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Abstract
This paper is devoted to the reliability analysis of rotor-bearing systems, based on the combination of Kriging metamodels 
and the First-Order Reliability Method (FORM). The main motivation arises from the fact that high-fidelity structural models 
generally lead to high computation costs, which can be strongly alleviated using surrogate models. Since applications to 
rotating machines have not been sufficiently explored so far, the contribution of the present paper consists in the evaluation 
of the performance, both in terms of accuracy and computational effort, of a numerical strategy based on the combination 
of Kriging metamodels and FORM to this type of machines, accounting for their typical frequency domain responses and 
applicable limit-states. Such an evaluation is made by confronting four different strategies, combining: (i) full finite ele-
ment models and Monte Carlo simulations; (ii) full finite element models and FORM; (iii) Kriging metamodels and Monte 
Carlo simulations; (iv) Kriging metamodels and FORM. Results show that the Kriging/FORM strategy provides substantial 
decrease of computation effort, while keeping satisfactory accuracy of reliability estimations. In addition, a procedure is 
proposed for improvement of the accuracy of Kriging/FORM reliability estimates, by enriching the Kriging design of experi-
ments in the vicinity of the Most Probable Failure Point.

Keywords  Uncertainty quantification · Structural reliability · First-order reliability method · Kriging · Rotor-bearing 
systems

Introduction

Assessing the influence of uncertainties in physical systems 
by using numerical models has become a topic of great 
interest in science and engineering lately. In this context, 
the identification of intrinsic uncertainties in model inputs, 
and quantitative assessment of their impact on the model 
response, is imperative to support the use of model predic-
tions in a decision-making process [1]. As a result, a great 
deal of effort has been devoted to the development of theo-
retical foundations and computational algorithms in the field 
of knowledge known as Uncertainty Quantification (UQ) 
[2–4].

Within the general scope of UQ, the objective of reli-
ability analysis in a probabilistic framework is to determine 
the probability that a given structural system will perform 

acceptably, given that its behavior, predicted by means of a 
structural model, depends on a set of uncertain parameters, 
modeled as random variables [5]. Obviously, the choice of 
the random variables (RVs) (along with others that can be 
considered as deterministic) must be decided in an early 
phase. The performance of the system is usually repre-
sented in terms of a nonlinear implicit performance function, 
known as limit-state function (LSF), denoted as g(�) , where 
� represents the vector of random variables X1,X2, ...,Xk.

From the geometrical point of view, the LSF is a hyper-
surface, described by a function g(�) = 0 on the k-dimen-
sional space of the random variables, that separates the 
region g(�) > 0 , in which the system performs satisfacto-
rily (also known as safe region), from the region g(�) < 0 , 
in which the system performance is unsatisfactory (unsafe 
region). Hence, the reliability is the probability that the 
stochastic system response is found in the safe region, i.e., 
R = P[g(�) > 0] . Complementarily, the probability of fail-
ure (PoF), is defined as Pf = P[g(�) < 0] = 1 − R.

It has been demonstrated that the estimation of reli-
ability directly from the definition above involves the 
computation of a multiple integral of the continuous joint 
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probability density function (PDF) of the random variables, 
fX1,X2,...,Xk

(x1, x2, ..., xk) , over the safe region. However, in the 
large majority of cases, this integration cannot be performed 
analytically and becomes impractical to compute numeri-
cally as the number of variables increases (the so-called 
curse of dimensionality [6]). An alternative approach is to 
estimate the reliability using Monte Carlo sampling (MCS) 
[7] on the space of the random variables, followed by the 
use of the structural model to compute the value of the per-
formance function for each of the samples. Again, the high 
computational cost involved in the calculation of the system 
responses for a large number of samples, required for achiev-
ing statistical convergence, makes this strategy unaffordable 
in many cases of practical interest where high-fidelity finite 
element (FE) models have to be used.

To circumvent these difficulties, approximate numerical 
procedures such as the First- and Second- Order Reliabil-
ity Method (FORM/SORM) have been developed and suc-
cessfully used, although they also present some limitations 
[8]. FORM performs a local approximation of the LSF by a 
hyperplane in the space of independent standardized Gauss-
ian variables. Given the properties of those variables, espe-
cially the rotational symmetry of the multivariate Gaussian 
PDF, the reliability is determined by finding the minimal 
distance from the origin of the standardized space to the 
hypersurface representing the LSF. Hence, the problem of 
reliability estimation is formulated as a constrained optimi-
zation problem. It has been shown that the performance of 
FORM is satisfactory when the LSF is linear or weakly non-
linear. On its turn, SORM uses a second-order representation 
of the LSF, thus improving the accuracy of FORM when the 
performance function is strongly nonlinear [9]. However, the 
computational cost required by SORM tend to be higher, and 
convergence difficulties can be encountered.

For most problems of structural mechanics, the LSF is 
not known explicitly as a function of the random variables. 
Instead, it is available implicitly, only at discrete points 
resulting from deterministic finite element simulations [8]. 
In this case, besides the high computational cost associ-
ated with repeated numerical analyses needed to map the 
limit-state surface, the use of approximate methods such as 
FORM/SORM can raise additional difficulties as the optimi-
zation algorithms typically use gradient-based solvers that 
require sufficient differentiability of the LSF and additional 
evaluations of the structural model [6].

The use of surrogate models, also known as metamodels, 
is being progressively consolidated as an effective means 
of achieving reduction of the computational cost involved 
in UQ, and particularly in reliability analysis [10–12]. A 
metamodel is understood as a simplified, computationally 
efficient substitute of the original model, which is able to 
represent, with satisfactory accuracy, the input-output rela-
tionship established for the quantities of interest in a given 

range of the random variables. In general, a metamodel is 
constructed by approximating a limited number of points 
obtained from simulations performed by using the original 
high-fidelity model. This procedure is known as training 
and the set of points used for training is known as design of 
experiments (DoE). With an explicit, continuous and smooth 
metamodel, FORM/SORM methods can be promptly used 
for reliability estimation [8].

One of the first applications of surrogate models in struc-
tural reliability problems is reported in [13]. After applying 
the Response Surface Method (RSM) in combination with 
an adaptive interpolation scheme to different structural sys-
tems, the authors have shown that surrogates can be used 
efficiently to replace highly nonlinear LSFs.

Besides the well-established RSM, many other types of 
surrogate modeling techniques are presently available in 
the literature, as summarized in [14]. These surrogates can 
be classified into three major groups: Geometric, Heuristic 
and Stochastic [15]. Among them, Kriging metamodels (also 
named Gaussian process regression) have been standing out 
from other surrogates [16–18].

The basis of the Kriging formalism is the regression of a 
Gaussian process, where the function being interpolated is 
treated as a realization of a Gaussian stochastic process with 
a covariance function chosen to characterize the correlations 
between the values of the function.

Both interpolation capability and local adaptability of 
Kriging surrogate models have proved to be handy features 
for reliability analyses with implicit nonlinear performance 
functions. In the early 2000’s, Kaymaz [19] investigated the 
use of Kriging for solving structural reliability problems, 
comparing it with the classical RSM. The author modified 
the DACE Matlab Kriging Toolbox [20] to be used in com-
bination with FORM and MCS. The results revealed that 
the parameters underlying the Kriging metamodel have sig-
nificant effect on reliability results. Also, the use of Kriging 
correlation function with Gaussian form was found to be 
more suitable for problems with nonlinear LSFs.

