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Abstract
Purpose  The present study aims to obtain the exact solutions of the free transverse vibration of non-uniform axially func-
tionally graded (NAFG) beams with end point masses and general boundary conditions. Also, the effects of the attached end 
point masses, rotational and translational elastic supports, and NAFG parameters on the natural frequencies of the power-law 
NAFG beams are investigated.
Methods  Based on the Euler–Bernoulli beam theory, the governing differential equation of motion was solved accurately 
using the Bessel functions. Then, the constant coefficients matrices of the power-law NAFG beams with the end point masses 
and general elastic supports were derived by applying the boundary conditions. The general elastic boundary conditions are 
modeled with the linear rotational and lateral translational springs. Furthermore, the material and geometrical properties of 
the NAFG beams are assumed to change continuously and together in the axial direction according to the power-law forms. 
By taking the constant coefficients matrix determinant equal to zero and calculating the positive real roots, the natural fre-
quencies were obtained. By comparing the responses of the numerical examples with the available solutions, the accuracy 
and ability of the proposed formulations are demonstrated.
Results and Conclusion  Obtained results show the natural frequencies of the power-law NAFG beam decrease with the 
increase of the mass ratio and increase with the increase of the stiffness ratios of the supports. Moreover, the natural frequen-
cies of the power-law NAFG beam increase with the increase of NAFG parameters. Depending on the boundary conditions, 
the mass sensitivity differs from one power-law NAFG beam to another, and from one mode of vibration to another. The 
exact analytical solutions are listed in tabular and graphical forms and can be used as the benchmark solutions. Moreover, 
the results presented here can be used for the proper design of composite beams carrying end point masses with different 
elastic boundary conditions.

Keywords  Non-uniform axially functionally graded (NAFG) beam · Tip mass · Boundary conditions · Natural frequencies · 
Transverse vibration · Euler–Bernoulli beam

Introduction

Beams with a non-uniform and continuous distribution of 
material and geometrical parameters along the axial direc-
tion, namely, non-uniform axially functionally graded 
(NAFG) beams due to thermal resistance, high stiffness, eco-
nomic issues, and optimal design are widely utilized in many 
aerospace, mechanical, electrical, and civil engineering 

structures. Nevertheless, the non-uniform homogenous 
beams, i.e., tapered, wedged, stepped, and non-prismatic 
beams can be considered as the special case of the NAFG 
beams with constant material and variable geometry [1]. 
On the other hand, it is important to know the effect of 
the attached masses on the dynamic behavior and natural 
frequencies of the NAFG beams, to achieve the proper 
design of the composite structure. Accordingly, this paper 
is focused on the free vibration of non-uniform and NAFG 
beams with attached masses. So far, many reports have been 
published in these two areas.

About the vibration of non-uniform beams with 
attached masses, for the first time, Mabie and Rogers [2, 
3] derived the exact analytical solutions for the transverse 
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vibrations of tapered and double-tapered cantilever beams 
with end mass. Based on the finite-element method, 
the transverse vibration frequencies of a linear tapered 
beam with one end rotational spring-hinged and carrying 
a mass at the other free end were studied by Sankaran 
et al. [4]. Using the analytical approach, Goel [5] inves-
tigated the transverse vibrations of the same beam. The 
closed-form solution in terms of the Bessel functions for 
the transverse vibrations of a tapered beam carrying a 
concentrated mass was obtained by Lee [6]. Lau [7, 8] 
analyzed the first five natural frequencies of non-uniform 
cantilever beams with a mass at the free end. Utilizing 
the Rayleigh–Schmidt approach, the fundamental mode 
of vibration for an elastically restrained cantilever beam 
with variable cross-section and tip mass was investigated 
by Laura and Gutierrez [9]. Alvarez et al. [10] obtained 
an approximate solution for the vibrations of an elasti-
cally restrained, non-uniform beam with translational and 
rotational springs, and with a tip mass using the optimized 
Rayleigh–Ritz approach. Based on the Bessel functions, 
the natural frequencies of the same beam were calculated 
by Yang [11]. An exact analytical solution for the trans-
verse vibrations of a Timoshenko beam of non-uniform 
thickness clamped at one end and carrying a concentrated 
mass at the other was presented by Rossi et al. [12]. Lee 
and Lin [13] derived the exact vibration solutions for non-
uniform Timoshenko beams with attachments using the 
power series method. Utilizing the numerical integration, 
an approximate method for the vibration analysis of a non-
uniform Timoshenko beam with constraint at any point 
and carrying a heavy tip body was proposed by Matsuda 
et al. [14]. Based on the characteristics orthogonal polyno-
mials method and the modified Rayleigh–Schmidt method, 
Grossi et al.[15] studied the vibration of tapered beams 
with one end spring-hinged and the other end with tip 
mass. An exact analysis for the transverse vibrations of a 
linearly tapered cantilever beam with tip mass of rotary 
inertia, eccentricity, and constraining springs via the Bes-
sel functions was presented by Auciello [16, 17]. Using the 
same method and Rayleigh–Ritz approach, Auciello and 
Maurizi [18] investigated the first five natural frequencies 
of tapered beams with attached mass and inertia elements. 
The vibrations of a cantilever tapered beam with varying 
section properties and materials and carrying a mass at the 
free end utilizing the Bessel functions and Rayleigh–Ritz 
method were studied by Auciello and Nolè [19]. Wu and 
Hsieh [20] determined the natural frequencies and cor-
responding mode shapes of a non-uniform beam carrying 
multiple point masses using the analytical and numerical 
combined methods. Using the fundamental solutions and 
recurrence formulas, a new exact approach for determining 

the natural frequencies and mode shapes of multistep non-
uniform beams with classical and non-classical boundary 
conditions and concentrated masses was presented by Li 
[21, 22]. The exact solutions for the natural frequencies 
and mode shapes of non-uniform beams with multiple 
spring-mass systems using the numerical assembly method 
and Bessel functions were performed by Chen and Wu 
[23]. Karami et al. [24] proposed a differential quadrature 
element method for the free vibration analysis of arbitrary 
non-uniform Timoshenko beams with attachments and 
general boundary conditions. Based on the analytical and 
numerical combined method, the bending vibrations of 
wedge beams with any number of point masses were inves-
tigated by Wu and Chen [25]. Using a similar approach, 
Wu and Chiang [26] studied the free vibrations of solid 
and hollow wedge beams with rectangular or circular cross 
sections and carrying any number of point masses. Exact 
free vibration analysis of Euler–Bernoulli tapered beams 
in the presence of concentrated tip mass and linear dashpot 
damper in terms of Bessel functions was presented by De 
Rosa and Maurizi [27]. Wu and Chen [28] obtained an 
exact solution for the natural frequencies and mode shapes 
of an immersed elastically restrained wedge beam carrying 
an eccentric tip mass with the mass moment of inertia. The 
free and forced vibrations of a tapered cantilever beam 
carrying multiple point masses were performed by Chen 
and Liu [29]. Based on the Adomian modified decomposi-
tion method, Lai et al. [30] investigated the free vibration 
of non-uniform Euler–Bernoulli beams with tip mass of 
rotatory inertia and eccentricity resting on an elastic foun-
dation and subjected to an axial load. An exact solution 
for the free vibrations of a non-uniform beam carrying 
multiple elastic-supported rigid bars using the numerical 
assembly method was determined by Lin [31]. Attarnejad 
et al. [32] proposed the dynamic basic displacement func-
tions for the free transverse vibration analysis of non-
prismatic beams. Moreover, they studied the effect of the 
tip mass on the natural frequencies. Applying the power 
series method of Frobenius, the exact solutions for the 
free vibrations and buckling of double-tapered columns 
with elastic foundation and tip mass were obtained by 
Firouz-Abadi et al. [33]. Wang [34] analyzed the vibra-
tion of a tapered cantilever of constant thickness and lin-
early tapered width with tip mass utilizing the initial value 
numerical method. A numerical finite difference scheme 
for the free vibration of non-uniform cantilever beams 
carrying both transversely and axially eccentric tip mass 
was presented by Malaeke and Moeenfard [35]. The linear 
and nonlinear frequency characteristics of a non-uniform 
cantilever beam with tip mass using the Galerkin approxi-
mation and the method of multiple scales were studied 
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by Sagar Singh et al. [36]. A new method for the deter-
mination of approximate values of natural frequencies of 
cantilever beams with variable axial parameters with a 
tip mass and spring was proposed by Nikolić and Šalinić 
[37]. This technique was based on the replacement of the 
flexible beam by a rigid multibody system. Torabi et al. 
[38] presented an exact closed-form solution for the free 
vibration analysis of conical and tapered beams carrying 
multiple concentrated masses using the Bessel and Dirac’s 
delta functions. Based on the theory of the continuous-
mass transfer matrix method, Huang et al. [39] derived a 
formulation for determining the exact natural frequencies 
and associated mode shapes of a nonlinearly tapered beam 
carrying various concentrated elements in the arbitrary 
boundary conditions. A Chebyshev spectral method with 
a null space approach for investigating the boundary-value 
problem of a non-prismatic Euler–Bernoulli beam with 
generalized boundary or interface conditions and tip mass 
was proposed by Hsu et al. [40].

As regards the vibration of inhomogeneous and 
functionally graded (FG) beams with attached masses, 
apparently, the first closed-form solutions of the vibrat-
ing inhomogeneous beam and bar with a tip mass via 
the semi-inverse method were derived by Elishakoff and 
coworkers [41, 42]. Huang and Li [43] presented a new 
approach for the free vibration of AFG beams with non-
uniform cross-section using the Fredholm integral equa-
tions. De Rosa et al. [44] calculated the free vibration fre-
quencies of an Euler–Bernoulli beam with exponentially 
varying cross-sections, in the presence of concentrated 
tip mass and linear dashpot damper using the symbolic 
software Mathematica. Through a finite-element approach, 
the free vibration and stability analysis of AFG tapered 
Timoshenko beams were investigated by Shahba et al. [45]. 
These researchers studied the effects of the attached mass 
on the natural frequencies. Wang and Wang [46] presented 
an exact vibration solution for an exponentially tapered 
cantilever beam with tip mass and including a flexible base 
modeled by a rotational spring. The exact frequency equa-
tions of the free vibration of the exponentially AFG beams 
with various classical boundary conditions were derived 
by Li et al. [47]. In another work, Li [48] studied the free 
vibration of axially loaded shear beams carrying elastically 
restrained lumped-tip masses via asymptotic Timoshenko 
beam theory. Based on the Kausel theory, stability and 
vibration analysis of axially loaded shear beam-columns 
carrying elastically restrained mass were investigated by 
Zhang et al. [49]. Tang et al. [50] derived the exact fre-
quency equations of the free vibration of the exponentially 
non-uniform AFG Timoshenko beams with classical end 
supports. The vibration of a non-uniform carbon nanotube 
with attached mass via the nonlocal Timoshenko beam 

theory using the transfer function method incorporating 
with the perturbation method was investigated by Tang 
et al. [51]. Yuan et al. [52] proposed an exact analytical 
approach to solve the free vibrations of axially inhomoge-
neous Timoshenko beams with variable cross-section and 
attached point mass. Based on the initial value method, 
Chen et al. [53] presented a new approach for determining 
the natural frequencies of AFG nanowires carrying a nano-
particle at the tip via the Timoshenko beam theory incorpo-
rating the surface effects. The free vibration analysis of an 
FG nano-beam with an attached mass at the tip according 
to Euler–Bernoulli beam theory was analyzed by Rahm-
ani et al. [54]. Using the rigid multibody method, Nikolić 
[55] studied the free vibration analysis of NAFG cantile-
ver beams with a tip body. Applying the Ritz method, the 
free vibrations of AFG cantilever tapered beams carrying 
attached masses were investigated by Rossit et al. [56]. 
The transverse vibration of a functionally graded mate-
rial (FGM) cantilever nano-beam carrying a concentrated 
mass at the free end applying the analytical solution was 
studied by Ghadiri and Jafari [57]. A new non-iterative 
computational technique for the free vibration analysis of 
NAFG rods and beams via the symbolic-numeric method 
of initial parameters was proposed by Šalinić et al. [58]. 
Rossit et al. [59] investigated the effect of considering the 
theory of Timoshenko on the vibration of AFG cantile-
ver beams carrying concentrated masses using the Ray-
leigh–Ritz method. Based on the Myklestad method which 
is also known as the transfer matrix method, Mahmoud 
[60] presented a general solution for the free transverse 
vibration of NAFG cantilevers loaded at the tips with point 
masses. The initial value method was applied by Sun and 
Li [61] to study the free vibration of NAFG Timoshenko 
beams. The comparison between the forced vibration of 
isotropic homogeneous and AFG beams carrying concen-
trated masses was performed by Nguyen et al. [62]. They 
investigated the influences of the concentrated masses and 
the varying of the material properties along the simply 
supported beam on the receptance matrix. Li et al. [63] 
developed an analytical solution for the free vibration of 
exponential FG beams with variable cross-sections resting 
on Pasternak elastic foundations. A Generalized finite-ele-
ment approach toward the free vibration analysis of NAFG 
beams was proposed by Sahu et al. [64]. Recently, Liu et al. 
[65] presented a closed-form dynamic stiffness formulation 
for the exact transverse free vibration analysis of linearly 
tapered and/or NAFG beams based on the Euler–Bernoulli 
theory.

