜔)ej𝜔p,q,s,ut

�p,q,s,u = (p − q)�1 + (s − u)�2

(A.4)

mẍ(t) + c1ẋ(t) + c2ẋ
2(t) + c3ẋ

3(t)k1x(t) + k2x
2(t) + k3x

3(t)

= A cos
(
𝜔1t

)
+ B cos

(
𝜔2t

)

∞∑
n=1

1

2n
Ap+qBs+u

j∑
p+q+s+u=n

Cp,q,s,uH
p,q,s,u
n

(�)ej�p,q,s,ut

[
−m�2

p,q,s,q
+ k1 + jc1�p,q,s,u

]

+k2

[
∞∑
n=1

1

2n

∑
Ap+qBs+uCp,q,s,uH

p,q,s,u
n

(�)ej�p,q,s,ut

]2

+ k3

[
∞∑
n=1

1

2n

∑
Ap+qBs+uCp,q,s,uH

p,q,s,u
n

(�)ej�p,q,s,ut

]3

+ c2

[
∞∑
n=1

1

2n
Ap+qBs+u

j∑
p+q+s+u=n

�p,q,s,uCp,q,s,uH
p,q,s,u
n

(�)ej�p,q,s,ut

]2

(A.5)

+ c3

[
∞∑
n=1

1

2n
Ap+qBs+u

j∑
p+q+s+u=n

�p,q,s,uCp,q,s,uH
p,q,s,u
n

(�)ej�p,q,s,ut

]3

=
A

2

(
ej�1t + e−j�1t

)
+

B

2

(
ej�2t + e−j�2t

)

Equating coefficients of 1
2n
Ap+qBs+uej�p,q,s,ut both sides in Eq. (A.5), 

n = 1,2,3…., one obtains

For n > 1,
Coefficient of 1

2n
Ap+qBs+uej�p,q,s,ut in first line of Eq. (A.5) is

Coefficient of 1
2n
Ap+qBs+uej�p,q,s,ut in second line of Eq. (A.5) is

such that,   p1 + q1 + s1 + u1 = n1, p2 + q2 + s2 + u2 = n2  
and n1 + n2 = n

Coefficient of 1
2n
Ap+qBs+uej�p,q,s,ut in third line of Eq. (A.5) is

such that, p1 + q1 + s1 + u1 = n1, p2 + q2 + s2 + u2 = n2, p3 + q3 + s3 + u3 = n3 
and n1 + n2 + n3 = n.

Coefficient of 1
2n
Ap+qBs+uej�p,q,s,ut   in fourth line of Eq. (A.5) is

such that,   p1 + q1 + s1 + u1 = n1, p2 + q2 + s2 + u2 = n2  
and n1 + n2 = n

Coefficient of 1
2n
Ap+qBs+uej�p,q,s,ut   in fifth line of Eq. (A.5) is

(A.6)H1

(
�1

)
=

1(
−m�2

1
+ k1 + jc1�1

) , for n = 1

(A.7)H1

(
�2

)
=

1(
−m�2

2
+ k1 + jc1�2

) , for n = 1

Cp,q,s,uH
p,q,s,u
n

(�)
[
−m�2

p,q,s,q
+ k1 + jc1�p,q,s,u

]
=

Cp,q,s,uH
p,q,s,u
n (�)

H1(�p,q,s,u)

k2

∑{
Cp1,q1,s1,u1

Hp1,q1,s1,u1
n1

(�)
}{

Cp2,q2,s2,u2
Hp2,q2,s2,u2

n2
(�)

}

k3

∑{
Cp1,q1,s1,u1

Hp1,q1,s1,u1
n1

(�)
}

{
Cp2,q2,s2,u2

Hp2,q2,s2,u2
n2

(�)
}

{
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H
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n3

(�)
}
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C
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(�)
}
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(�)

}

p1 + p2 = p, q1 + q2 = q, s1 + s2 = s, and u1 + u2 = u
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j�p1,q1,s1,u1

C
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such that,   p1 + q1 = n1, p2 + q2 = n2, p3 + q3 = n3  and 
n1 + n2 + n3 = n

Sum of all these terms coming from LHS of Eq. (A.5) will be zero as 
there is no such term on the RHS for n > 1. Therefore,

This gives,

p1 + p2 + p3 = p, q1 + q2 + q3 = q, s1 + s2 + s3 = s, andu1 + u2 + u3 = u

(A.8)

Cp,q,s,uH
p,q,s,u
n (�)

H1(�p,q,s,u)
+ k2

��
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H
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Synthesis of H2(�,�) and H3(�,�,�) for damping nonlinearity 
with square and cubic terms.
If coefficients of nonlinear stiffness k2 = k3 = 0 then, Eq. (A.9) be-
comes
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