Gaspar et al. [21] and Shi et al. [22] assessed the effi-
ciency of Kriging interpolation models as surrogates for 
nonlinear finite element models in structural reliability 
problems. The authors compared the accuracy of a Kriging/
FORM-based reliability method applied to marine struc-
tures, considering different numbers of training points and 
orders of the polynomials adopted in the regression models. 
The results showed that Kriging metamodels could pro-
vide accurate failure probability estimates as the number 
of training points increased. In addition, a small effect of 
the polynomial regression order on the Kriging predictions 
was noticed.

Various authors have proposed enhanced Kriging-based 
techniques for structural reliability assessment, most of them 
focused on adaptive DoEs to improve the Kriging accuracy 
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in the vicinity of the limit-state surface. Bichon et. al [23] 
developed the Efficient Global Reliability Analysis (EGRA), 
an active learning technique that uses the expected feasibil-
ity function (EFF) to iteratively refine the surrogate train-
ing data. Echard et al. [24] combined an active ordinary 
Kriging surrogate with Monte Carlo sampling (AK-MCS). 
A learning function based on the Kriging local prediction 
and local variance, the so-called U-function, was proposed 
to be used in the enrichment process. Following this work, 
in reference [25] is presented a strategy combining ordinary 
Kriging metamodels with the Importance Sampling method 
(AK-IS) to assess small PoFs. The method enables to cor-
rect or validate the FORM approximation with a small num-
ber of evaluations of the structural models. More recently, 
Schöbi and Sudret [26] proposed an adaptive algorithm that 
uses Polynomial Chaos Expansion (PCE) with Kriging and 
Monte Carlo sampling (APCK-MCS) to improve the PoF 
estimation.

When it comes to rotating machines, which can be found 
in aerospace vehicles, electric power plants, oil and gas 
production facilities and many other industrial applications, 
uncertainty quantification is essential in the design process to 
ensure good performance. In addition, since these machines 
are very expensive and their operation usually involves high 
energy (large mass under high rotation speeds), operating 
conditions must be strictly controlled. However, given the 
inherent uncertainties affecting structural properties, envi-
ronmental conditions and external loads, absolute satisfac-
tory performance (including necessary levels of structural 
safety, as a particular case) cannot be always guaranteed 
[27]. Instead, a certain level of probabilistic assurance can 
be secured through reliability analysis.

Stochastic analyses of rotating machines have been 
addressed by some authors. In reference [28], the authors 
investigated the effect of uncertain parameters on the 
dynamic behavior of a flexible rotor supported by two fluid-
film bearings. The uncertainties of the bearing parameters 
(oil viscosity and radial clearance) were modeled using 
fuzzy dynamic analysis. The results obtained from this 
approach were compared to counterparts from Monte Carlo 
simulations. The authors concluded that both approaches 
led to similar outcomes, and that “fuzzy analysis seems to 
be more adequate when the stochastic process that models 
the uncertain parameters of the bearings is not well defined”.

Visnadi and Castro [29] considered uncertainties affect-
ing the stability threshold of rotating systems supported by 
cylindrical hydrodynamic bearings prone to fluid-induced 
instability. The parameters considered as random were the 
bearing clearance and oil temperature. Monte Carlo simula-
tion was used for uncertainty quantification.

Reference [30] addressed rotating machines having 
journal bearings exhibiting nonlinear behavior, in the pres-
ence of uncertainties. Polynomial Chaos Expansion was 

employed to model the stochastic responses, and the stochas-
tic collocation method was applied to evaluate the expansion 
coefficients. Sensitivity analysis was performed to identify 
the most influential random parameters. A convergence com-
parison between PCE and MCS was also performed.

The nonlinear response of rotor subjected to faults (unbal-
ance, asymmetric shaft, bow, parallel and angular misalign-
ment) was investigated in reference [31]. The authors pro-
posed to use the Harmonic Balance Method in combination 
with a polynomial chaos expansion. The efficiency and 
robustness of the proposed methodology is demonstrated 
by comparison with Monte Carlo simulations for different 
kinds and levels of uncertainties. The authors concluded 
that variations of unbalance, bow and parallel misalignment 
faults can affect all the harmonic components of the rotor 
system, while variations of faults involving asymmetric sec-
tion or angular misalignment can affect all the harmonic 
components.

Based on a nonlinear Jeffcott rotor/stator contact model, 
the reliability of the system subjected to aleatory and epis-
temic uncertainty was evaluated in [32]. The authors used 
a likelihood-based approach for reliability modeling and 
analysis. For uncertainty quantification, Bayesian techniques 
were adopted to reduce the computation cost typical of tra-
ditional Monte Carlo simulation.

In [33] a Kriging surrogate was used to model the behav-
ior of a tilting-pad fluid-film bearing of a Francis hydro-
power unit. The equilibrium position of the shaft and the 
inlet oil temperature were used as input variables, while the 
bearing supporting forces and the maximum oil film pres-
sure and temperature were considered as output variables.

Also, Sinou et al. [34] demonstrated the effectiveness of 
using Kriging to predict the critical speeds and vibration 
amplitudes of a complex flexible rotor in the presence of 
uncertainties affecting the physical and geometrical param-
eters of the disks, shaft and bearings. Moreover, the authors 
investigated the influence of different regression models, 
spatial correlation functions and training samples on the 
accuracy of Kriging predictions.

With the motivation of broadening the applications of 
modern uncertainty quantification techniques to rotating 
machines, in the present paper a strategy is proposed for the 
reliability analysis of this category of mechanical systems, 
consisting in the combination of Kriging surrogate mod-
els with the First-Order Reliability Method. This approach 
provides an adequate balance between computational cost, 
which is one of the main constraints faced in practical engi-
neering applications, and the accuracy of reliability estima-
tion, which is indispensable for decision making. It is worth 
pointing out that rotating machines are characterized by dis-
tinguished dynamic behavior—especially due to the pres-
ence of gyroscopic effects and bearings featuring nonlinear 
behavior—besides specific failure modes and serviceability 
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requirements. To the authors’ best knowledge, the numeri-
cal approach to reliability analysis, as suggested here, has 
not been applied to rotating machinery so far. Hence, its use 
in the design cycle of actual machines of industrial interest 
can contribute to their increased safety and serviceability.

In the remainder, the theoretical foundations underlying 
reliability analysis and Kriging metamodeling are sum-
marized. Then, the FE model of rotor-bearing systems is 
briefly addressed, followed by the description of the numeri-
cal strategy used to assess the reliability of these systems 
exhibiting distinct dynamic performance, failure modes and 
operational constraints. Simulations are then carried out for 
a particular system of interest and the results are evaluated 
in terms of accuracy and computational efficiency.

Theory

First‑Order Reliability Method (FORM)

FORM consists in locating the point on the limit-state sur-
face that has the greatest probability of occurrence, named 
design point or most probable point (MPP). This con-
cept explores the rotational symmetry property exhibited 
by the continuous joint PDF of independent standardized 
Gaussian random variables. When this requirement is not 
fulfilled, it is necessary to transform the k original RVs 
� =

{

X1,X2,… ,Xk

}T  into others with such properties, 
� =

{

U1,U2,… ,Uk

}T , according to:

where �Xi
 is the mean of Xi and �Xi

 is the standard deviation 
of Xi.