According to the literature review, there is no published 
work on the exact solutions of the free transverse vibration 
of the NAFG beams with end point masses and general 
boundary conditions. Moreover, there is no comprehensive 
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report on the effects of the attached end point masses on 
the natural frequencies of the power-law NAFG beams. 
To overcome these shortages, the analytical approach pre-
sented in reference [1] will be extended to obtain the exact 
natural frequencies of the NAFG Euler–Bernoulli beams 
with attached end masses and general boundary condi-
tions. In this way, based on the Euler–Bernoulli beam 
theory, the governing differential equation of motion was 
solved accurately using the Bessel functions. Then, the 
constant coefficients matrices of the power-law NAFG 
beams with the end point masses and general elastic sup-
ports were derived by applying the boundary conditions. 
Accordingly, by taking the constant coefficients matrix 
determinant equal to zero and calculating the positive 
real roots, the natural frequencies were obtained. By 
comparing the responses of the numerical examples with 
the available solutions, the accuracy, capability, and effi-
ciency of the proposed formulations are demonstrated. 
Subsequently, the effects of the attached end point masses, 
rotational and translational elastic supports, and NAFG 
parameters on the values of the first four natural frequen-
cies of the power-law NAFG beams for the eight paramet-
ric cases will be studied comprehensively. It is reminded 
that the material and geometrical properties of the NAFG 
beams are assumed to vary continuously and together in 
the axial length according to the power-law forms. The 
exact analytical solutions are listed in tabular and graphi-
cal forms and can be utilized as the benchmark solutions. 
Moreover, the results presented herein can be used for 
the proper design of composite beams carrying end point 
masses with different elastic boundary conditions.

Free Transverse Vibration Formulation

In this work, the analytical solutions to obtain the exact nat-
ural frequencies of the power-law NAFG Euler–Bernoulli 
beam with attached end point masses and general boundary 
conditions are presented.

NAFG Material and Geometrical Properties

In the present study, the material and geometrical properties, 
i.e., mass per unit length and flexural rigidity of the NAFG 
beam, shown in Fig. 1, are assumed to vary continuously and 
together in the axial direction according to the power-law 
forms and defined as:

where x is the axial coordinate, L is the length of the beam, 
m(x) = ρ(x)A(x) is the unit mass length of the NAFG beam, 
which is computed by volume mass density ρ(x) and cross-
section area A(x), and K(x) = E(x)I(x) is the flexural rigid-
ity of the NAFG beam which is calculated by the modulus 
of elasticity E(x) and moment of inertia I(x). Also, ρ0, A0, 
E0, and Io are the mass density, cross-section area, modu-
lus of elasticity, and moment of inertia at x = 0, respec-
tively. Similarly, ρL, AL, EL, and IL are the mass density, 
cross-section area, modulus of elasticity, and moment of 
inertia at x = L, respectively. Moreover, p and c are the 
NAFG parameters that p is an integer quantity and rep-
resents the gradient index and c represents the gradient 
coefficient. It should be noted that the mass per unit length 
and flexural rigidity of the NAFG beam are positive values 
and therefore c > − 1. In addition, it is evident that when 
c = 0.0, the beam is uniform, i.e., the material and geo-
metrical properties are kept constant.

It is reminded that changing the mass per unit length m(x) 
and flexural rigidity K(x) can be expressed based on the vari-
ations of the material properties or geometrical properties or 
both of them. According to this point, the tapered, wedged, 
stepped, and non-prismatic beams can be considered as the 
special case of the NAFG beams with constant material and 
variable geometry [1]. For better understanding, the normal-
ized variations of m(x) and K(x) of the NAFG beam, which 
are normalized by the values of the material and geometrical 
properties of the beam at x = L, are plotted in Fig. 2 for vari-
ous values of the gradient index (p) and gradient coefficient 
(c).

Governing Differential Equation

The free transverse vibration differential equation of a 
NAFG Euler–Bernoulli beam of length L with end point 
masses and elastic supports, as shown in Fig. 3, is given 
by [66]:

(1a)

m(x) = �(x)A(x) = �0A0

(
1 + c

x

L

)p

= �LAL

(
1 + c

x

L

1 + c

)p

,

(1b)

K(x) = E(x)I(x) = E0I0

(
1 + c

x

L

)p+2

= ELIL

(
1 + c

x

L

1 + c

)p+2

,

Fig. 1   Schematic of the non-uniform axially functionally graded 
(NAFG) beam with power-law form
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where x is the axial coordinate, t is time, w(x,t) is the lateral 
deflection of the beam, K(x) = E(x)I(x) is the flexural rigidity 
of the beam at the position x and m(x) = ρ(x)A(x) is the mass 
per unit length of the beam at the position x.

Following the separation of variable analogy, the solution 
of Eq. (2) can be expressed as [66]:

where ωi is the circular frequency and Wi(x) is the shape 
function of the lateral motion of the ith vibration mode.

Substituting the Eq. (3) into Eq. (2), one can get:

If Eqs. (1a) and (1b) are inserted into Eq. (4), it can be 
rewritten as:

(2)
𝜕2

𝜕x2

[
K(x)

𝜕2w(x, t)

𝜕x2

]
+ m(x)

𝜕2w(x, t)

𝜕t2
= 0, 0 < x < L,

(3)wi(x, t) = Wi(x)e
j�it (j2 = −1),

(4)
d2

dx2

[
K(x)

d2Wi(x)

dx2

]
− m(x)�2

i
Wi(x) = 0.

(5)

(
1 + c

x

L

)p+2 d4Wi(x)

dx4
+ 2

c

L
(p + 2)

(
1 + c

x

L

)p+1 d3Wi(x)

dx3

+
c2

L2
(p + 1)(p + 2)

(
1 + c

x

L

)p d2Wi(x)

dx2
−

�0A0�
2

i

E0I0

(
1 + c

x

L

)p

Wi(x) = 0.

Fig. 2   Normalized variations of mass per unit length and flexural rigidity of the NAFG beam: a for various values of gradient index (p) in which 
c = 0.5; b for various values of gradient coefficient (c) in which p = 2

Fig. 3   Schematic of the NAFG beam with end point masses and elas-
tic supports
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Introducing the following quantity

which is equal to 1 at x = 0 and to 1 + c at x = L, and consid-
ering in mind that

Equation (5) simplifies as follows:

where Ωi =
4

√
�0A0�

2

i
L4

E0I0
 is the dimensionless natural fre-

quency coefficient of the ith vibration mode.
The general solution of this equation for the positive gra-

dient coefficient (i.e., c > 0) is [67, 68]:

where C1, C2, C3, C4 are unknown constants and Jp, Yp, Ip, Kp 
are, respectively, the Bessel functions of first, second, modi-
fied first, and modified second kinds of order p. The detail 
of the derivation of the general solution Eq. (9) is presented 
in Appendix A.

It is reminded that the general solution of Eq. (8) for c = 0 
(i.e., uniform and isotropic homogenous beam) and negative 
gradient coefficients (i.e., − 1 < c < 0) are expressed with 
Eqs. (10) and (11), respectively [68].

General Boundary Conditions

The boundary conditions, in the presence of end point 
masses M0, ML and constraints with the rotational elastic 
stiffnesses kR0, kRL and lateral translational elastic stiffnesses 
kT0, kTL are expressed as [66]:

(6)X =

(
1 + c

x

L

)
,

(7)dx =
(
L

c

)
dX.

(8)
Xp+2

d4Wi(X)

dX4
+ 2(p + 2)Xp+1

d3Wi(X)

dX3

+ (p + 1)(p + 2)Xp
d2Wi(X)

dX2
−

Ω4

i

c4
XpWi(X) = 0,

(9)

Wi(X) = X
−

p

2

�
C1Jp

�
2Ωi

√
X

c

�
+C2Yp

�
2Ωi

√
X

c

�

+ C3Ip

�
2Ωi

√
X

c

�
+ C4Kp

�
2Ωi

√
X

c

��
,

(10)
Wi(X) = C1 sin(X) + C2 cos(X) + C3 sinh(X) + C4 cosh(X),

(11)

Wi(X) = X
−

p

2

�
C1Jp

�
−
2Ωi

√
X

c

�
+C2Yp

�
−
2Ωi

√
X

c

�

+ C3Ip

�
−
2Ωi

√
X

c

�
+ C4Kp

�
−
2Ωi

√
X

c

��
.

which refer to the equilibrium of the bending moment and 
shear force at x = 0, respectively, and

which denote to the equilibrium of the bending moment and 
shear force at x = L, respectively.

Substituting Eq. (1b) and utilizing Eqs. (6) and (7), the 
boundary conditions become:

at X = 1 (x = 0), and

at X = 1 + c (x = L).
For simplicity, the following dimensionless mass 

ratios (α0, αL) and stiffness ratios (R0, RL, T0 and TL) are 
introduced:

By replacing the X values and considering the dimen-
sionless natural frequency coefficient, Ωi and dimensionless 
ratios defined as Eq. (20), the boundary conditions of Eqs. 
(16)–(19) can be expressed by the following non-dimen-
sional forms:

(12)K(x)
d2Wi(x)

dx2
− kR0

dWi(x)

dx
= 0,

(13)
d

dx

[
K(x)

d2Wi(x)

dx2

]
+ kT0Wi(x) −M0�

2

i
Wi(x) = 0,

(14)K(x)
d2Wi(x)

dx2
+ kRL

dWi(x)

dx
= 0,

(15)
d

dx

[
K(x)

d2Wi(x)

dx2

]
− kTLWi(x) +ML�

2

i
Wi(x) = 0,

(16)Xp+2
d2Wi(X)

dX2
−

kR0L

E0I0c

dWi(X)

dX
= 0,

(17)

Xp+2
d3Wi(X)

dX3
+ (p + 2)Xp+1

d2Wi(X)

dX2
+

(
kT0 −M0�

2

i

)
L3

E0I0c
3

Wi(X) = 0,

(18)Xp+2
d2Wi(X)

dX2
+

kRLL

E0I0c

dWi(X)

dX
= 0,

(19)

Xp+2
d3Wi(X)

dX3
+ (p + 2)Xp+1

d2Wi(X)

dX2
+

(
ML�

2

i
− kTL

)
L3

E0I0c
3

Wi(X) = 0,

(20)

�0 =
M0

�0A0LX
2

|||||X=1
=

M0

�0A0L
, R0 =

kR0L

E0I0
, T0 =

kT0L
3

E0I0

�L =
ML

�LALLX
2

|||||X=1+c
=

ML

�LALL(1 + c)2
, RL =

kRLL

ELIL
, TL =

kTLL
3

ELIL
.
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where W �
i
(X) =

dWi(X)

dX
 , W ��

i
(X) =

d2Wi(X)

d2X
 , W ���

i
(X) =

d3Wi(X)

d3X
.

Determination of the Natural Frequency

By substituting the general solution (9) into the non-dimen-
sional boundary conditions given in Eqs. (21)–(24), a homo-
geneous system of four equations for the four integration 
constants (i.e., C1, C2, C3, C4) can be obtained as:

(21)W ��

i
(1) −

R0

c
W �

i
(1) = 0,

(22)W ���

i
(1) + (p + 2)W ��

i
(1) +

(T0 − �0Ω
4

i
)

c3
Wi(1) = 0,

(23)W ��

i
(1 + c) +

RL

c
W �

i
(1 + c) = 0,

(24)

W ���

i
(1 + c) +

(p + 2)

(1 + c)
W ��
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,

or in compact matrix form as follows:

where the constant coefficients matrix A for the NAFG 
beams with the various gradient coefficient are given explic-
itly in Appendix B. To have a non-trivial solution, the deter-
minant of this system must be zero:

Consequently, having the values of p, c, α0, αL, T0, TL, R0, 
and RL, positive real roots of this equation are the natural 
frequency coefficients Ωi of the NAFG beams with the end 
point masses and elastic end supports, shown in Fig. 3. It 
should be added, these were calculated numerically.

Numerical Examples and Verification

To confirm the accuracy, application, and efficiency of the 
derived formulations, five numerical examples, shown in 
Fig. 4a–e, are analyzed in this part. The results are compared 
with those obtained by other researchers. It should be noted, 
using the proposed formulations, one can find the exact natu-
ral frequencies of the NAFG beams with attached masses 
and general boundary conditions at both ends. Accord-
ingly, if the stiffness ratios are allowed to become infinity 

(26)AC = 0,

(27)det A = 0.

Fig. 4   Schematic of the NAFG 
beams with end point masses 
and different boundary condi-
tions in numerical examples

(a) Example 1 (α0 = var., c= var. > 0,
R0 = T0 = αL = 0, RL= TL= ∞, p = 2)

(b) Example 2 (α0 = var., T0 = var.,
R0 = αL = 0, RL= TL= ∞, p = 2, c = 0.4)

(c) Example 3 (α0 = 0.6, R0 = T0 = ∞,
RL= TL= αL = 0, p = 1, c = 4)

(d) Example 4 (αL = var., R0 = T0 = ∞,
RL= TL= α0 = 0, p = 0, c = -0.25)

(e) Example 5 (αL = var., c = var. < 0, R0 = var., T0 = ∞, RL= TL= α0 = 0, p = 1)
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Table 1   First five dimensionless natural frequency coefficients Ωi, i = 1,2,3,4,5 of the NAFG beam (p = 2, c = var. > 0) for T0 = R0 = αL = 0, 
TL = RL = ∞ and various values of α0 in Example 1

c α0 Ωi Present Hsu et al. [40] Attarnejad 
et al. [32]

Lai et al. [30] Auciello [17] Mabie and Rogers [3]

0.2 0.242667 i = 1 1.805113 1.805113 – 1.805116 1.805113 1.805112
i = 2 4.531399 4.531398 – 4.531398 4.531399 4.531402
i = 3 7.682832 7.682832 – 7.682833 7.682832 7.682832
i = 4 10.901161 – – – – 10.901147
i = 5 14.149914 – – – – 14.149912

0.728000 i = 1 1.519988 – – 1.519992 1.519988 1.519987
i = 2 4.343868 – – 4.343868 4.343868 4.343869
i = 3 7.542352 – – 7.542352 7.542352 7.542354
i = 4 10.793331 – – – – 10.793331
i = 5 14.062817 – – – – 14.062823

1.213333 i = 1 1.373712 – – 1.373710 1.373712 1.373710
i = 2 4.289384 – – 4.289385 4.289384 4.289382
i = 3 7.507077 – – 7.507076 7.507077 7.507077
i = 4 10.768049 – – – – 10.768055
i = 5 14.043144 – – – – 14.043148

2.426667 i = 1 1.180607 1.180606 – 1.180605 1.180607 1.180606
i = 2 4.242896 4.242896 – 4.242897 4.242896 4.242900
i = 3 7.478641 7.478641 – 7.478641 7.478642 7.478643
i = 4 10.748142 – – – – 10.748163
i = 5 14.027839 – – – – 14.027829

1.0 0.200000 i = 1 2.672324 – 2.6723 – – –
i = 2 5.606998 – 5.6070 – – –
i = 3 9.081881 – 9.0819 – – –
i = 4 12.720860 – 12.7209 – – –
i = 5 16.425475 – – – – –

0.466667 i = 1 2.392505 2.392504 – 2.392498 2.392505 2.392505
i = 2 5.375542 5.375541 – 5.375538 5.375542 5.375537
i = 3 8.914098 8.914098 – 8.914100 8.914098 8.914101
i = 4 12.595271 – – – – 12.595277
i = 5 16.325968 – – – – 16.325961

0.500000 i = 1 2.366312 – 2.3663 – – –
i = 2 5.359812 – 5.3598 – – –
i = 3 8.904012 – 8.9040 – – –
i = 4 12.588136 – 12.5881 – – –
i = 5 16.320485 – – – – –

1.000000 i = 1 2.088116 – 2.0881 – – –
i = 2 5.233157 – 5.2331 – – –
i = 3 8.827802 – 8.8278 – – –
i = 4 12.535573 – 12.5356 – – –
i = 5 16.280604 – – – – –

1.400000 i = 1 1.949585 – – 1.949576 1.949585 1.949585
i = 2 5.190740 – – 5.190742 5.190740 5.190742
i = 3 8.804081 – – 8.804084 8.804081 8.804079
i = 4 12.519671 – – – – 12.519665
i = 5 16.268711 – – – – 16.268712

2.000000 i = 1 1.805129 – 1.8051 – – –
i = 2 5.156789 – 5.1568 – – –
i = 3 8.785676 – 8.7857 – – –
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or zero, then the classical restraints can be easily recovered. 
For example, if R0 = T0 = ∞ and RL = TL = 0, then the beam 
is considered as the cantilevered beam. If R0 = RL = 0 and 
T0 = TL = ∞, then the frequency equation of the simply sup-
ported beam is obtained. If R0 = RL = ∞ and T0 = TL = ∞, 
then the beam is considered as the clamped–clamped beam.

Example 1. In this sample, the first five dimensionless 
natural frequency coefficients Ωi, i = 1,2,3,4,5 for the NAFG 
beam (p = 2, c = var. > 0) with T0 = R0 = αL = 0, TL = RL = ∞ 
and various values of α0 and c (i.e., Fig. 4a) are calculated 
and arranged in Table 1. Table 1 shows the results of the 
present study, as well as those other methods. Based on 
the data shown in Table 1, it is observed that the proposed 
formulation for computing the natural frequencies has high 
accuracy and efficiency.

Example 2. In this example, the first four dimensionless 
natural frequency coefficients Ωi, i = 1,2,3,4 of the NAFG 
beam (p = 2, c = 0.4) for R0 = αL = 0, TL = RL = ∞ and vari-
ous values of T0 and α0 (i.e., Fig. 4b) are computed and pre-
sented in Table 2. From Table 2, it is concluded that results 
of the present method are very close to the values obtained 
by other techniques.

Example 3. In this sample, the first five natural frequen-
cies ωi, i = 1,2,3,4,5 are obtained for the NAFG beam (p = 1, 
c = 4) with T0 = R0 = ∞, TL = RL = αL = 0 and α0 = 0.6 (i.e., 
Fig. 4c). It should be noted that the numerical values of the 
mechanical and geometrical properties of the NAFG beam 
considered as follows: L = 1.6 m, A0 = b0 × h0 = 0.1 × 0.08, I0 
= b0 × h03/12 = 0.1 × 0.083/12, M0 = 60.288 kg, ρ0 = 7850 kg/
m3, E0 = 2.051 × 1011 N/m2, α0 = 60.288/(7850 × 0.1 × 0.08 
× 1.6) = 0.6, ρ0A0 = 7850 × 9.81 × 0.1 × 0.08 = 616.068 N/
m, and E0I0 = 2.051 × 1011 × 0.1 × 0.083/12 = 875,093.333
3 N m2 [25]. A comparison of the results with the other 
approaches is listed in Table 3. According to the findings, 

the prediction of the proposed technique agree well with 
those other approaches.

Example 4. In this example, the first square six dimen-
sionless natural frequency coefficients Ωi

2, i = 1,2,3,4,5,6 
of the NAFG beam (p = 0, c = − 0.25) for T0 = R0 = ∞, 
TL = RL = α0 = 0 and various values of αL (i.e., Fig.  4d) 
are obtained and arranged in Table 4. Table 4 shows the 
results of the present method, as well as the recent work of 
Mahmoud [60].

Example 5. In this sample, the first square three dimen-
sionless natural frequency coefficients Ωi

2, i = 1,2,3 are cal-
culated for the NAFG beam (p = 1, c = var. < 0) with T0 = ∞, 
TL = RL = α0 = 0 and various values of R0, αL, and c (i.e., 
Fig. 4(e)). A comparison of the results with those computed 
by [34] is listed in Table 5. According to the results, the 
proposed approach gives a high accuracy prediction. Note 
that, in Table 5, the results from Çelik [69] are given in 
square brackets.

Parametric Studies and Discussion

In this section, eight parametric cases, as shown in Fig. 5a–h, 
with the classical and non-classical boundary conditions will 
be considered and the effects of the attached end masses, 
elastic supports, and NAFG parameters on the first four 
natural frequencies of them will be investigated compre-
hensively. It should be noted that the NAFG parameters in 
all cases, except case 8, are considered identical to compare 
the results of one case with other cases. In other words, in 
these cases, the dynamic behavior of the NAFG beams with 
p = 2 and c = 0.5 are studied.

Table 1   (continued)

c α0 Ωi Present Hsu et al. [40] Attarnejad 
et al. [32]

Lai et al. [30] Auciello [17] Mabie and Rogers [3]

i = 4 12.507474 – 12.5075 – – –
i = 5 16.259640 – – – – –

2.333333 i = 1 1.744161 – – 1.744152 1.744161 1.744162
i = 2 5.145038 – – 5.145041 5.145038 5.145036
i = 3 8.779421 – – 8.779423 8.779421 8.779419
i = 4 12.503355 – – – – 12.503360
i = 5 16.256587 – – – – 16.256599

4.666667 i = 1 1.485718 1.485717 – 1.485704 1.485718 1.485715
i = 2 5.108412 5.108411 – 5.108415 5.108412 5.108415
i = 3 8.760283 8.760282 – 8.760286 8.760283 8.760285
i = 4 12.490840 – – – – 12.490837
i = 5 16.247341 – – – – 16.247338
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Table 2   First four 
dimensionless natural frequency 
coefficients Ωi, i = 1,2,3,4 of 
the NAFG beam (p = 2, c = 0.4) 
for R0 = αL = 0, TL = RL = ∞ and 
various values of T0 and α0 in 
Example 2

T0 α0 Ωi Present Çelik [69] Nikolić and 
Šalinić [37]

Mao [70] Hsu et al.[71] De Rosa and 
Auciello [72]

0 0 i = 1 2.376612 2.376612 2.37658 – 2.37661 2.3766
i = 2 5.373870 5.373870 5.37363 – 5.37387 5.3739
i = 3 8.726374 8.726374 8.72538 – 8.72637 8.7264
i = 4 12.113521 12.113521 12.1108 – 12.11351 12.1135

1 i = 1 1.602596 – 1.60258 – – –
i = 2 4.562011 – 4.56185 – – –
i = 3 7.875659 – 7.87485 – – –
i = 4 11.257316 – 11.2549 – – –

10 i = 1 0.946758 – 0.94675 – – –
i = 2 4.447496 – 4.44734 – – –
i = 3 7.808817 – 7.80801 – – –
i = 4 11.211446 – 11.2091 – – –

1 0 i = 1 2.442011 2.442011 2.44198 2.44004 2.44201 2.4420
i = 2 5.380548 5.380548 5.38031 5.37513 5.38055 5.3805
i = 3 8.727984 8.727984 8.72699 8.71912 8.72798 8.7280
i = 4 12.114128 12.114129 12.11141 12.10182 12.11412 12.1141

1 i = 1 1.649095 – 1.64908 – – –
i = 2 4.562271 – 4.56211 – – –
i = 3 7.875677 – 7.80380 – – –
i = 4 11.257319 – 11.2549 – – –

10 i = 1 0.974286 – 0.97428 – – –
i = 2 4.447499 – 4.44734 – – –
i = 3 7.808817 – 7.80801 – – –
i = 4 11.211446 – 11.2091 – – –

1000 0 i = 1 4.375503 4.375503 4.37536 4.37154 4.37550 4.3755
i = 2 7.477211 7.477211 7.47657 7.47233 7.47721 7.4772
i = 3 10.221535 10.221535 10.2202 10.21795 10.22153 10.2215
i = 4 12.857197 12.857197 12.8545 12.85023 12.85719 12.8572

1 i = 1 4.343813 – 4.34368 – – –
i = 2 5.580504 – 5.58046 – – –
i = 3 7.899077 – 7.89828 – – –
i = 4 11.260539 – 11.2582 – – –

10 i = 1 3.146022 – 3.14602 – – –
i = 2 4.452386 – 4.45223 – – –
i = 3 7.809036 – 7.80823 – – –
i = 4 11.211480 – 11.2091 – – –

Table 3   First five natural 
frequencies ωi, i = 1,2,3,4,5 of 
the NAFG beam (p = 1, c = 4) 
for T0 = R0 = ∞, TL = RL = αL = 0 
and α0 = 0.6 in Example 3

ωi Present Rossit et al. [56] Chen and Liu [29] Wu and Chen [25] FEM [25]

i = 1 569.37469 569.3747 569.6279 569.6273 569.3039
i = 2 2503.71434 2503.714 2508.895 2508.8947 2503.2976
i = 3 6710.26762 6710.268 6743.232 6743.2318 6709.0487
i = 4 13,288.99814 13,289.00 13,408.53 13,408.5313 13,286.4974
i = 5 22,240.74451 22,240.74 22,570.17 22,570.1693 22,236.4917
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Effects of the End Mass with Different Elastic 
Boundary Conditions (Case 1 up to Case 6)

In Figs. 6 through 11, the effects of the end mass ratios (i.e., 
α0 and αL) with the various rotational and translational stiff-
ness ratios (i.e., R0, T0, RL, and TL), on the first four dimen-
sionless natural frequency coefficients Ωi (i = 1,2,3,4) for the 
NAFG beams (p = 2, c = 0.5) introduced as case 1 up to case 
6 are investigated, respectively. Moreover, the correspond-
ing numerical values of Ωi (i = 1,2,3,4) for these cases are 
tabulated in Tables 6 through 11, respectively.

Case 1

Based on data shown in Table 6, it is concluded that for the 
free supported NAFG beam with the translational spring at 
x = 0, rotational spring at x = L, and attached point mass at 
x = 0 (Fig. 5a), as the end mass ratio α0 increases from 0.0 
up to 1.0, the first four dimensionless natural frequency coef-
ficients of the NAFG beam decrease from 0.4930, 1.4212, 
5.3358 and 8.7880, and tend to 0.4407, 1.1083, 4.4127 and 
7.8922 for the low stiffness ratios (T0 = RL = 0.1), respec-
tively. Also, for the moderate stiffness ratios (T0 = RL = 10) 
in case 1, increasing α0 from 0.0 to 1.0, causes reduce in the 
values of Ωi (i = 1,2,3,4) of the NAFG beam from 1.4040, 
3.1853, 6.1207 and 9.4310, and approach 1.3233, 2.2333, 
5.2170 and 8.5506, respectively. Furthermore, when the end 
mass ratio α0 in this case changes, the first four dimension-
less natural frequency coefficients of the NAFG beam remain 
almost constant for the high stiffness ratios (T0 = RL = 105). 
In other words, this latter state corresponds to a pinned-
guided beam, and evidently, the effect of α0 on the natural 
frequencies of the beam is very insignificant.

According to Fig.  6 and Table 6, it is observed that 
increasing the end mass ratio α0 always causes a decrease in 
the values of Ωi (i = 1,2,3,4) for the beam, regardless of the 
quantities of the stiffness ratios. On average and based on 
the amounts of Ωi (i = 1,2,3,4), Ω1 and Ω2, in this case, have 
the lowest and highest sensitivity to the variation of the end 

mass ratio, respectively. Accordingly, the second dimension-
less natural frequency coefficient in case 1 can reduce by 
nearly 31% whenever the end mass ratio α0 increases from 
0.0 to 1.0 for T0 = RL = 50. On the other hand, by increas-
ing the stiffness ratios, Ωi (i = 1,2,3,4) of the beam always 
increases, irrespective of the amount of the end mass ratio. 
At the most sensitive state, increasing T0 and RL from the 
low stiffness ratios (T0 = RL = 0.1) to the high stiffness ratios 
(T0 = RL = 105) for α0 = 1.0, can raise the quantity of Ω2 for 
the NAFG beam in case 1 by about 4.8 times.