The most widely used procedure for performing this iso-
probabilistic transformation is known as Rosenblatt trans-
formation [35].

In the U-space, the distance from the origin of the 
reduced coordinate system to the MPP defines the so-called 
Hasofer-Lind reliability index � [36]. The geometric inter-
pretation of the reliability index in the centered standardized 
space can be found in reference [5].

Finding the coordinates �∗ =
{

u∗
1
, u∗

2
,… , u∗

k

}T  of the 
MPP is achieved by solving the following nonlinear con-
strained optimization problem:

Hence, the reliability index is computed as:

(1)Ui =
Xi − �Xi

�Xi

, i = 1, 2,… , k,

(2)

⎧

⎪

⎨

⎪

⎩

minimize ‖�‖ =

�

k
∑

i=1

u2
i

subjected to g(�) = 0.

and the first-order approximation of the PoF is then given by:

where Φ(⋅) is the standard normal cumulative distribution 
function (CDF).

In most cases, the optimization problem given in Eq.  2 
must be solved iteratively. Reference [37] suggests the New-
ton-Raphson method to obtain the reliability index and the 
PoF. The optimization process is iterated until the specified 
tolerances for Δ� and Δg(�) are met. It is worth noticing 
that the iterative FORM algorithm requires the computation 
of the first-order derivatives of the LSF which can lead to 
difficulties in cases in which the LSF is not continuous. In 
addition, it requires additional evaluations of the LSF for 
computations based on finite-difference schemes.

Kriging

As mentioned before, the basis of Kriging is the regres-
sion of a Gaussian process with a given form of covariance 
function. The construction of a Kriging model enforces the 
interpolation of a limited set of input/output data resulting 
from runs of a high-fidelity numerical model (such as a FE 
model), assuming that the observed responses are correlated, 
according to the correlation function adopted, and maximiz-
ing the likelihood of their occurrence. The mathematics of 
Kriging interpolation is summarized here based on [17].

First, a set of RVs � =
{

X1,X2,… ,Xk

}

 is chosen, encom-
passing the parameters considered uncertain in the original 
FE model, along with the ranges of each variable. Then, a 
space-filling technique, such as the Latin Hypercube sam-
pling (LHS) [38], is used to define n samples of these k
-dimensional vectors (i.e., the DoE) that will sufficiently 
represent the design space, �(1), �(2),… , �(n) . After process-
ing, the corresponding values of the LSF are gathered in 
� =

[

g(�(1)), g(�(2)),… , g(�(n))
]T.

The computed values of the LSF are assumed to be a 
realization of a correlated Gaussian random process (even 
though they come from deterministic computer simulations), 
as follows:

where F(�,�) is the deterministic part which gives an 
approximation of the LSF in terms of its mean. It represents 
the trend of the Kriging surrogate according to the following 
regression model:

(3)� = ‖�∗‖ =

�

�

�

�

k
�

i=1

u∗
i

2,

(4)PFORM
f

= 1 − Φ(�) = Φ(−�),

(5)g(�) = F(�,�) + z(�),

(6)F(�,�) = � (�)T�,
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with �(�) =
[

f1(�),… , fm(�)
]T  representing the vector of 

basis functions and � =
[

�1,… , �m
]T the vector of regres-

sion coefficients. In ordinary Kriging, which is adopted here, 
the regression model is reduced to a scalar, � , denoting the 
unknown constant mean of the process.

In addition, z(�) is a stationary Gaussian process with 
zero mean and covariance between two points �(i) and �(l) 
defined by:

where �2 is the process variance and �� the correlation func-
tion, defined by a set of parameters �.

Various types of correlation functions can be used [18]. In 
the present study, a squared exponential correlation function 
has been chosen, as given by:

This correlation model has been often used since the publi-
cation of the work by Sacks et al. [16]. It has the distin-
guished property that if x(i)

j
→ x

(l)

j
 the random variables 

g(�(i)) and g(�(l)) will be highly correlated. On the other 
hand, if the “distance” between the two points grows, the 
correlation tends to zero. The parameters �j ( j = 1,… , k ) 
allow to set the contributions of each RV to the correlation 
value.

It should be noticed that the Gaussian random field 
depends upon the parameters � , �2 and �j ( j = 1, ..., k ). To 
minimize the error of the surrogate model, these parameters 
must be estimated by enforcing the maximization of the like-
lihood of the observed data. According to reference [17], the 
likelihood function is written as:

The maximum likelihood estimates (MLEs) for � and �2 are 
obtained by setting the derivatives of the natural logarithm 
of the likelihood function to zero, which leads to:

Inserting these expressions back into the natural logarithm 
of the likelihood function gives the so-called concentrated 
ln-likelihood function, which, ignoring the constant terms, 
is presented as:

(7)cov(z(�(i)), z(�(l))) = �2��(�
(i), �(l)),

(8)cor
�

g(�(i)), g(�(l))
�

= exp

�

−
k
∑

j=1

�j
�

�

�

x
(i)

j
− x

(l)

j

�

�

�

2

�

.

(9)L =

exp

[

−
(� − ��)T�−1

�
(� − ��)

2�2

]

(2�)n∕2(�2)n∕2|
|

��
|

|

1∕2
.

(10)𝜇̂ =
�T�−1

𝜃
�

�T�−1
𝜃
�
,

(11)𝜎̂2 =
(� − �𝜇̂)T�−1

𝜃
(� − �𝜇̂)

n
.

It is worth noticing that this function depends only on the 
correlation matrix �� , hence, on the unknown parameters 
�j ( j = 1, ..., k ). Forrester et al. [12] suggest the use of a 
metaheuristic global search method (e.g. Genetic Algo-
rithms, Simulated Annealing, etc.) to find the values which 
maximize Eq. 12. The MLE of these parameters provide the 
optimal adjustment of the correlation functions for predic-
tion accuracy, reflecting the relative importance attributed 
to each variable [17].

Once the numerical optimization problem is solved, the 
estimates are then used in Eqs. 10 and  11 to compute � 
and �2 , and finally obtain the correlation matrix.

To make a prediction of the value of the LSF at some 
new point �′ , denoted as g′ , the observed data � is aug-
mented with the new (n + 1)-th observation to give the 
vector �̃ =

{

�T , g�
}T . Also, let � define the vector of cor-

relations between the observed data and the new prediction 
g(��):

The augmented correlation matrix for the new data set takes 
the form:

Neglecting the constant terms, the augmented ln-likelihood 
function is found as:

Substituting �̃ and �̃𝜃 in this expression yields:

which only depends on the new prediction g′.
Thus, the MLE for g′ is written as the standard formula 

for the Kriging predictor:

Kriging also provides the estimation of the local variance of 
the predictions, which is commonly used to create adaptive 
DoEs [24–26]. Hence, the Kriging variance is given by:

(12)ln (L) ≈ −
n

2
ln (𝜎̂2) −

1

2
ln |
|

�𝜃
|

|

.

(13)� =

⎧

⎪

⎨

⎪

⎩

cor
�

g(�(1)), g(��)
�

⋮

cor
�

g(�(n)), g(��)
�

⎫

⎪

⎬

⎪

⎭

.

(14)�̃𝜃 =

(

�𝜃 �

�T 1

)

.

(15)ln(L) ≈
−(�̃ − �𝜇̂)T�̃−1

𝜃
(�̃ − �𝜇̂)

2𝜎̂2
.

(16)
ln(L) ≈

−

(

� − �𝜇̂

g� − 𝜇̂

)T (

�𝜃 �

�T 1

)−1 (
� − �𝜇̂

g� − 𝜇̂

)

2𝜎̂2
,

(17)ĝ(��) = 𝜇̂ + �T�−1
𝜃
(� − �𝜇̂).
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As can be noticed, the Kriging surrogate is developed in 
such a way that the prediction pass through all the data 
points, interpolating them. However, to ensure a globally 
accurate Kriging model it is necessary to assess the predic-
tion accuracy all over the design space, by computing the 
differences between Kriging predicted values ( ̂g ) and the 
values obtained from the model that is being approximated. 
In this procedure, a set of test data of size nt is distributed on 
the design space and the predictions at these points are per-
formed. The normalized root mean squared error (NRMSE) 
is a frequently used metric, defined as:

Generally, a NRMSE lower than 10% indicates a surrogate 
with satisfactory prediction capability [12].

Finite Element Modeling of Rotor‑Bearing Systems

Figure  1 depicts a rotor-bearing system in a generic 
deformed state, rotating with angular velocity 𝜙̇ . It is com-
prised by three basic components: ideally rigid disks, a flex-
ible shaft with distributed mass and stiffness, and bearings 
that connect the whole system to a base. This later is also 
assumed to be rigid.

In the study of the dynamic characteristics of rotor bearing-
systems, the finite element method has proved to be a highly 
valuable modeling tool, providing a systematic approach 
for the discretization into a set of finite elements, thus lead-
ing to an approximate discrete model (with a finite number 

(18)ŝ2(��) = 𝜎̂2

[

1 − �T�−1
𝜃
� +

(1 − �T�−1
𝜃
�)

2

�T�−1
𝜃
�

]

.

(19)
NRMSE =

�

nt
∑

i=1

(g(i)−ĝ(i))
2

nt

g(max) − g(min)
.

of degrees-of-freedom - DOFs) of the original continuous 
system. The number of DOFs of a FE model depends on the 
number of elements chosen (i.e., the discretization mesh), and 
also on the characteristics of element(s) adopted. These later 
include the specific theory upon which the element formula-
tion is based and the degree of the interpolation polynomials. 
More precisely, the total number of DOFs of a FE model is the 
product of the number of elements, the number of nodes per 
element and the number of DOFs per node. The total number 
of DOFs eventually defines the number of differential equa-
tions of motion and, as result, is directly related to the com-
putational effort involved in response predictions performed 
based on the FE model.

In the work reported here, beam elements based on 
Timoshenko’s theory have been used, each element having 
two nodes and four DOFs per node (two displacements, u and 
v, and two rotations, �x and �y , as indicated in Fig. 1).

Details about the FE modeling of rotor-bearing systems 
have been largely reported in the literature [39–41]. For the 
purposes of the present study, it suffices to state that, under 
the usual hypotheses of linear elastodynamics, for constant 
rotation speed (𝜙̇ = Ω) , a N−DOF model is represented by a 
set of N coupled second-order, ordinary differential equations, 
which can be written in matrix form as:

where �(t) ∈ ℝ
N is the vector formed by the ensemble of 

displacements and rotations (see Fig. 1) at all the nodes of 
the FE model, � ∈ ℝ

N×N is the inertia matrix, �� ∈ ℝ
N×N 

and �� ∈ ℝ
N×N are, respectively, the structural damping 

and stiffness matrices, �� ∈ ℝ
N×N is the gyroscopic matrix, 

�� ∈ ℝ
N×N is the bearing damping matrix and �� ∈ ℝ

N×N is 
the bearing stiffness matrix. In addition, the forcing vector is 
represented by � (t) ∈ ℝ

N and includes, as a particular case of 

(20)
𝐌𝐪̈(t) + (𝐂𝐬 + 𝐂𝐛 + Ω𝐂𝐠)𝐪̇(t) + (𝐊𝐬 +𝐊𝐛)𝐪(t) = 𝐟(t),

Fig. 1   Typical rotor-bearing 
system configuration (adapted 
from [39])

X

Y

x

y

φ u
v

Z, z

w

ψ

θ
φ

θ

θ

x

y

θ

θy



2185Journal of Vibration Engineering & Technologies (2022) 10:2179–2201	

1 3

interest here, gravitational forces and synchronous excitation 
induced by the rotor residual unbalance.

Of particular importance are the cases in which the 
rotor is supported by fluid-film bearings. In these cases, 
which are considered here, hydrodynamic forces must be 
calculated based on the numerical resolution of the Reyn-
olds’ equation to determine the pressure distribution in 
a thin fluid film. The hydrodynamic pressure generated 
within the film and the load-carrying capacity of the bear-
ing depend on the journal eccentricity, shaft speed, abso-
lute viscosity of the fluid-film, bearing dimensions, and 
radial clearance [42]. Adopting the assumption that the 
bearings are short [43], linearized speed-dependent bear-
ing stiffness and damping matrices can be written in closed 
form as functions of the journal eccentricity and the modi-
fied Sommerfeld number [41]. The complete formulation 
is presented in Appendix A. It has been shown that this 
simple linear bearing model can deliver accurate results 
for plain bearings of small slenderness ratios, provided 
the journal motion has sufficiently small amplitude. How-
ever, in situations where the short-bearing approximation 
fails to describe the dynamic behavior of the rotor-bearing 
system, more involved models, such as a nonlinear hydro-
dynamic bearing models should be used [44].

Under the short-bearing assumption, Eq.  20 can be 
solved for critical speeds and mode shapes using eigenvalue 
analysis [45]. In addition, for harmonic excitation forces 
� (t) = �ej�t (including synchronous unbalance forces), the 
steady-state harmonic solution is �(t) = �ej�t , with:

where �(�) is the complex response amplitude and �(�) is 
the complex forcing vector, in frequency domain.

It is worth pointing out that the resolution of the system 
of linear equations given in Eq. 21 provides the harmonic 
response corresponding to each DOF of the model in terms 
of amplitude and phase. Whenever some parameters of 
the FE model are represented by random variables, such 
responses can then be used to evaluate limit-state func-
tions in the context of reliability problems, which is the 
objective here.

It is also important to mention that the computation of the 
responses according to Eq. 21 involves the resolution of a 
system of N complex equations for many values of � within 
a frequency band of interest. Such a resolution can be very 
costly when N is large. Some condensation techniques have 
been used to reduce the number of equations, such as modal 
projections [40] but they are likely to introduce inaccura-
cies in the model. Those condensation techniques are not 

(21)

(

−�2� + j�(�s + �b + Ω�g) +�s +�b

)

�(�) = �(�),

used here but could be straightforwardly included as and 
additional step of the numerical procedures.

Numerical Strategy

The flowchart in Fig. 2 outlines the investigation route, in 
which three main procedure groups are identified, namely: 
(a) Rotordynamic Analysis, in which a deterministic finite 
element model is used to simulate the dynamic responses 
of the rotor-bearing system of interest; (b) Surrogate Mod-
eling, where the Kriging metamodel is constructed based on 
a training procedure that uses the responses of the FE model 
for a given DoE constructed by LHS technique; (c) Reliabil-
ity Analysis in which, for the purpose of benchmarking, reli-
ability is estimated using four different strategies: (i) using 
the full FE model in combination with MCS (identified as 
FEM/MCS); (ii) using the full FE model combined with 
FORM (denoted as FEM/FORM); (iii) using Kriging meta-
modeling as a surrogate for the FE model, in combination 
with MCS (Kriging/MCS); and (iv) using Kriging metamod-
eling combined with FORM (Kriging/FORM).