Case 2

By observing data in Table 7, it is founded that for the free-
pinned supported NAFG beam with the translational spring 
at x = 0, rotational spring at x = L, and attached point mass 
at x = 0 (Fig. 5b), when the end mass ratio α0 increases 
from 0.0 up to 1.0, the first four dimensionless natural 
frequency coefficients of the NAFG beam decrease from 
1.0869, 4.5849, 7.9935 and 11.4515, and tend to 0.8009, 
3.7027, 7.1045 and 10.5630 for the low stiffness ratios 
(T0 = RL = 0.1), respectively. In addition, for the moderate 
stiffness ratios (T0 = RL = 10) in case 2, increasing α0 from 
0.0 to 1.0, causes reduce in the values of Ωi (i = 1,2,3,4) of 
the NAFG beam from 2.7866, 5.2765, 8.4984 and 11.8510, 
and approach 1.9490, 4.3986, 7.6248 and 10.9774, respec-
tively. Besides, as the end mass ratio α0 in this case varies, 
the first four dimensionless natural frequency coefficients of 
the NAFG beam stay almost constant for the high stiffness 
ratios (T0 = RL = 105). In other words, this latter state cor-
responds to a pinned-fixed beam, and clearly, the effect of 
α0 on the natural frequencies of the beam is very negligible.

As seen in Fig. 7 and Table 7, it is concluded that increas-
ing the end mass ratio α0 always causes a decrease in the 
values of Ωi (i = 1,2,3,4) for the beam, regardless of the 
quantities of the stiffness ratios. On the average and about 
the quantities of Ωi (i = 1,2,3,4), changing of the end mass 
ratio α0 has the minimum and maximum influences on the 
values of Ω1 and Ω4 for this case, respectively. However, the 

Table 4   First square six dimensionless natural frequency coefficients Ωi
2, i = 1,2,3,4,5,6 of the NAFG beam (p = 0, c = − 0.25) for T0 = R0 = ∞, 

TL = RL = α0 = 0 and various values of αL in Example 4

Ωi
2 αL = 0.0 αL = 0.3 αL = 0.6 αL = 0.9

Present Mahmoud [60] Present Mahmoud [60] Present Mahmoud [60] Present Mahmoud 
[60]

i = 1 3.33677 3.337 2.22025 2.220 1.77570 1.776 1.52200 –
i = 2 19.71504 19.715 15.59269 15.593 14.81344 14.813 14.48662 –
i = 3 54.23107 54.232 46.01331 46.013 45.00780 45.008 44.62107 –
i = 4 105.77354 105.775 93.39024 93.390 92.29161 92.292 91.88649 –
i = 5 174.50883 174.512 157.89870 157.899 156.74554 156.746 156.33008 –
i = 6 260.42601 260.431 239.56432 239.565 238.37610 238.376 237.95424 –
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Table 5   First square three dimensionless natural frequency coefficients Ωi
2, i = 1,2,3 of the NAFG beam (p = 1, c = var. < 0) for T0 = ∞, 

TL = RL = α0 = 0 and various values of R0 and αL in Example 5

R0 αL Ωi
2 c = -0.1 c = − 0.5 c = − 0.9

Present Wang [34] Present Wang [34] Present Wang [34]

∞ 0 i = 1 3.55870 3.5587 [3.55870207]* 3.82378 3.8238 [3.82378485] 4.63072 4.6307 [4.63072386]
i = 2 21.33810 21.338 [21.33810280] 18.31726 18.317 [18.31726090] 14.93079 14.931 [14.93079267]
i = 3 58.97990 58.980 [58.97990492] 47.26483 47.265 [47.26482701] 32.83312 32.833 [32.83312116]

0.1 i = 1 2.95914 2.9591 2.87371 2.8737 2.38642 2.3864
i = 2 18.53302 18.533 14.77618 14.276 9.34342 9.3434
i = 3 52.65987 52.660 40.29865 40.299 24.68746 24.688

1 i = 1 1.51206 1.5121 1.28035 1.2804 0.84354 0.8435
i = 2 15.58661 15.587 12.68104 12.681 8.70534 8.7053
i = 3 48.44057 48.441 37.88666 37.887 24.25395 24.254

10 i = 1 0.52117 0.5212 0.42577 0.42583 0.26996 0.2700
i = 2 14.93063 14.931 12.34024 12.340 8.63768 8.6377
i = 3 47.72224 47.722 37.56434 37.564 24.20918 24.209

10 0 i = 1 3.02797 3.0280 3.36492 3.3649 4.21310 4.2131
i = 2 18.78468 18.785 16.31791 16.318 13.64154 13.642
i = 3 53.11947 53.120 42.81306 42.813 30.23683 30.237

0.1 i = 1 2.54742 2.5474 2.57707 2.5771 2.27330 2.2733
i = 2 16.35841 16.358 13.18767 13.188 8.46985 8.4699
i = 3 47.43342 47.433 36.45097 36.451 22.55855 22.559

1 i = 1 1.32822 1.3282 1.17130 1.1713 0.81309 0.8131
i = 2 13.65946 13.660 11.20748 11.208 7.82342 7.8234
i = 3 43.44577 43.446 34.12567 34.126 22.12343 22.123

10 i = 1 0.46073 0.4607 0.39118 0.3912 0.26057 0.2606
i = 2 13.03521 13.035 10.87598 10.876 7.75471 7.7547
i = 3 42.75093 42.751 33.81038 33.810 22.07845 22.078

1 0 i = 1 1.61110 1.6111 1.91091 1.9109 2.57413 2.5741
i = 2 15.70035 15.700 13.39463 13.395 11.21081 11.211
i = 3 48.57439 48.574 38.70756 38.708 27.10063 27.101

0.1 i = 1 1.38703 1.3870 1.53445 1.5345 1.64628 1.6463
i = 2 13.56419 13.564 10.60685 10.607 6.29985 6.2999
i = 3 43.16171 43.162 32.61051 32.611 19.53331 19.533

1 i = 1 0.75783 0.7578 0.74319 0.7432 0.63348 0.6335
i = 2 10.97299 10.973 8.58613 8.5861 5.44745 5.4475
i = 3 39.19922 39.199 30.24469 30.245 19.05595 19.056

10 i = 1 0.26741 0.2674 0.25225 0.2523 0.20495 0.2050
i = 2 10.32671 10.327 8.21759 8.2176 5.35256 5.3526
i = 3 38.49242 38.492 29.91758 29.918 19.00641 19.006

0.1 0 i = 1 0.56256 0.5626 0.68230 0.6823 0.94296 0.9430
i = 2 14.94902 14.949 12.59742 12.597 10.45590 10.456
i = 3 47.74425 47.744 37.89854 37.899 26.40148 26.402

0.1 i = 1 0.48829 0.4883 0.55917 0.5592 0.66894 0.6689
i = 2 12.85211 12.852 9.83850 9.8385 5.41069 5.4107
i = 3 42.35969 42.360 31.81768 31.818 18.77666 18.777

1 i = 1 0.27201 0.2720 0.28080 0.2808 0.28346 0.2835
i = 2 10.23259 10.333 7.71173 7.7117 4.25931 4.2593
i = 3 38.38258 38.383 29.42437 29.424 18.27911 18.279
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second dimensionless natural frequency coefficient in case 
2 can reduce by about 31% whenever the end mass ratio α0 
increases from 0.0 to 1.0 for T0 = RL = 500. On the other 
hand, by increasing the stiffness ratios, Ωi (i = 1,2,3,4) of the 
beam always increases, irrespective of the value of the end 
mass ratio. At the most sensitive state, increasing T0 and RL 
from the low stiffness ratios (T0 = RL = 0.1) to the high stiff-
ness ratios (T0 = RL = 105) for α0 = 1.0, can raise the quantity 
of Ω1 for the NAFG beam in case 2 by nearly 5.7 times.

Case 3

From data reported in Table 8, it is observed that for the 
free supported NAFG beam with two translational springs 
at x = 0 and x = L, and attached point mass at x = 0 (Fig. 5c), 
as the end mass ratio α0 increases from 0.0 up to 1.0, the 
first four dimensionless natural frequency coefficients of 
the NAFG beam decrease from 0.6808, 1.0411, 5.3058 and 
8.7703, and tend to 0.5137, 0.9657, 4.3737 and 7.8723 for 
the low stiffness ratios (T0 = TL = 0.1), respectively. As well, 
for the moderate stiffness ratios (T0 = TL = 10) in case 3, 
increasing α0 from 0.0 to 1.0, causes reduce in the values 
of Ωi (i = 1,2,3,4) of the NAFG beam from 2.0948, 3.2328, 
5.5103 and 8.8167, and approach 1.6202, 2.8681, 4.6347 
and 7.9149, respectively. Moreover, when the end mass ratio 
α0 in this case changes, the first four dimensionless natural 
frequency coefficients of the NAFG beam remain almost 
constant for the high stiffness ratios (T0 = TL = 105). In other 
words, this latter state corresponds to a pinned–pinned beam, 
and obviously, the effect of α0 on the natural frequencies of 
the beam is very negligible.

From Fig. 8 and Table 8, it is concluded that increasing 
the end mass ratio α0 always causes decrease in the values 
of Ωi (i = 1,2,3,4) for the beam, regardless of the amounts of 
the stiffness ratios. On the average and based on the amounts 
of Ωi (i = 1,2,3,4), Ω4 and Ω3 of this case have the lowest and 
highest sensitivity with respect to the variation of the end 
mass ratio, respectively. However, the second dimensionless 
natural frequency coefficient in the case 3 can reduce by 
nearly 28% whenever the end mass ratio α0 increases from 
0.0 to 1.0 for T0 = TL = 100. On the other hand, by increas-
ing in the stiffness ratios, Ωi (i = 1,2,3,4) of the beam always 
increase, irrespective of the value of the end mass ratio. At 

the most sensitive state, increasing T0 and TL from the low 
stiffness ratios (T0 = TL = 0.1) to the high stiffness ratios 
(T0 = TL = 105) for α0 = 1.0, can raise the quantity of Ω2 for 
the NAFG beam in case 3 by about 7.2 times.

Case 4

Based on data shown in Table 9, it is founded the free-
guided supported NAFG beam with two translational springs 
at x = 0 and x = L, and attached point mass at x = 0 (Fig. 5d), 
when the end mass ratio α0 increases from 0.0 up to 1.0, 
the first four dimensionless natural frequency coefficients 
of the NAFG beam decrease from 0.7864, 2.9795, 6.2937 
and 9.7279, and tend to 0.6944, 2.1862, 5.4114 and 8.8400 
for the low stiffness ratios (T0 = TL = 0.1), respectively. Also, 
for the moderate stiffness ratios (T0 = TL = 10) in case 4, 
increasing α0 from 0.0 to 1.0, causes reduce in the values 
of Ωi (i = 1,2,3,4) of the NAFG beam from 2.4178, 3.4960, 
6.3757 and 9.7506, and approach 1.9114, 2.8715, 5.4761 
and 8.8547, respectively. Furthermore, as the end mass ratio 
α0 in this case varies, the first four dimensionless natural fre-
quency coefficients of the NAFG beam stay almost constant 
for the high stiffness ratios (T0 = TL = 105). In other words, 
this latter state corresponds to a pinned-fixed beam, and evi-
dently, the effect of α0 on the natural frequencies of the beam 
is very insignificant.

According to Fig.  9 and Table 9, it is observed that 
increasing the end mass ratio α0 always causes a reduction 
in the values of Ωi (i = 1,2,3,4) for the beam, regardless of 
the quantities of the stiffness ratios. On the average and con-
cerning the quantities of Ωi (i = 1,2,3,4), changing of the end 
mass ratio α0 has the minimum and maximum effects on the 
values of Ω4 and Ω2 for this case, respectively. Accordingly, 
the second dimensionless natural frequency coefficient in 
case 4 can reduce by about 28% whenever the end mass ratio 
α0 increases from 0.0 to 1.0 for T0 = TL = 500. On the other 
hand, by increasing the stiffness ratios, Ωi (i = 1,2,3,4) of the 
beam always increases, irrespective of the amount of the end 
mass ratio. At the most sensitive state, increasing T0 and TL 
from the low stiffness ratios (T0 = TL = 0.1) to the high stiff-
ness ratios (T0 = TL = 105) for α0 = 1.0, can raise the quantity 
of Ω1 for the NAFG beam in case 4 by nearly 6.5 times.

* The values that are shown in square brackets are given by Çelik [69]

Table 5   (continued)

R0 αL Ωi
2 c = -0.1 c = − 0.5 c = − 0.9

Present Wang [34] Present Wang [34] Present Wang [34]

10 i = 1 0.09678 0.09678 0.09641 0.09641 0.09335 0.09335
i = 2 9.55759 9.5576 7.30117 7.3012 4.11277 4.1128
i = 3 37.66941 37.669 29.09170 29.092 18.22739 18.227
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(a) Case 1 (α0 = var., T0 = RL = var.,
αL = 0, R0 = TL= 0, p = 2 and c = 0.5)

(b) Case 2 (α0 = var., T0 = RL = var.,
αL = 0, R0 = 0, TL= ∞, p = 2 and c = 0.5)

(c) Case 3 (α0 = var., T0 = TL = var.,
αL = 0, R0 = RL= 0, p = 2 and c = 0.5)

(d) Case 4 (α0 = var., T0 = TL = var.,
αL = 0, R0 = 0, RL= ∞, p = 2 and c = 0.5)

(e) Case 5 (α0 = var., RL = TL = var.,
αL = 0, R0 = T0 = 0, p = 2 and c = 0.5)

(f) Case 6 (α0 = αL = var., T0 = TL = var.,
R0 = RL = 0, p = 2 and c = 0.5)

(g) Case 7 (α0 = αL = var., R0 = T0 = RL = TL = var.,
p = 2 and c = 0.5)

(h) Case 8 (p = var., c = var., α0 = var.,
αL = 0, R0 = T0 = 0 and RL = TL = ∞)
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Fig. 5   Schematic of the NAFG beams with end point masses and different boundary conditions in parametric studies
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By comparing the results of Tables 6, 7, 8 and 9 (i.e., 
cases 1 to 4), it is concluded that the effect of the transla-
tional springs on the natural frequencies of the NAFG is 
more significant than the rotational springs, regardless of 
the attached tip mass. In other words, the sensitivity of the 
natural frequencies to the variation of the translational stiff-
ness ratios is greater than the rotational stiffness ratios.