The very first step involves setting up the basic features 
of the engineering problem, which are:

•	 The rotor-bearing system characteristics (geometry, 
material properties, boundary conditions, etc.) and its 
operating conditions;

•	 The basic design variables capable of affecting the sys-
tem dynamic behavior due to their random nature, and 
the probabilistic models representing these RVs; and

•	 The limit-states that will be used to separate the design 
space into safe and unsafe regions for the purpose of reli-
ability assessment.

Once this information is gathered, the next step consists in 
constructing a deterministic FE model for the rotor-bearing 
system. This model works as a high-fidelity tool for rotordy-
namics analysis, and is used to generate the training data for 
the Kriging surrogates. At this stage, the Latin Hypercube 
technique is applied to sample a set of design points through-
out the RVs domain, and each of these points is evaluated by 
the FE model. The observed responses are used for maxi-
mizing the likelihood function (Eq. 9) so as to produce the 
Kriging predictor (Eq. 17). This newly delivered surrogate 
is then exploited at new points to certify its accuracy. Vali-
dation metrics, such as the NRMSE, are used to assess the 
quality of the predictions. If the Kriging model is considered 
to perform satisfactorily, it is considered suitable as a proxy 
for the original FE model.
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The final step is to use the Kriging predictor in the reli-
ability analysis process itself. First, reference values for the 
PoF are obtained via FE models, using both the first-order 
approximation (FEM/FORM) and the Monte Carlo simula-
tion (FEM/MCS). Afterwards, the Kriging-based reliability 
is evaluated by means of the Kriging/MCS and the Kriging/
FORM strategies. Results from the Kriging/FORM method 
are then systematically compared with the reference values to 
assess the strategy effectiveness in terms of computational cost 
and prediction accuracy.

A computer code was implemented in Matlab® environ-
ment, aiming to carry out Kriging metamodeling and the 
proposed reliability analysis as described in the flowchart 
in Fig. 2. This new tool has the capability to perform Monte 
Carlo simulations and FORM-based analysis using implicit 

limit-state functions associated with the rotor-bearing system 
problem.

Fig. 2   Schematic illustration of 
the numerical procedure

Reliability 
Analysis

Kriging 
Surrogate

Rotordynamics
Analysis

Sampling plan
(LHS)

Random design
variables

Rotor-bearing characteristics
and operating conditions

Maximum
likelihood
estimation

Kriging
correlation

matrix

Kriging 
accuracy

assessment

Accurate?

Kriging 
prediction

Performance
functions
definition

Kriging results(FEM-based) (Kriging-based)

states

No

Yes

  Initial
FE modeling

FE model
update

Rotordynamics
analysis

FE model
  results

MCS / FORM MCS / FORM

Reliability
results (FEM)

Reliability
results (Kriging)

Effectiveness of

reliability analysis

Limit-

Kriging/FORM-based

Rotordynamics
Analysis

Surrogate
Modeling

Reliability
Analysis

No
de

 1

No
de

 2

No
de

 3

No
de

 4

No
de

 5

No
de

 6

No
de

 7

Fig. 3   FE discretization of the rotor-bearing system under analysis



2187Journal of Vibration Engineering & Technologies (2022) 10:2179–2201	

1 3

Application Problem

To demonstrate the application of the Kriging/FORM 
method for reliability analysis of rotor-bearing systems, 
a simplified engineering problem is proposed, consist-
ing in the reliability assessment based on the linear forced 
responses of the system discretized by FE as shown in Fig. 3. 

This system was used in reference [41] to analyze the effect 
of hydrodynamic bearings on flexible rotors.

The horizontal rotor has two disks and is supported at 
both ends by cylindrical oil-film bearings. Each of the bear-
ings support different static loads associated to the weight 
of the rotor. No structural damping is considered. The main 
physical and geometrical parameters of the rotor are pre-
sented in Table 1. It is worth mentioning that some of these 
parameters will be later considered as random, having the 
corresponding values presented in Table 1 as their mean 
values.

The shaft-line FE model is constructed using 6 
Timoshenko beam elements for the rotor shaft, which leads 
to a model with 7 equally spaced nodes and 28 DOFs. The 
hydrodynamic bearings are placed at nodes 1 and 7 whereas 
the disks are positioned at nodes 3 and 5. This coarse discre-
tization was chosen after a mesh convergence study to keep 
the model as simple as possible while presenting a reason-
able level of accuracy. The linear journal-bearing model is 
used for the sake of simplicity.

The FE model was implemented in Matlab®. The main 
code is provided in [46], and was adapted to fit the purposes 
of this work.

Deterministic Simulations

First, to evaluate the dynamic features of the rotor-bearing 
system previously defined, Eq. 21 was solved over a range of 
rotation speeds and the Campbell diagram shown in Fig. 4 
was constructed. As observed, there is a critical speed at 
1065 revolutions per minute (RPM), where the curve repre-
senting the variation of a natural frequency associated to a 
lightly damped forward-whirling mode (Fig. 5) intersects the 
line representing the values of the rotation speed. 

In the vicinity of the critical speed, a large amplification 
is noticed at both left and right bearings, as illustrated in 
Fig. 6. The amplitudes of the steady-state forced response 

Table 1   Physical and geometrical parameters of the rotor-bearing 
system

Parameter  Value

Shaft
 Elastic modulus 2.11×1011 N/m2

 Poisson’s ratio 0.3
 Mass density 7810 kg/m3

 Length 1500 mm
 Outer diameter 50 mm
 Inner diameter 0 mm

Disks
 Mass density 7810 kg/m3

 Thickness 70 mm
 Inner diameter 50 mm
 Outer diameter (left disk) 280 mm
 Outer diameter (right disk) 350 mm
 Residual unbalance (left disk) 2000 g⋅ mm at 0 ◦

 Residual unbalance (right disk) 2000 g⋅ mm at 0 ◦

Fluid-film bearings
 Static load (left bearing) 494.5 N
 Static load (right bearing) 556.4 N
 Diameter 80 mm
 Length 40 mm
 Radial clearance 60 μm
 Oil dynamic viscosity (Oil AeroShell® 500 at 

35◦ C)
0.03 Pa-s

Fig. 4   Campbell diagram of 
the rotor-bearing system under 
investigation
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of the system is given by the semi-major axis of the bearing 
journal whirl elliptical orbits shown in Fig. 5, considering 
2000 g⋅ mm of mass unbalance arbitrarily located at 0 ◦ in 
each disk (which leads to in-phase unbalance forces). This 
value of residual unbalance is compatible with the limits 
specified by ISO 21940-12 [47] for a balance quality grade 
G6.3.

Characterization of the Random Variables

Uncertainties in fluid-film temperature due to unpredict-
able operating conditions, and in bearing clearances due to 
machining tolerances and potential wear caused by surface 
interaction, are commonly addressed when assessing the 
stochastic response of rotor-bearing systems [27–30]. Usu-
ally, oil-film temperature has a nonlinear effect on fluid 
dynamic viscosity. Higher temperatures associated with 
lower viscosity values lead to larger operating eccentricity 
at the bearings [48]. Increases in bearing radial clearances 
also mean higher eccentricities. In addition, shaft deflec-
tions at the bearings can grow significantly depending on 
the magnitude of the excitation forces, usually caused by 

an unequal distribution of mass around the axis of rotation, 
which exhibits an inherent random nature.

Following this reasoning, Table 2 presents the random 
variables considered in this problem, namely fluid-film 
temperatures ( TL

oil
 , TR

oil
 ), bearing radial clearances ( CL

r
 , 

CR
r
 ) and residual disk unbalances ( UL

res
 , UR

res
 ), along with 

the corresponding means, standard deviations (SD), coef-
ficients of variation (CV) and PDFs. In this table, super-
scripts (.)L and (.)R refer to the left and right bearings, 
respectively.

Fig. 5   Forward-whirling mode 
shape at 1065 RPM and cor-
responding whirl orbits at the 
bearings
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response at the bearings
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Table 2   Basic random variables and stochastic models

Variable Units Mean SD CV PDF

T
L

oil

◦C 35 7 20% Normal
C
L

r
μm 60 3 5% Gamma

U
L

res
g⋅mm 2000 200 10% Gamma

T
R

oil

◦C 35 7 20% Normal
C
R

r
μm 60 3 5% Gamma

U
R

res
g⋅mm 2000 200 10% Gamma
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Fig. 7   Effect of the basic random variables on bearings vibration response near the critical speed
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Gaussian distributions are used to model the two tem-
perature-related variables, whereas Gamma distributions 
are assigned to the other variables for which the support 
is ℝ+ . It is also assumed that all the random variables are 
independent from each other.

The individual influences of the six parameters defined 
in Table 2 on the vibration amplitudes at both left and 
right bearings can be assessed in Fig. 7, in which unbal-
ance response amplitudes are shown for different deter-
ministic values of these parameters.

As observed, variations of TL
oil

 and CL
r
 exert more signifi-

cant influence on the response at the left bearing as these 
parameters directly affect the oil-film stiffness and damping 
characteristics of this bearing. Likewise, TR

oil
 and CR

r
 affect 

mostly the response at the right bearing. This behavior can 
be interpreted in terms of more pronounced direct influ-
ences as compared to crossed influences involving the bear-
ing parameters. Differently, the effect of increasing residual 
mass unbalance (either UL

res
 or UR

res
 ) is equally felt on both 

bearings, with a proportional increase of shaft deflection 
near the critical speed.

Definition of the Limit‑State Functions

Although a variety of performance criteria could be used 
to formulate LSFs associated with the dynamic behavior of 
a rotor-bearing system, here the interest is focused on the 
amplitudes of the unbalance responses at the bearings. The 
main reason for this choice is that, from the engineering 
standpoint, it is broadly recognized that, for safe and reliable 
operation, it is advisable to limit the maximal journal vibra-
tion amplitude relative to the bearing housing. A commonly 
accepted value is 80% of the designed diametric bearing 
clearance [49]. Once the amplitude exceeds this threshold, 
short-term damage often happens and bearing life can be 
severely shortened due to rubbing effects, which ultimately 
can lead to catastrophic failure if corrective actions are not 
undertaken.

In the case of the fluid-film bearings adopted in this study, 
the designed diametric clearance is twice the radial clear-
ance referred to in Table 1, i.e., 120 μ m. The safe upper 
vibration amplitude at the bearings to satisfy the criterion 
above is therefore adopted as 96 μ m, and the associated 
serviceability limit-state functions for the two bearings are 
defined as:

where QL(�) and QR(�) indicate the unbalance responses at 
the left and right bearings, respectively, obtained from the 

(22)gL(�) = 96 − QL(�) (μm),

(23)gR(�) = 96 − QR(�) (μm),

FE model at the critical speed. In addition, � contains the 
six RVs defined in Table 2.

Kriging Surrogate Models

The implicit performance functions in Eqs. 22 and 23 are 
approximated by Kriging surrogates as follows:

where Q̂L(�) and Q̂R(�) are the Kriging predictors emulat-
ing the underlying FE model responses. To construct these 
predictors, the LHS technique was used to generate a set 
of design points on the domains of the RVs, and the rotor 
response at each of these points was evaluated using the FE 
model. Then, the observed responses were used to obtain the 
correlation matrices so as to compose the Kriging predictors, 
which were eventually used to estimate the responses at new 
points to evaluate their accuracy.

Figure 8 shows the prediction of the maximum vibra-
tion amplitude at the left bearing, using a Kriging surro-
gate trained with 200 points. Each tile presents a contour 
plot of the responses (in μ m, and values indicated with 
the help of the color scale on the right), versus two of the 
six RVs. The values of these later were considered in the 
intervals of length equal to eight standard deviations, cen-
tered at the mean values, i.e., 

[

μxi − 4�xi ≤ xi ≤ μxi + 4�xi

]

.
As expected, for the left bearing, the parameters TL

oil
 and 

CL
r
 exert strong influences (denoted by large variations of 

response amplitude values), due to their direct effect on 
the oil-film stiffness and damping. Also, it is noticed that 
tile UL

res
× UR

res
 successfully captures the linear relationship 

between the mass unbalance and the synchronous vibra-
tion amplitude.

The effect of the size of the DoE used for Kriging train-
ing on the prediction accuracy is illustrated in the scatter 
plots in Fig. 9, comparing the NRMSE of models gener-
ated with 25, 50, 100 and 200 training points with regard 
to the full FE model results. A number of 1000 verifica-
tion points sampled on the domain of the six RVs (i.e., 
[

�xi
− 4�xi ≤ xi ≤ �xi

+ 4�xi

]

 , i = 1, 2,⋯ , 6 ) is used to assess 
the global accuracy of the four surrogates.

The results show a consistent reduction of NRMSE val-
ues as the number of training points increases, indicating a 
better correlation with FE model results and, consequently, 
a better predictive capability. The Kriging model generated 
from 200 training points presents the smallest global error.

It is worth noticing that there are some points laying 
outside of the nominal diametric clearance limit (120 �m). 
This is due to the fact that as the bearing clearances are 

(24)ĝL(�) = 96 − Q̂L(�) (μm),

(25)ĝR(�) = 96 − Q̂R(�) (μm),
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also random variables, the allowed response amplitude at 
the bearing location will vary according to radial clearance 
sampled for each verification point.

Similar results are presented for the right bearing. In 
the tile plot depicted in Fig. 10, the parameters TR

oil
 and CR

r
 

appear as the most influential on the vibration amplitude, 
and the tile UL

res
× UR

res
 replicates the behavior previously 

observed in Fig. 8 for the left bearing. In this case, TL
oil

 and 
CL
r
 do not exert significant effect on the response.
The influence of the training set size on the prediction 

accuracy is depicted in Fig. 11. Again, the global accuracy 
of the Kriging interpolation is improved as the number of 
training points increases.

In terms of computational time efficiency, Table 3 pre-
sents the CPU time required to construct the Kriging sur-
rogates, using an Intel® CoreTM i5-2450M 2.5 GHz CPU 
with 6 GB RAM. It should be noticed that, although the 
results are presented for metamodeling of the responses at 
the two bearings, it is expected that no significant differ-
ence is to be observed between them, since, for a unique 
set of metamodeling features, the computations are essen-
tially the same.