Case 5

By observing data in Table 10, it is founded that for the free 
supported NAFG beam with the translational and rotational 
springs at x = L, and attached point mass at x = 0 (Fig. 5e), 
as the end mass ratio α0 increases from 0.0 up to 1.0, the 
first four dimensionless natural frequency coefficients of 

Fig. 6   Plot first four dimensionless natural frequency coefficients Ωi, i = 1,2,3,4 for Case 1

Fig. 7   Plot first four dimensionless natural frequency coefficients Ωi, i = 1,2,3,4 for Case 2
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the NAFG beam decrease from 0.7174, 1.4647, 5.3364 and 
8.7881, and tend to 0.6026, 1.2149, 4.4150 and 7.8926 for 
the low stiffness ratios (RL = TL = 0.1), respectively. In addi-
tion, for the moderate stiffness ratios (RL = TL = 10) in case 

5, increasing α0 from 0.0 to 1.0, causes reduce in the values 
of Ωi (i = 1,2,3,4) of the NAFG beam from 2.0450, 3.2691, 
6.1357 and 9.4364, and approach 1.5175, 2.8583, 5.3094 
and 8.5744, respectively. Besides, when the end mass ratio 

Table 6   First four 
dimensionless natural frequency 
coefficients Ωi, i = 1,2,3,4 for 
Case 1

α0 Ωi T0 = RL

0.1 1 10 100 1000 105

0.0 i = 1 0.492952 0.866886 1.404016 1.732942 1.791404 1.798351
i = 2 1.421247 2.336679 3.185312 4.403371 5.179166 5.288310
i = 3 5.335832 5.557965 6.120736 6.715555 8.279303 8.765565
i = 4 8.787956 8.927485 9.430971 9.811960 10.979512 12.245030

0.1 i = 1 0.486356 0.856236 1.395802 1.732434 1.791397 1.798351
i = 2 1.343338 2.190989 2.943223 4.185226 5.170829 5.288309
i = 3 4.953359 5.179385 5.704170 6.105940 7.969153 8.765539
i = 4 8.285159 8.428002 8.917889 9.202804 9.813164 12.244762

0.2 i = 1 0.480138 0.846105 1.387580 1.731919 1.791391 1.798351
i = 2 1.288386 2.089626 2.774272 3.985315 5.161263 5.288308
i = 3 4.768110 5.002410 5.522263 5.825075 7.555406 8.765512
i = 4 8.119675 8.266029 8.759370 9.024212 9.301706 12.244481

0.3 i = 1 0.474266 0.836460 1.379368 1.731397 1.791384 1.798351
i = 2 1.247130 2.014404 2.648908 3.813462 5.150219 5.288307
i = 3 4.659421 4.901050 5.422567 5.676221 7.164308 8.765485
i = 4 8.039379 8.187940 8.684473 8.942778 9.098284 12.244187

0.4 i = 1 0.468710 0.827267 1.371180 1.730867 1.791377 1.798351
i = 2 1.214818 1.956027 2.551513 3.667859 5.137401 5.288306
i = 3 4.587982 4.835557 5.360023 5.587057 6.840265 8.765458
i = 4 7.992194 8.142212 8.641077 8.896579 9.001369 12.243877

0.5 i = 1 0.463442 0.818499 1.363030 1.730329 1.791371 1.798351
i = 2 1.188723 1.909221 2.473254 3.543875 5.122454 5.288305
i = 3 4.537438 4.789802 5.317238 5.528608 6.577361 8.765430
i = 4 7.961193 8.112233 8.612813 8.866899 8.946844 12.243553

0.6 i = 1 0.458439 0.810125 1.354932 1.729783 1.791364 1.798351
i = 2 1.167150 1.870755 2.408756 3.437134 5.104972 5.288304
i = 3 4.499786 4.756048 5.286166 5.487670 6.362736 8.765403
i = 4 7.939285 8.091078 8.592956 8.846247 8.912386 12.243211

0.7 i = 1 0.453680 0.802120 1.346897 1.729229 1.791357 1.798351
i = 2 1.148985 1.838522 2.354548 3.344135 5.084510 5.288304
i = 3 4.470647 4.730129 5.262594 5.457534 6.185948 8.765374
i = 4 7.922987 8.075357 8.578247 8.831055 8.888787 12.242851

0.8 i = 1 0.449145 0.794458 1.338935 1.728667 1.791351 1.798351
i = 2 1.133458 1.811085 2.308274 3.262195 5.060628 5.288303
i = 3 4.447426 4.709603 5.244106 5.434486 6.039484 8.765346
i = 4 7.910391 8.063217 8.566916 8.819416 8.871664 12.242471

0.9 i = 1 0.444817 0.787119 1.331057 1.728096 1.791344 1.798351
i = 2 1.120021 1.787425 2.268269 3.189274 5.032954 5.288302
i = 3 4.428484 4.692947 5.229221 5.416317 5.917978 8.765317
i = 4 7.900366 8.053561 8.55792 8.810214 8.858695 12.24207

1.0 i = 1 0.440681 0.780079 1.323269 1.727517 1.791337 1.798351
i = 2 1.108270 1.766798 2.233320 3.123802 5.001279 5.288301
i = 3 4.412739 4.679163 5.216983 5.401643 5.817447 8.765287
i = 4 7.892198 8.045698 8.550605 8.802759 8.848542 12.241646
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α0, in this case, increases from 0.0 up to 1.0, the first four 
dimensionless natural frequency coefficients of the NAFG 
beam decrease from 2.4937, 5.5291, 8.9233 and 12.3591, 
and tend to 1.6868, 4.6819, 8.0428 and 11.4774 for the high 

stiffness ratios (RL = TL = 105), respectively. This latter state 
corresponds to a free-clamped beam, and clearly, the effect 
of α0 on the natural frequencies of the beam is significant 
for this case.

Table 7   First four 
dimensionless natural frequency 
coefficients Ωi, i = 1,2,3,4 for 
Case 2

α0 Ωi T0 = RL

0.1 1 10 100 1000 105

0.0 i = 1 1.086947 1.853565 2.786607 3.950757 4.477375 4.546696
i = 2 4.584865 4.729431 5.276481 6.099570 7.601809 7.965140
i = 3 7.993467 8.075544 8.498378 9.017535 10.362548 11.424005
i = 4 11.451488 11.507588 11.850990 12.329871 13.062259 14.890699

0.1 i = 1 1.030341 1.749222 2.611414 3.839483 4.474622 4.546696
i = 2 4.250563 4.396180 4.904843 5.526696 7.442037 7.965127
i = 3 7.517835 7.601384 8.013731 8.414859 9.330434 11.423841
i = 4 10.889682 10.947114 11.289602 11.711207 11.945292 14.889624

0.2 i = 1 0.985890 1.668037 2.475605 3.722711 4.471647 4.546696
i = 2 4.074429 4.224818 4.725622 5.213575 7.203436 7.965113
i = 3 7.348840 7.434500 7.850616 8.223928 8.712604 11.423671
i = 4 10.742221 10.800748 11.147281 11.562834 11.700075 14.888431

0.3 i = 1 0.949595 1.602372 2.367138 3.608526 4.468424 4.546696
i = 2 3.965884 4.121183 4.622427 5.031070 6.922284 7.965099
i = 3 7.264238 7.351341 7.771049 8.135053 8.418793 11.423494
i = 4 10.676131 10.735264 11.084244 11.498611 11.608987 14.887100

0.4 i = 1 0.919111 1.547684 2.278006 3.501813 4.464924 4.546695
i = 2 3.892209 4.051857 4.555861 4.916588 6.650440 7.965085
i = 3 7.213699 7.301794 7.724204 8.084235 8.273991 11.423312
i = 4 10.638791 10.698299 11.048835 11.462956 11.562563 14.885605

0.5 i = 1 0.892957 1.501101 2.202999 3.404390 4.461114 4.546695
i = 2 3.838881 4.002251 4.509528 4.840122 6.409567 7.965071
i = 3 7.180157 7.268965 7.693400 8.051463 8.194370 11.423122
i = 4 10.614825 10.674586 11.026186 11.440311 11.534590 14.883915

0.6 i = 1 0.870140 1.460712 2.138645 3.316285 4.456955 4.546695
i = 2 3.798471 3.965009 4.475486 4.786310 6.201187 7.965057
i = 3 7.156291 7.245634 7.671622 8.028612 8.145660 11.422926
i = 4 10.598148 10.658091 11.010461 11.424664 11.515933 14.881989

0.7 i = 1 0.849965 1.425188 2.082551 3.236750 4.452405 4.546694
i = 2 3.766781 3.936026 4.449445 4.746778 6.021036 7.965043
i = 3 7.138449 7.228207 7.655417 8.011782 8.113267 11.422722
i = 4 10.585878 10.645958 10.998909 11.413209 11.502616 14.879774

0.8 i = 1 0.831929 1.393574 2.033016 3.164804 4.447413 4.546694
i = 2 3.741256 3.912831 4.428896 4.716698 5.864281 7.965029
i = 3 7.124608 7.214698 7.642892 7.998876 8.090334 11.422509
i = 4 10.576473 10.636659 10.990066 11.404462 11.492639 14.877202

0.9 i = 1 0.815655 1.365163 1.988795 3.099473 4.441923 4.546694
i = 2 3.720254 3.893850 4.412275 4.693138 5.726798 7.965014
i = 3 7.113561 7.203921 7.632922 7.988668 8.073310 11.422288
i = 4 10.569035 10.629306 10.983078 11.397564 11.484887 14.874180

1.0 i = 1 0.800857 1.339417 1.948954 3.039880 4.435872 4.546694
i = 2 3.702667 3.878029 4.398559 4.674236 5.605309 7.965000
i = 3 7.104539 7.195123 7.624798 7.980393 8.060202 11.422059
i = 4 10.563005 10.623346 10.977419 11.391986 11.478692 14.870582
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As seen in Fig.  10 and Table 10, it is observed that 
increasing the end mass ratio α0 always causes a decrease in 
the values of Ωi (i = 1,2,3,4) for the beam, regardless of the 
quantities of the stiffness ratios. On average and based on 

the amounts of Ωi (i = 1,2,3,4), Ω4 and Ω1, in this case, have 
the lowest and highest sensitivity to the variation of the end 
mass ratio, respectively. Accordingly, the first dimension-
less natural frequency coefficient in case 5 can reduce by 

Table 8   First four 
dimensionless natural frequency 
coefficients Ωi, i = 1,2,3,4 for 
Case 3

α0 Ωi T0 = TL

0.1 1 10 100 1000 105

0.0 i = 1 0.680777 1.207542 2.094774 3.099660 3.430093 3.474321
i = 2 1.041079 1.848213 3.232774 5.154749 6.684785 7.000638
i = 3 5.305762 5.324498 5.510301 6.873084 9.438575 10.487663
i = 4 8.770339 8.774522 8.816701 9.260531 11.775333 13.966329

0.1 i = 1 0.650939 1.155535 2.019141 3.074849 3.429591 3.474321
i = 2 1.016500 1.802904 3.123483 4.794855 6.628881 7.000632
i = 3 4.921946 4.940368 5.128358 6.478026 8.757783 10.487572
i = 4 8.266864 8.270501 8.307540 8.727401 10.741093 13.965648

0.2 i = 1 0.625984 1.111780 1.951892 3.047748 3.429075 3.474321
i = 2 1.001600 1.775174 3.051364 4.512309 6.549470 7.000627
i = 3 4.735044 4.753902 4.950000 6.317574 8.131351 10.487479
i = 4 8.100841 8.104440 8.141232 8.569501 10.439332 13.964912

0.3 i = 1 0.604840 1.074567 1.892510 3.018510 3.428546 3.474321
i = 2 0.991699 1.756663 3.001630 4.303171 6.440468 7.000621
i = 3 4.624974 4.644434 4.849092 6.238946 7.716564 10.487383
i = 4 8.020217 8.023844 8.060988 8.497953 10.329986 13.964112

0.4 i = 1 0.586662 1.042493 1.839996 2.987408 3.428001 3.474321
i = 2 0.984680 1.743506 2.965787 4.146508 6.303621 7.000615
i = 3 4.552431 4.572474 4.784704 6.193565 7.459409 10.487285
i = 4 7.972819 7.976479 8.013999 8.457584 10.276238 13.963240

0.5 i = 1 0.570818 1.014490 1.793317 2.954822 3.427442 3.474321
i = 2 0.979459 1.733707 2.938950 4.026684 6.150782 7.000609
i = 3 4.501000 4.521563 4.740211 6.164324 7.303173 10.487185
i = 4 7.941670 7.945359 7.983201 8.431753 10.244679 13.962286

0.6 i = 1 0.556842 0.989757 1.751555 2.921198 3.426867 3.474321
i = 2 0.975432 1.726141 2.918209 3.933316 5.995942 7.000604
i = 3 4.462625 4.483642 4.707689 6.144004 7.206780 10.487082
i = 4 7.919652 7.923366 7.961473 8.413832 10.224012 13.961238

0.7 i = 1 0.544383 0.967691 1.713938 2.887000 3.426275 3.474321
i = 2 0.972235 1.720131 2.901750 3.859423 5.848057 7.000598
i = 3 4.432888 4.454299 4.682909 6.129096 7.144727 10.486976
i = 4 7.903271 7.907004 7.945330 8.400680 10.209458 13.960081

0.8 i = 1 0.533177 0.947828 1.679836 2.852664 3.425667 3.474321
i = 2 0.969637 1.715246 2.888401 3.800151 5.710842 7.000592
i = 3 4.409165 4.430918 4.663413 6.117707 7.102692 10.486867
i = 4 7.890609 7.894360 7.932866 8.390622 10.198664 13.958797

0.9 i = 1 0.523017 0.929812 1.648732 2.818567 3.425040 3.474321
i = 2 0.967485 1.711200 2.877372 3.752027 5.585030 7.000586
i = 3 4.389797 4.411849 4.647682 6.108728 7.072824 10.486755
i = 4 7.880531 7.884296 7.922954 8.382682 10.190345 13.957366

1.0 i = 1 0.513743 0.913361 1.620206 2.785012 3.424395 3.474321
i = 2 0.965675 1.707795 2.868117 3.712512 5.470049 7.000580
i = 3 4.373685 4.395999 4.634725 6.101472 7.050713 10.486641
i = 4 7.872319 7.876096 7.914883 8.376255 10.183739 13.955759
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nearly 32% whenever the end mass ratio α0 increases from 
0.0 to 1.0 for RL = TL = 105. On the other hand, by increas-
ing the stiffness ratios, Ωi (i = 1,2,3,4) of the beam always 
increases, irrespective of the value of the end mass ratio. 
At the most sensitive state, increasing RL and TL from the 
low stiffness ratios (RL = TL = 0.1) to the high stiffness ratios 
(RL = TL = 105) for α0 = 1.0, can raise the quantity of Ω2 for 
the NAFG beam in case 5 by about 3.9 times.

Case 6

From data reported in Table 11, it is concluded that for the 
free supported NAFG beam with two translational springs 
and two attached point masses at x = 0 and x = L (Fig. 5f), 
as the end mass ratios α0 = αL increase from 0.0 up to 1.0, 
the first four dimensionless natural frequency coefficients 
of the NAFG beam decrease from 0.6808, 1.0411, 5.3058 
and 8.7703, and tend to 0.5136, 0.7533, 3.8761 and 7.2400 
for the low stiffness ratios (T0 = TL = 0.1), respectively. As 
well, for the moderate stiffness ratios (T0 = TL = 10) in case 6, 
increasing α0 = αL from 0.0 to 1.0, cause reduce in the values 
of Ωi (i = 1,2,3,4) of the NAFG beam from 2.0948, 3.2328, 
5.5103 and 8.8167, and approach 1.6197, 2.3621, 3.9183 
and 7.2425, respectively. Moreover, when the end mass 
ratios α0 = αL in this case change, the first four dimensionless 
natural frequency coefficients of the NAFG beam remain 
almost constant for the high stiffness ratios (T0 = TL = 105). In 
other words, this latter state corresponds to a pinned–pinned 

beam, and obviously, the effect of α0 and αL on the natural 
frequencies of the beam are very negligible.

From Fig. 11 and Table 11, it is observed that increas-
ing the end mass ratios α0 = αL always causes a reduction in 
the values of Ωi (i = 1,2,3,4) for the beam, regardless of the 
quantities of the stiffness ratios. On average and about the 
quantities of Ωi (i = 1,2,3,4), changing of the end mass ratios 
α0 = αL have the lowest and highest effect on the values of 
Ω1 and Ω3 in this case, respectively. Accordingly, the third 
dimensionless natural frequency coefficient in case 6 can 
reduce by nearly 33% whenever the end mass ratios α0 = αL 
increase from 0.0 to 1.0 for T0 = TL = 50. On the other hand, 
by increasing the stiffness ratios, Ωi (i = 1,2,3,4) of the beam 
always increases, irrespective of the values of the end mass 
ratios. At the most sensitive state, increasing T0 and TL from 
the low stiffness ratios (T0 = TL = 0.1) to the high stiffness 
ratios (T0 = TL = 105) for α0 = αL = 1.0, can raise the quantity 
of Ω2 for the NAFG beam in case 6 by about 9.3 times.

Effects of the Symmetric Elastic Boundary 
Conditions with End Masses (Case 7)

The effects of the non-classical symmetric rotational and 
translational stiffness ratios (i.e., R0, T0, RL, and TL) with end 
mass ratios (i.e., α0 and αL), on the first four dimensionless 
natural frequency coefficients Ωi (i = 1,2,3,4) for the NAFG 
beam (p = 2, c = 0.5) introduced as case 7 are depicted in 
Fig. 12. Moreover, the corresponding numerical values of Ωi 
(i = 1,2,3,4) for this case are arranged in Tables 12.

Fig. 8   Plot first four dimensionless natural frequency coefficients Ωi, i = 1,2,3,4 for Case 3
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Based on data shown in Table 12, it is concluded for the 
symmetric elastic-supported NAFG beam with two trans-
lational and rotational springs at x = 0 and at x = L, and 
attached point masses at x = 0 and at x = L (Fig. 5g), when 

the all stiffness ratios R0 = T0 = RL = TL increase from 0.1 
(corresponding to low stiffness) up to 105 (corresponding 
to high stiffness), the first four dimensionless natural fre-
quency coefficients of the NAFG beam without end masses 

Table 9   First four 
dimensionless natural frequency 
coefficients Ωi, i = 1,2,3,4 for 
Case 4

α0 Ωi T0 = TL

0.1 1 10 100 1000 105

0.0 i = 1 0.786362 1.394196 2.417790 3.768180 4.441236 4.546306
i = 2 2.979499 3.037363 3.495958 5.227826 7.380717 7.962557
i = 3 6.293701 6.301177 6.375697 7.060569 9.751203 11.415886
i = 4 9.727917 9.729973 9.750594 9.961668 11.795283 14.872063

0.1 i = 1 0.774296 1.370968 2.356023 3.700761 4.438720 4.546306
i = 2 2.755013 2.812969 3.274784 4.924532 7.265749 7.962543
i = 3 5.880682 5.886787 5.948369 6.559193 9.030947 11.415723
i = 4 9.204771 9.206215 9.220740 9.374329 10.870579 14.871002

0.2 i = 1 0.763065 1.348904 2.292578 3.622372 4.436006 4.546305
i = 2 2.608931 2.668255 3.142262 4.698135 7.085937 7.962530
i = 3 5.704838 5.710538 5.768453 6.366119 8.450009 11.415554
i = 4 9.046640 9.047979 9.061479 9.206279 10.627713 14.869825

0.3 i = 1 0.752577 1.327998 2.230791 3.537439 4.433074 4.546305
i = 2 2.505181 2.566718 3.058265 4.545896 6.852090 7.962516
i = 3 5.609025 5.614612 5.671654 6.273801 8.139344 11.415379
i = 4 8.972344 8.973660 8.986933 9.130310 10.542003 14.868513

0.4 i = 1 0.742749 1.308218 2.172648 3.451147 4.429896 4.546305
i = 2 2.427091 2.491325 3.002146 4.444451 6.606597 7.962502
i = 3 5.548978 5.554547 5.611582 6.221320 7.981949 11.415198
i = 4 8.929396 8.930708 8.943936 9.087389 10.499982 14.867040

0.5 i = 1 0.733512 1.289512 2.118948 3.367472 4.426446 4.546304
i = 2 2.365872 2.433051 2.962853 4.375355 6.379077 7.962488
i = 3 5.507885 5.513469 5.570777 6.187850 7.896533 11.415010
i = 4 8.901457 8.902769 8.916006 9.059880 10.475279 14.865376

0.6 i = 1 0.724809 1.271821 2.069766 3.288611 4.422689 4.546304
i = 2 2.316414 2.386638 2.934201 4.326740 6.177752 7.962474
i = 3 5.478017 5.483627 5.541289 6.164762 7.845401 11.414814
i = 4 8.881843 8.883157 8.896419 9.040768 10.459076 14.863481

0.7 i = 1 0.716586 1.255081 2.024834 3.215403 4.418588 4.546304
i = 2 2.275523 2.348802 2.912575 4.291344 6.001564 7.962460
i = 3 5.455336 5.460975 5.518999 6.147916 7.812068 11.414612
i = 4 8.867320 8.868636 8.881927 9.026725 10.447646 14.861304

0.8 i = 1 0.708799 1.239227 1.983748 3.147896 4.414101 4.546304
i = 2 2.241088 2.317372 2.895771 4.264736 5.847124 7.962446
i = 3 5.437530 5.443199 5.501566 6.135101 7.788851 11.414401
i = 4 8.856135 8.857455 8.870773 9.015973 10.439157 14.858779

0.9 i = 1 0.701410 1.224197 1.946085 3.085765 4.409179 4.546303
i = 2 2.211652 2.290860 2.882389 4.244161 5.710991 7.962431
i = 3 5.423184 5.428879 5.487562 6.125034 7.771841 11.414182
i = 4 8.847258 8.848580 8.861924 9.007479 10.432608 14.855816

1.0 i = 1 0.694383 1.209931 1.911445 3.028539 4.403767 4.546303
i = 2 2.186176 2.268203 2.871510 4.227857 5.590234 7.962417
i = 3 5.411378 5.417099 5.476067 6.116919 7.758880 11.413954
i = 4 8.840042 8.841366 8.854733 9.000600 10.427402 14.852294
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(i.e., α0 = αL = 0) increase considerably from 0.7735, 1.5413, 
5.3511 and 8.7984, and tend to 5.2687, 8.7315, 12.2044 
and 15.6604, respectively. Also, for the end mass ratios 
α0 = αL = 1.0 in case 7, increasing R0 = T0 = RL = TL from 
0.1 to 105, cause raise in the values of Ωi (i = 1,2,3,4) of 
the NAFG beam from 0.6266, 1.0391, 3.9183 and 7.2606, 
and approach 5.2687, 8.7309, 12.1974 and 15.5840, respec-
tively. Note that, in Table 12, the results from [1] are given 
in square brackets.

According to Fig. 12 and Table 12, it is observed that 
increasing all stiffness ratios always causes an increase in 
the values of Ωi (i = 1,2,3,4) for the beam, regardless of 
the quantities of the end mass ratios. Based on the slope of 
the Ωi–stiffness ratios curves, in this case, Ω4 and Ω1 have 
the lowest and highest sensitivity versus the simultaneous 
change of the stiffness ratios, respectively. Accordingly, 
increasing R0 = T0 = RL = TL from the low stiffness ratios 
(i.e., 0.1) to the high stiffness ratios (i.e., 105) for α0 = 1.0, 
can raise the quantity of Ω1 for the NAFG beam in case 7 by 
about 8.4 times. On the other hand, by increasing the end 
mass ratios, Ωi (i = 1,2,3,4) of the beam always decreases, 
irrespective of the amount of the stiffness ratios. On aver-
age, the first and second dimensionless natural frequency 
coefficients in case 7 have the lowest and highest variation 
versus the changing of the end mass ratios, respectively. At 
the most sensitive state, the quantity of Ω2 for the NAFG 
beam in the case 7 can reduce by nearly 33% whenever 
the end mass ratios α0 = αL increase from 0.0 to 1.0 for 
R0 = T0 = RL = TL = 0.1.

Effects of the NAFG Parameters with End Mass (Case 
8)

In Figs. 13 and 14, changing of the first four dimension-
less natural frequency coefficients Ωi (i = 1,2,3,4) for the 
NAFG beam introduced as case 8 to the variation of the 
NAFG parameters, namely, the gradient index p and gradi-
ent coefficient c are investigated, respectively. Moreover, in 
Tables 13 and 14, the corresponding numerical values of Ωi 
(i = 1,2,3,4) for this case are presented, respectively.

By observing data in Table 13, it is founded that for the 
free-fixed supported NAFG beam with the translational 
and rotational springs at x = 0, and attached point mass at 
x = 0 (Fig. 5h), whereas the gradient index p increases from 
-1 up to 3, the first four dimensionless natural frequency 
coefficients of the NAFG beam without end masses (i.e., 
α0 = αL = 0) increase from 2.0836, 5.2238, 8.7390 and 
12.2324, and tend to 2.6398, 5.6361, 8.9967 and 12.4216, 
respectively. In addition, for the end mass ratio α0 = 1.0 in 
case 8, increasing p from -1 to 3, causes an increase in the 
values of Ωi (i = 1,2,3,4) of the NAFG beam from 1.3563, 
4.4770, 7.9310 and 11.4057, and approach 1.8079, 4.7539, 
8.0905 and 11.5185, respectively. Note that, in Table 13, the 
results from [1] are given in square brackets.