As observed in Table 3, the cumulated time exhib-
its a quadratic growth as the number of training points 
increases, mostly due to the sampling process and the 
search for the parameters that maximize the likelihood of 

the observed data. On the other hand, the time spent for 
FE model simulations grows linearly with the number of 
training points.

By performing a linear regression of the observed data, 
the time required to train a Kriging surrogate, ttrain , as a 
function of the number of training points ( np ) and time 
required for an individual FE evaluation time ( tFEM ), is found 
expressed as:

As noticed, depending on the size of the training sample, 
constructing a Kriging surrogate model might become com-
putationally costly, specially when dealing with extremely 
time-demanding FE models. However, one of the greatest 
benefits of using a Kriging metamodels is the fact that the 
CPU time required to make a single prediction with the sur-
rogate is orders of magnitude shorter than that required for 
running a FE model simulation (see Table 3). This is an 
advantageous feature in the scope of reliability analysis.

Reliability Analyses

Before applying the strategy consisting in combining Krig-
ing with FORM (identified as Kriging/FORM) to reliability 
assessment of the rotor considered here, it was found useful, 

(26)ttrain(np) = 0.0057n2
p
+ (0.0100 + tFEM)np + 2.7002.

Fig. 8   Contour plots of the 
Kriging prediction of the 
maximum response ampli-
tude at the left bearing, using 
200 training points. The RVs 
are varied according to the 
intervals 

[

7◦C ≤ T
L,R

oil
≤ 63◦C

]

 , 
[

48 μm ≤ CL,R
r

≤ 72 μm
]

 , and 
[

1200 g ⋅ mm ≤ UL,R
res

≤ 2800 g ⋅ mm
]
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mainly for benchmarking purposes, to perform similar 
assessments using three alternative routes, namely: (a) using 
the FE model combined with Monte Carlo simulation (FEM/
MCS); (b) using the FE model in combination with FORM 
(FEM/FORM); (c) using the Kriging predictors combined 
with MCS (Kriging/MCS).

Figure 12 shows the convergence curves of the FEM/
MCS and Kriging/MCS reliability analyses for the left and 
right bearings. The referred Kriging model was trained using 
200 training points. To ensure adequate convergence, 106 
simulations were carried out. Reference [50] has shown that 
the percent error in the PoF estimate using the Monte Carlo 
method can be related to the total number of simulations by 
the Shooman’s formula:

where PMCS
f

 is the estimate of the true Pf  , and Nt is the total 
number of simulations. This percentage corresponds to a 
probability of 95% that the exact value of Pf  belongs to the 

(27)�% = 200 ×

√

√

√

√

1 − PMCS
f

NtP
MCS
f

,

interval PMCS
f

(1 ± �%) . Therefore, by performing 106 simula-
tions and given the anticipated reliability level of this appli-
cation problem, there is a 95% likelihood that the errors in 
the estimated probabilities of failure are within 10%.

It can be seen that convergence is achieved after 105 
simulations for both approaches and the reliability of the 
left bearing is slightly higher than that of the right bearing, 
being, respectively, RL = 99.96% and RR = 99.88% as per 
FEM/MCS results. This can be explained by the fact that, 
since the rotor is not symmetric, the bearings are subjected 
to different loads. The estimated values of PoF obtained 
from the Kriging/MCS approach after 106 simulations is very 
close to the FEM/MCS reference values, which indicates the 
satisfactory accuracy of the Kriging surrogate for the reli-
ability assessment. It can be noticed, for both bearings, that 
the convergence curves of the PoF are less smooth than those 
corresponding to the statistics of the limit-state functions.

The results obtained for FEM/FORM and Kriging/FORM 
reliability assessment are depicted in Fig. 13. Again, the 
referred Kriging model was trained using 200 training 
points. Convergence tolerances Δ�

�
 and Δg(�)

1−g(�)
 of the order of 

Fig. 9   Scatter plots of the 
maximum amplitude at the left 
bearing predicted by Kriging 
surrogates vs. FE model results
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10−3 were achieved after few iterations for the FEM/FORM 
approach, both in terms of LSF and PoF values. For the 
Kriging/FORM reliability analyses, convergence in terms of 
PoF and LSF values is obtained after only five iterations. 
The FORM algorithm rapidly reaches tolerances Δ�

�
 and 

Δg(�)

1−g(�)
 of the order of 10−4.

Table 4 summarizes the results of the reliability calcu-
lation, indicating the PoF values estimated from the four 
methods. Values in parentheses indicate the relative errors 
of the estimates, calculated with respect to the FEM/MCS 
approach. As observed, simply increasing the number of 
training points does not consistently improve the capability 
of the surrogate to estimate the true PoF value.

Data from Table 4 is graphically depicted in Fig. 14 to 
facilitate visualization. It can be noticed that, as a rule, Krig-
ing/FORM reliability estimates converge to the FEM/FORM 
counterparts as the number of training points increases. For 
the left bearing, the PoF values predicted by the Kriging 
models trained with 50 points or more are found between the 
FEM/MCS and the FEM/FORM estimates. Also, it is notice-
able that Kriging/FORM method results follow closely the 
results of the Kriging/MCS approach. For the right bearing, 
Kriging/FORM results converge to FEM/FORM and FEM/
MCS estimates as the number of training points increases.

Table 5 presents the MPPs estimated by the Kriging/
FORM and FEM/FORM reliability analyses. Overall, the 

two sets of results are very close to each other, regardless of 
the number of training points. Also, it is worth noticing that 
the MPPs for the left bearing are characterized by higher oil 
temperature values and larger radial clearances at this bear-
ing, and lower oil temperatures and smaller radial clearances 
at the other bearing. The same pattern is observed for the 
MPPs corresponding to the right bearing.

As an additional probabilistic characterization of the 
reliability analyses, Fig. 15 allows to compare the PDFs of 
the LSFs for the two bearings, obtained from 106 samples 
generated for the FEM/MCS and Kriging/MCS approaches. 
For this later, different sizes of DoEs are considered. It can 
be seen that the Kriging/MCS PDFs approximate increas-
ingly better the FEM/MCS counterparts as the size of DoEs 
increases. Nevertheless, looking at the cumulative prob-
abilities in the unsafe region (Fig. 16), it is noticeable that 
an increased number of training points does not necessarily 
imply better matching between the probability distributions 
corresponding to FEM/MCS and Kriging/MCS. This is 
mostly due to the fact that, in problems with high reliabil-
ity, the limit-state boundary is situated in a low probability 
zone, where the local rather than the global accuracy of the 
surrogates determines whether the location of the samples 
into the safe and unsafe regions is performed correctly.

Fig. 10   Contour plots of the 
Kriging prediction of the 
maximum response amplitude 
at the right bearing, using 
200 training points. The RVs 
are varied according to the 
intervals 

[

7◦C ≤ T
L,R

oil
≤ 63◦C

]

 , 
[

48 μm ≤ CL,R
r

≤ 72 μm
]

 , and 
[

1200 g ⋅ mm ≤ UL,R
res

≤ 2800 g ⋅ mm
]
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Assessment of the Accuracy and Computational 
Efficiency of the Kriging/FORM Method

With the intention of assessing the accuracy and compu-
tational efficiency of the Kriging/FORM method in com-
parison with the three alternative approaches, the results 
presented in the previous subsection are systematically 
compared.