As seen in Fig.  13 and Table 13, it is observed that 
increasing the gradient index p always causes an increase 
linearly in the values of Ωi (i = 1,2,3,4) for the beam, regard-
less of the quantity of the end mass ratio. This effect is more 
pronounced for the first natural frequency of the NAFG 

Fig. 9   Plot first four dimensionless natural frequency coefficients Ωi, i = 1,2,3,4 for Case 4
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cantilever beam and negligible for the fourth natural fre-
quency of one. In other words, based on the slope of the 
Ωi–p curves, in this case, Ω4 and Ω1 have the lowest and 
highest sensitivity concerning the change of the gradient 

index, respectively. Accordingly, the first dimensionless nat-
ural frequency coefficient in case 8 with c = 0.5, can increase 
by about 33% whenever the gradient index increases from 
-1 to 3 for α0 = 1.0. On the other hand, by increasing the 

Table 10   First four 
dimensionless natural frequency 
coefficients Ωi, i = 1,2,3,4 for 
Case 5

α0 Ωi RL = TL

0.1 1 10 100 1000 105

0.0 i = 1 0.717392 1.263346 2.045010 2.436468 2.487953 2.493687
i = 2 1.464700 2.402279 3.269137 4.671098 5.439950 5.529123
i = 3 5.336445 5.563254 6.135678 6.751019 8.472788 8.923314
i = 4 8.788093 8.928778 9.436368 9.813393 11.057142 12.359129

0.1 i = 1 0.701276 1.231676 1.951258 2.263075 2.302045 2.306384
i = 2 1.397066 2.279157 3.122039 4.479812 5.091026 5.158844
i = 3 4.954523 5.189413 5.752133 6.424900 8.065602 8.425192
i = 4 8.285453 8.430766 8.934812 9.313832 10.658500 11.784370

0.2 i = 1 0.686522 1.202713 1.871746 2.135359 2.167651 2.171251
i = 2 1.351095 2.198196 3.038250 4.377739 4.927572 4.988119
i = 3 4.769614 5.015173 5.586799 6.299489 7.925526 8.263346
i = 4 8.120021 8.269272 8.779618 9.165320 10.551590 11.643466

0.3 i = 1 0.672988 1.176246 1.804231 2.036164 2.064348 2.067494
i = 2 1.317735 2.141112 2.985348 4.315814 4.834202 4.891218
i = 3 4.661149 4.915515 5.496363 6.235086 7.856714 8.185235
i = 4 8.039750 8.191402 8.706131 9.096065 10.503554 11.581599

0.4 i = 1 0.660540 1.152029 1.746339 1.956006 1.981406 1.984244
i = 2 1.292409 2.098815 2.949313 4.274574 4.774055 4.829005
i = 3 4.589867 4.851169 5.439604 6.196193 7.816054 8.139463
i = 4 7.992578 8.145795 8.663491 9.056195 10.476401 11.546980

0.5 i = 1 0.649051 1.129814 1.696103 1.889281 1.912662 1.915277
i = 2 1.272526 2.066289 2.923344 4.245238 4.732150 4.785748
i = 3 4.539439 4.806238 5.400737 6.170238 7.789258 8.109443
i = 4 7.961586 8.115893 8.635692 9.030324 10.458971 11.524884

0.6 i = 1 0.638414 1.109370 1.652005 1.832461 1.854304 1.856749
i = 2 1.256507 2.040542 2.903807 4.223339 4.701306 4.753954
i = 3 4.501876 4.773102 5.372479 6.151711 7.770284 8.088253
i = 4 7.939684 8.094792 8.616147 9.012195 10.446844 11.509564

0.7 i = 1 0.628533 1.090492 1.612884 1.783202 1.803829 1.806139
i = 2 1.243330 2.019683 2.888609 4.206384 4.677667 4.729609
i = 3 4.472808 4.747663 5.351020 6.137832 7.756150 8.072502
i = 4 7.923390 8.079109 8.601662 8.998788 10.437921 11.498321

0.8 i = 1 0.619323 1.072999 1.577853 1.739879 1.759517 1.761718
i = 2 1.232305 2.002459 2.876467 4.192875 4.658978 4.710376
i = 3 4.449644 4.727521 5.334173 6.127052 7.745216 8.060337
i = 4 7.910798 8.066999 8.590498 8.988474 10.431082 11.489719

0.9 i = 1 0.610714 1.056736 1.546226 1.701326 1.720139 1.722249
i = 2 1.222947 1.988008 2.866551 4.181863 4.643833 4.694800
i = 3 4.430750 4.711180 5.320600 6.118439 7.736507 8.050660
i = 4 7.900776 8.057366 8.581632 8.980294 10.425674 11.482927

1.0 i = 1 0.602642 1.041565 1.517467 1.666678 1.684792 1.686824
i = 2 1.214907 1.975718 2.858307 4.172717 4.631314 4.681929
i = 3 4.415045 4.697657 5.309430 6.111401 7.729407 8.042778
i = 4 7.892610 8.049521 8.574421 8.973648 10.421290 11.477427
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mass ratio α0, Ωi (i = 1,2,3,4) of the beam always decreases, 
irrespective of the value of the gradient index. At the most 
sensitive state, increasing α0 from 0.0 to 1.0 for p = -1 can 
reduce the quantity of Ω1 for the NAFG beam in case 8 with 
c = 0.5 by nearly 35%.

From data reported in Table 14, it is observed that for the 
free-fixed supported NAFG beam with the translational and 
rotational springs at x = 0, and attached point mass at x = 0 
(Fig. 5h), whenever the gradient coefficient c increases from 
− 0.50 up to 0.50, the first four dimensionless natural fre-
quency coefficients of the NAFG beam without end masses 
(i.e., α0 = αL = 0) increase from 1.1393, 3.6311, 6.5187 and 
9.2575, and tend to 2.4937, 5.5300, 8.9272 and 12.3697, 
respectively. As well, for the end mass ratio α0 = 1.0 in case 
8, increasing c from -0.50 to 0.50, causes an increase in the 
values of Ωi (i = 1,2,3,4) of the NAFG beam from 0.7445, 
3.1768, 5.9856 and 8.6900, and approach 1.6868, 4.6824, 
8.0456 and 11.4859, respectively. Note that, in Table 14, the 
results from [1] are given in square brackets.

From Fig. 14 and Table 14, it is concluded that increasing 
the gradient coefficient c always causes an increase almost 
linearly in the values of Ωi (i = 1,2,3,4) for the beam, regard-
less of the amount of the end mass ratio α0. Based on the 
slope of the Ωi–c curves, in this case, Ω1 and Ω4 have the 
lowest and highest sensitivity versus the change of the gra-
dient coefficient, respectively. Accordingly, the four dimen-
sionless natural frequency coefficient in case 8 with p = 2 
can increase by about 32% whenever gradient coefficient c 
increases from − 0.50 to 0.50 for α0 = 1.0. On the other hand, 
by increasing the mass ratio α0, Ωi (i = 1,2,3,4) of the beam 

always decreases, irrespective of the value of the gradient 
coefficient. At the most sensitive state, increasing α0 from 
0.0 to 1.0 for c = − 0.50 can reduce the quantity of Ω1 for the 
NAFG beam in case 8 with p = 2 by nearly 35%. Moreover, it 
should be noted that for the same conditions and regardless 
of the amount of the end mass ratio α0, the natural frequen-
cies of the NAFG cantilever beam with positive and negative 
gradient coefficient c always are greater and smaller than 
those of the uniform beam (i.e., c = 0), respectively.

By observing data in Tables 13 and 14 and according 
to graphs in Figs. 13 and 14, it is found that as the NAFG 
parameters increase, Ωi (i = 1,2,3,4) for the NAFG cantilever 
beam always increases. This influence is more considerable 
whenever the gradient coefficient c increases. In other words, 
the effect of the gradient coefficient c on the natural frequen-
cies of the NAFG cantilever beam is more significant than 
the gradient index p. On the other hand, changing the value 
of c in lower frequencies is considerable while changing the 
value of p in higher frequencies is significant, irrespective 
of the amount of the end mass ratio α0. Furthermore, by 
increasing the mass ratio α0, Ωi (i = 1,2,3,4) of NAFG canti-
lever beams always decreases, irrespective of the values of 
NAFG parameters. This effect is more pronounced for the 
first natural frequency.
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Fig. 10   Plot first four dimensionless natural frequency coefficients Ωi, i = 1,2,3,4 for Case 5
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Table 11   First four 
dimensionless natural frequency 
coefficients Ωi, i = 1,2,3,4 for 
Case 6

α0 = αL Ωi T0 = TL

0.1 1 10 100 1000 105

0.0 i = 1 0.680777 1.207542 2.094774 3.099660 3.430093 3.474321
i = 2 1.041079 1.848213 3.232774 5.154749 6.684785 7.000638
i = 3 5.305762 5.324498 5.510301 6.873084 9.438575 10.487663
i = 4 8.770339 8.774522 8.816701 9.260531 11.775333 13.966329

0.1 i = 1 0.650530 1.154811 2.017931 3.074085 3.429569 3.474321
i = 2 0.972089 1.725778 3.017326 4.771797 6.626136 7.000632
i = 3 4.774292 4.788777 4.937985 6.210111 8.742497 10.487565
i = 4 8.036360 8.038684 8.062339 8.340163 10.593360 13.965591

0.2 i = 1 0.625507 1.110931 1.950394 3.046400 3.429031 3.474321
i = 2 0.924606 1.641640 2.871557 4.484843 6.544850 7.000626
i = 3 4.498862 4.510484 4.633362 5.837992 8.115497 10.487464
i = 4 7.746795 7.748291 7.763555 7.949053 10.126346 13.964796

0.3 i = 1 0.604393 1.073770 1.891058 3.016756 3.428479 3.474321
i = 2 0.888638 1.577986 2.763127 4.273803 6.435261 7.000620
i = 3 4.325815 4.335370 4.438146 5.575553 7.697244 10.487361
i = 4 7.587285 7.588331 7.598992 7.729037 9.809809 13.963937

0.4 i = 1 0.586269 1.041791 1.838695 2.985415 3.427913 3.474321
i = 2 0.859755 1.526907 2.677116 4.115121 6.298961 7.000614
i = 3 4.205358 4.213356 4.300360 5.369509 7.434000 10.487255
i = 4 7.485145 7.485917 7.493775 7.588921 9.524159 13.963005

0.5 i = 1 0.570480 1.013885 1.792184 2.952729 3.427331 3.474321
i = 2 0.835650 1.484291 2.605798 3.992803 6.147103 7.000607
i = 3 4.116014 4.122807 4.197236 5.199307 7.270122 10.487147
i = 4 7.413813 7.414406 7.420433 7.492607 9.258111 13.961990

0.6 i = 1 0.556552 0.989238 1.750577 2.919114 3.426734 3.474321
i = 2 0.814981 1.447749 2.544788 3.896474 5.993145 7.000601
i = 3 4.046806 4.052648 4.116924 5.054622 7.165155 10.487037
i = 4 7.361063 7.361532 7.366298 7.422712 9.014844 13.960881

0.7 i = 1 0.544134 0.967245 1.713096 2.885000 3.426120 3.474321
i = 2 0.796902 1.415781 2.491401 3.819208 5.845905 7.000595
i = 3 3.991466 3.996542 4.052528 4.929288 7.093693 10.486923
i = 4 7.320422 7.320803 7.324665 7.369870 8.795628 13.959661

0.8 i = 1 0.532961 0.947443 1.679108 2.850794 3.425490 3.474321
i = 2 0.780846 1.387383 2.443893 3.756208 5.709138 7.000589
i = 3 3.946124 3.950575 3.999721 4.819213 7.041272 10.486807
i = 4 7.288129 7.288444 7.291637 7.328616 8.599363 13.958315

0.9 i = 1 0.522830 0.929478 1.648100 2.816850 3.424841 3.474321
i = 2 0.766415 1.361852 2.401068 3.704039 5.583634 7.000582
i = 3 3.908248 3.912183 3.955631 4.721505 6.999833 10.486687
i = 4 7.261841 7.262106 7.264788 7.295570 8.423965 13.956819

1.0 i = 1 0.513580 0.913069 1.619654 2.783454 3.424174 3.474321
i = 2 0.753318 1.338675 2.362073 3.660187 5.468872 7.000576
i = 3 3.876107 3.879610 3.918269 4.634032 6.964740 10.486565
i = 4 7.240019 7.240245 7.242530 7.268534 8.267199 13.955148
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Conclusion

The objective of this paper was to present the analytical 
solutions for investigating the free transverse vibration and 
obtaining the exact natural frequencies of the power-law 
NAFG beams with attached end point masses and general 

boundary conditions. In this way, based on the Euler–Ber-
noulli beam theory, the governing differential equation of 
motion was solved accurately using the Bessel functions. 
Then, the constant coefficients matrices of the power-
law NAFG beams for c > 0, c = 0, and c < 0, with the end 
point masses and general elastic supports were derived 

Fig. 11   Plot first four dimensionless natural frequency coefficients Ωi, i = 1,2,3,4 for Case 6

Fig. 12   Plot first four dimensionless natural frequency coefficients Ωi, i = 1,2,3,4 for Case 7
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by applying the boundary conditions. Accordingly, by 
taking the constant coefficients matrix determinant equal 
to zero and calculating the positive real roots, the natural 
frequencies were obtained. By comparing the responses of 

the numerical examples with the available solutions, the 
accuracy, capability, and efficiency of the proposed for-
mulations were demonstrated. Subsequently, the effects of 
the attached end point masses, rotational and translational 

Table 12   First four 
dimensionless natural frequency 
coefficients Ωi, i = 1,2,3,4 for 
Case 7

* The values that are shown in square brackets are given by Bambaeechee  [1]

α0 = αL Ωi R0 = T0 = RL = TL

0.1 1 10 100 1000 105

0.00 i = 1 0.773524 1.371950 [1.3719]* 2.387006 [2.3870] 3.824055 5.006038 5.268707
i = 2 1.541293 2.587009 [2.5870] 3.704935 [3.7049] 5.290770 7.608084 8.731475
i = 3 5.351114 5.681446 [5.6814] 6.608862 [6.6089] 7.445603 9.748147 12.204373
i = 4 8.798436 9.019529 9.873495 10.559896 11.940671 15.660438

0.25 i = 1 0.720375 1.277536 2.216517 3.566550 4.971390 5.268703
i = 2 1.299723 2.190715 3.219908 4.755226 6.959969 8.731337
i = 3 4.448281 4.770599 5.731002 6.535237 8.648349 12.202910
i = 4 7.681547 7.877324 8.743987 9.520505 10.491938 15.651032

0.50 i = 1 0.681463 1.208017 2.088795 3.352480 4.926971 5.268699
i = 2 1.177124 1.988217 2.958574 4.466989 6.420859 8.731196
i = 3 4.159542 4.472094 5.413675 6.149301 8.207496 12.201275
i = 4 7.436176 7.616372 8.443966 9.204906 9.870508 15.637810

0.75 i = 1 0.651157 1.153790 1.989122 3.181165 4.870441 5.268695
i = 2 1.097318 1.856129 2.783973 4.270602 6.053366 8.731051
i = 3 4.010491 4.316276 5.242684 5.927737 7.898680 12.199436
i = 4 7.324667 7.496401 8.299499 9.048558 9.520583 15.617780

1.00 i = 1 0.626553 1.109764 1.908565 3.042613 4.800680 5.268691
i = 2 1.039137 1.759635 2.654071 4.118094 5.804623 8.730902
i = 3 3.918310 4.219259 5.134389 5.784098 7.632208 12.197350
i = 4 7.260605 7.427087 8.213958 8.954983 9.313613 15.584018
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Fig. 13   Plot first four dimensionless natural frequency coefficients Ωi, i = 1,2,3,4 for Case 8 with c = 0.50
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Fig. 14   Plot first four dimensionless natural frequency coefficients Ωi, i = 1,2,3,4 for Case 8 with p = 2

Table 13   First four 
dimensionless natural frequency 
coefficients Ωi, i = 1,2,3,4 for 
Case 8 with c = 0.50

* The values that are shown in square brackets are given by Bambaeechee [1]

α0 Ωi P

− 1 0 1 2 3

0.00 i = 1 2.083589 2.215475 [2.2155]* 2.352241 [2.3522] 2.493745 [2.4937] 2.639825 [2.6398]
i = 2 5.223767 5.324065 [5.3241] 5.426062 [5.4261] 5.529994 [5.5300] 5.636070 [5.6361]
i = 3 8.739036 8.798246 [8.7982] 8.860973 [8.8610] 8.927155 [8.9272] 8.996737 [8.9967]
i = 4 12.232411 12.275118 12.320909 12.369747 12.421594

0.25 i = 1 1.724127 1.849107 1.979878 2.116313 2.258249
i = 2 4.681178 4.763829 4.848101 4.934337 5.022856
i = 3 8.083139 8.125680 8.171770 8.221368 8.274442
i = 4 11.522338 11.550527 11.581795 11.616114 11.653459

0.50 i = 1 1.548651 1.665056 1.787305 1.915303 2.048915
i = 2 4.559890 4.633964 4.709299 4.786280 4.865273
i = 3 7.988474 8.026307 8.067584 8.112277 8.160364
i = 4 11.448197 11.473574 11.501983 11.533402 11.567810

0.75 i = 1 1.436767 1.546570 1.662095 1.783264 1.909954
i = 2 4.506775 4.576647 4.647576 4.719973 4.794235
i = 3 7.951058 7.986929 8.026203 8.068854 8.114869
i = 4 11.420332 11.444620 11.471923 11.502221 11.535495

1.00 i = 1 1.356280 1.460920 1.571131 1.686844 1.807944
i = 2 4.476988 4.544394 4.612733 4.682433 4.753914
i = 3 7.931038 7.965841 8.004023 8.045563 8.090453
i = 4 11.405734 11.429446 11.456165 11.485871 11.518547
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elastic supports, and NAFG parameters on the values of the 
first four natural frequencies of the power-law NAFG beams 
for the eight parametric cases were studied comprehensively. 
The analytical solutions were presented in tabular and graph-
ical forms and could be used as either the benchmark prob-
lems or proper design of the composite beams with attached 
end point masses and general boundary conditions.

Based on the results of this research, the following impor-
tant points are concluded:

•	 As the end point mass ratios increase, the natural fre-
quencies of the power-law NAFG beam decrease. Among 
the cases studied, the natural frequency of the beam can 
reduce by up to 33% when the end point mass ratios 
increase.

•	 The natural frequencies of the power-law NAFG beam 
increase, as the stiffness ratios increase. Among the cases 
studied, the natural frequency of the beam can rise by up 
to 9.3 times, when the stiffness ratios increase.

•	 According to the slope of the Ω-α curves, the mass sensi-
tivity differs from one power-law NAFG beam to another, 
and from one mode of vibration to another.

•	 The sensitivity of the natural frequencies of the beam to 
the variation of the translational stiffness ratios is greater 
than the rotational stiffness ratios.

•	 As the power-law NAFG parameters increase, the natural 
frequencies of the cantilever beam increase. Neverthe-

less, the effect of the gradient coefficient c on the natural 
frequencies of the beam is more significant than the gra-
dient index p.

Appendix A

For the derivation of the general solution Eq. (9), the com-
pact form of the differential equation obtained in Eq. (8), 
according to Eq. (4), can be expressed as follows [67]:

Eq. (28) can be factored into:

Each one of the brackets in Eq. (29) is a Bessel operator. 
One can find the general solution of Wi(X) as:

where

(28)d2

dX2

[
Xp+2

d2Wi(X)

dX2

]
−

Ω4

i

c4
XpWi(X) = 0.

(29)

[
X−p d

dX

(
Xp+1 d

dX

)
+

Ω2

i

c2

][
X−p d

dX

(
Xp+1 d

dX

)
−

Ω2

i

c2

]
Wi(X) = 0.

(30)Wi(X) = Ai(X) + Bi(X),

Table 14   First four 
dimensionless natural frequency 
coefficients Ωi, i = 1,2,3,4 for 
Case 8 with p = 2

* The values that are shown in square brackets are given by Bambaeechee [1]

α0 Ωi c

− 0.50 − 0.25 0.00 (uniform) 0.25 0.50

0.00 i = 1 1.139338 1.526994 1.875104 [1.8751]* 2.195198 [2.1952] 2.493745 [2.9437]
i = 2 3.631083 4.205135 4.694091 [4.6941] 5.130393 [5.1304] 5.529994 [5.5300]
i = 3 6.518745 7.233742 7.854757 [7.8548] 8.413556 [8.4136] 8.927155 [8.9272]
i = 4 9.257468 10.192160 10.995541 11.713400 12.369747

0.25 i = 1 0.944366 1.273885 1.573751 1.852910 2.116313
i = 2 3.307288 3.805436 4.225113 4.596476 4.934337
i = 3 6.098766 6.733094 7.281236 7.772142 8.221368
i = 4 8.783626 9.638535 10.370450 11.022157 11.616114

0.50 i = 1 0.849179 1.147515 1.419964 1.674438 1.915303
i = 2 3.230552 3.709456 4.111133 4.465226 4.786280
i = 3 6.029270 6.652292 7.190335 7.671889 8.112277
i = 4 8.724733 9.572638 10.298445 10.944603 11.533402

0.75 i = 1 0.788319 1.066145 1.320266 1.557967 1.783264
i = 2 3.196233 3.666484 4.060080 4.406433 4.719973
i = 3 6.000970 6.619634 7.153811 7.631808 8.068854
i = 4 8.702001 9.547408 10.271046 10.915241 11.502221

1.00 i = 1 0.744451 1.007290 1.247917 1.473178 1.686844
i = 2 3.176777 3.642120 4.031139 4.373123 4.682433
i = 3 5.985624 6.601987 7.134132 7.610264 8.045563
i = 4 8.689959 9.534090 10.256621 10.899816 11.485871
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The Eq. (31) is the regular Bessel differential equation, 
and the solution can be written as:

where C1 and C2 are unknown constants, and Jp and Yp are, 
respectively, the Bessel functions of first and second kinds 
of order p. The Eq. (32) is known as the modified Bessel 
differential equation, and the solution can be expressed as:

where C3 and C4 are unknown constants, and Ip and Kp 
are, respectively, the modified Bessel functions of first and 
second kinds of order p. Therefore, the general solution of 
Wi(X) according to Eq. (30) is:

Appendix B

The elements of the constant coefficients matrix, A for the 
NAFG beams with the positive gradient coefficient (i.e., 
c > 0), carrying tip masses and various elastic boundary 
conditions are as follows:

(31)

[
X−p d

dX

(
Xp+1 d

dX

)
+

Ω2

i

c2

]
Ai(X) = 0,

(32)

[
X−p d

dX

(
Xp+1 d

dX

)
−

Ω2

i

c2

]
Bi(X) = 0.

(33)Ai(X) = X
−

p

2

�
C1Jp

�
2Ωi

√
X

c

�
+ C2Yp

�
2Ωi

√
X

c

��
,

(34)Bi(X) = X
−

p

2

�
C3Ip

�
2Ωi

√
X

c

�
+ C4Kp

�
2Ωi

√
X

c

��
,

(35)

Wi(X) = X
−

p

2

�
C1Jp

�
2Ωi

√
X

c

�
+C2Yp

�
2Ωi

√
X

c

�

+ C3Ip

�
2Ωi

√
X

c

�
+ C4Kp

�
2Ωi

√
X

c

��
.

(36)A11 = −ΩJp

(
2Ω

c

)
+
[
R0 + c(p + 1)

]
Jp+1

(
2Ω

c

)
,

(37)A12 = −ΩYp

(
2Ω

c

)
+
[
R0 + c(p + 1)

]
Yp+1

(
2Ω

c

)
,

(38)A13 = ΩIp

(
2Ω

c

)
−
[
R0 + c(p + 1)

]
Ip+1

(
2Ω

c

)
,

(39)A14 = ΩKp

(
2Ω

c

)
+
[
R0 + c(p + 1)

]
Kp+1

(
2Ω

c

)
,

(40)A21 =
(
T0 − �0Ω

4
)
Jp

(
2Ω

c

)
+ Ω3Jp+1

(
2Ω

c

)
,

(41)A22 =
(
T0 − �0Ω

4
)
Yp

(
2Ω

c

)
+ Ω3Yp+1

(
2Ω

c

)
,

(42)A23 =
(
T0 − �0Ω

4
)
Ip

(
2Ω

c

)
+ Ω3Ip+1

(
2Ω

c

)
,

(43)A24 =
(
T0 − �0Ω

4
)
Kp

(
2Ω

c

)
− Ω3Kp+1

(
2Ω

c

)
,

(44)

A31 = −Ω
√
1 + cJp

�
2Ω

√
1 + c

c

�

−
�
RL(1 + c) − c(p + 1)

�
Jp+1

�
2Ω

√
1 + c

c

�
,

(45)
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1 + cYp

�
2Ω
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1 + c

c

�

−
�
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�
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1 + cIp
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�

+
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√
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�
2Ω

√
1 + c

c

�

−
�
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1 + c

c

�
,

(48)

A41 =
�
−TL(1 + c)p+2 + �LΩ

4
�
Jp

�
2Ω

√
1 + c

c

�

+ Ω3(1 + c)
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2 Jp+1
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,

(49)

A42 =
�
−TL(1 + c)p+2 + �LΩ

4
�
Yp

�
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√
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�

+ Ω3(1 + c)
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For the uniform beam, i.e., c = 0, the entries of the 
unknown constants' matrix, A are as below:

(50)

A43 =
�
−TL(1 + c)p+2 + �LΩ

4
�
Ip

�
2Ω

√
1 + c

c

�

+ Ω3(1 + c)
p+

1

2 Ip+1

�
2Ω

√
1 + c

c

�
,

(51)

A44 =
�
−TL(1 + c)p+2 + �LΩ

4
�
Kp

�
2Ω

√
1 + c

c

�

− Ω3(1 + c)
p+

1

2Kp+1

�
2Ω

√
1 + c

c

�
.

(52)A11 = −R0

(53)A12 = −Ω

(54)A13 = −R0

(55)A14 = Ω

(56)A21 = −Ω3

(57)A22 = T0 − �0Ω
4

(58)A23 = Ω3

(59)A24 = T0 − �0Ω
4

(60)A31 = −Ω sin(Ω) + RL cos(Ω)

(61)A32 = −Ω cos(Ω) − RL sin(Ω)

(62)A33 = Ω sinh(Ω) + RL cosh(Ω)

(63)A34 = Ω cosh(Ω) + RL sinh(Ω)

(64)A41 = (−TL + �LΩ
4) sin(Ω) − Ω3 cos(Ω)

(65)A42 = (−TL + �LΩ
4) cos(Ω) + Ω3 sin(Ω)

(66)A43 = (−TL + �LΩ
4) sinh(Ω) + Ω3 cosh(Ω)

(67)A44 = (−TL + �LΩ
4) cosh(Ω) + Ω3 sinh(Ω)

The elements of the constant coefficients matrix, A for 
the NAFG beams with the negative gradient coefficient (i.e., 
-1 < c < 0), carrying tip masses and general elastic boundary 
conditions are as follows:

(68)A11 = −ΩJp

(
−
2Ω

c

)
−
[
R0 + c(p + 1)

]
Jp+1

(
−
2Ω

c

)

(69)A12 = −ΩYp

(
−
2Ω

c

)
−
[
R0 + c(p + 1)

]
Yp+1

(
−
2Ω

c

)

(70)A13 = ΩIp

(
−
2Ω

c

)
+
[
R0 + c(p + 1)

]
Ip+1

(
−
2Ω

c

)

(71)A14 = ΩKp

(
−
2Ω

c

)
−
[
R0 + c(p + 1)

]
Kp+1

(
−
2Ω

c

)

(72)A21 =
(
T0 − �0Ω

4
)
Jp

(
−
2Ω

c

)
− Ω3Jp+1

(
−
2Ω

c

)

(73)A22 =
(
T0 − �0Ω

4
)
Yp

(
−
2Ω

c

)
− Ω3Yp+1

(
−
2Ω

c

)

(74)A23 =
(
T0 − �0Ω

4
)
Ip

(
−
2Ω

c

)
− Ω3Ip+1

(
−
2Ω

c

)

(75)A24 =
(
T0 − �0Ω

4
)
Kp

(
−
2Ω

c

)
+ Ω3Kp+1

(
−
2Ω

c

)

(76)

A31 = −Ω
√
1 + cJp

�
−
2Ω

√
1 + c

c

�

+
�
RL(1 + c) − c(p + 1)

�
Jp+1

�
−
2Ω

√
1 + c

c

�

(77)

A32 = −Ω
√
1 + cYp

�
−
2Ω

√
1 + c

c

�

+
�
RL(1 + c) − c(p + 1)

�
Yp+1

�
−
2Ω

√
1 + c

c

�

(78)

A33 = Ω
√
1 + cIp

�
−
2Ω

√
1 + c

c

�

−
�
RL(1 + c) − c(p + 1)

�
Ip+1

�
−
2Ω

√
1 + c

c

�
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