Table 6 presents the CPU times required for the reliability 
computations. Values in parentheses refer to the number of 
calls of the FE model in each FEM-based analysis. For the 
FORM algorithm, the number of calls of the performance 
function is defined by 1 + ni(2nv + 1) , where nv is the number 
of RVs and ni is the number of iterations.

As noticed, the conventional FEM/MCS demands the 
highest computational effort. The CPU time required by the 

Fig. 11   Scatter plots of the 
maximum amplitude at the right 
bearing predicted by Kriging 
surrogates vs. FE model results
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Table 3   CPU time, in seconds, required to construct the Kriging surrogate models and make predictions

Kriging surrogate construction Predictions

Model output Training points Sampling time Simulation time Correlation time Cumulated time Kriging time FEM time

Left bearing response 25 4.96 2.02 1.45 8.43 0.0002 0.07
50 14.21 3.91 3.28 21.40 0.0002
100 54.28 8.57 10.98 73.84 0.0004
200 189.25 15.07 43.53 247.84 0.0010

Right bearing response 25 5.04 2.07 1.48 8.59 0.0002 0.07
50 14.22 3.90 3.27 21.40 0.0002
100 44.95 7.80 10.88 63.64 0.0004
200 187.81 14.80 43.89 246.50 0.0010
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Kriging/MCS method grows quadratically with the number 
of training points, but is still moderate when compared with 
FEM/MCS. The best performance, in terms of computation 
time, is presented by the Kriging/FORM approach.

The relationship between CPU times and relative errors 
in the estimates of PoF, calculated with respect to the FEM/
MCS, is depicted in Fig. 17 for the left and right bearings. 
The number of Kriging training points is indicated on top 
of the markers.

It can be observed that Kriging surrogates trained with 50 
training points or more provide good results when combined 
with FORM. On average, there is a decrease of five orders 
of magnitude in the computational effort, while the relative 
errors are kept lower than 10% (thus within the theoretical 

error expected for PoFs estimated from MCS, with a 95% 
confidence level).

To verify the possibility of improving the accuracy of 
the Kriging metamodels, while maintaining low computa-
tional cost, it was devised to include an additional step in 
the surrogate training process, consisting in the enrichment 
of the DoE in the vicinity of MPP identified with Kriging/
FORM. The procedure is based on retraining the original 
surrogate with the inclusion of 10 additional points sampled 
within a hypercube centered on the design point (MPP) in 
the standard normal space of the random variables, using 
LHS. The length of each dimension of the hypercube is cho-
sen to be 10% of the reliability index derived from Kriging/
FORM. By doing so, the new training points will be closely 
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Fig. 12   Convergence of FEM/MCS and Kriging/MCS reliability analyses
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distributed around limit-state surface in the region of most 
interest, as illustrated in Fig. 18 for two random variables. It 

is important to mention that the enrichment process requires 
running the FE model only for the additional 10 points 

Table 4   Results of reliability 
analyses

In parentheses, the relative errors with respect to the FEM/MCS

Model output Training points Kriging/ FORM FEM/ FORM Kriging/ MCS FEM/ MCS

Left bearing response 25 0.056% 0.035% (10.6%) 0.057% 0.039%
(43.2%) (47.9%)

50 0.037% 0.037%
(4.3%) (4.4%)

100 0.038% 0.039%
(1.3%) (0.3%)

200 0.035% 0.036%
(10.0%) (8.0%)

Right bearing response 25 0.139% 0.116% (0.1%) 0.151% 0.116%
(20.3%) (30.2%)

50 0.106% 0.116%
(8.4%) (0.1%)

100 0.121% 0.127%
(4.2%) (10.0%)

200 0.115% 0.129%
(0.7%) (11.8%)

Fig. 14   Estimated values of the 
PoF, obtained with different 
DoE sizes used for training 
Kriging surrogates

Number of training points
0 50 100 150 200

Pr
ob

ab
ilit

y 
of

 fa
ilu

re
, %

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Kriging/FORM
FEM/FORM
Kriging/MCS
FEM/MCS

Number of training points
0 50 100 150 200

Pr
ob

ab
ilit

y 
of

 fa
ilu

re
, %

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Kriging/FORM
FEM/FORM
Kriging/MCS
FEM/MCS

Table 5   Most probable failure 
points estimated by Kriging/
FORM and FEM/FORM

Model output Training points T
L

oil
 ( ◦C) C

L

r
 ( μm) U

L

res
 (g⋅mm) T

R

oil
 ( ◦C) C

R

r
 ( μm) U

R

res
 (g⋅mm)

Left bearing 25 50.41 63.72 2143.56 24.55 57.11 2148.49
50 50.54 63.92 2177.10 23.91 57.39 2167.23
100 49.74 63.72 2163.63 22.36 57.49 2168.52
200 50.38 63.74 2168.64 22.99 57.47 2172.37
FEM/FORM 50.42 63.78 2168.41 23.13 57.44 2172.76

Right bearing 25 26.18 57.98 2158.14 49.54 63.45 2157.27
50 26.51 58.28 2179.46 50.01 63.62 2177.55
100 26.31 58.04 2160.29 50.07 63.40 2162.50
200 26.17 57.98 2160.40 49.91 63.48 2168.18
FEM/FORM 26.25 57.99 2160.56 49.98 63.47 2166.82
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incorporated to the DoE, which represents a small increase 
in the computational effort.

It should be noticed that this enrichment strategy does 
not fit into the concept of the active learning methods (e.g. 
EGRA, AK-MCS, AK-IS, etc.), which rely on the stochastic 
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Fig. 15   PDFs of the LSFs obtained from sampling using FEM/MCS and Kriging/MCS approaches

Fig. 16   Detail of the CDFs 
of the LSFs obtained from 
sampling using FEM/MCS and 
Kriging/MCS approaches in the 
unsafe region
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Table 6   CPU time, in seconds, required to perform reliability analyses

In parentheses, the number of calls of the FE model

Model output Training points Kriging/ FORM FEM/ FORM Kriging/ MCS FEM/ MCS

Left bearing response 25 0.35 14.57 (209) 196.51 71488.24 ( 1 × 106)
50 0.36 273.69
100 0.38 442.58
200 0.41 1062.15

Right bearing response 25 0.33 10.85 (157) 196.71 71806.08 ( 1 × 106)
50 0.33 274.56
100 0.37 445.51
200 0.39 1150.89
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nature of the Kriging prediction to iteratively enrich the 
surrogate based on a learning function [23–25]. Although 
well-proven, these techniques eventually demand high com-
putational effort, specially in cases in which the PoFs are 
small. Instead, the procedure proposed here is an attempt 
to locally refine the Kriging interpolation and improve its 
estimates by simply adding, at one time, a few points to the 
DoE in the vicinity of the preliminary MPP. The additional 
cost involved in this second stage is considerably smaller 
than the cost of successive updates of the surrogate through 
an iterative process.

Figure 19 shows the effectiveness of the enriched Krig-
ing surrogates combined with FORM, including, for each 
surrogate, the total time spent on the training/enrichment 
process and on the reliability analysis itself. As noticed, the 
local enrichment of the surrogates brought the PoF estimates 

closer to the values predicted by FEM/FORM. Using this 
strategy, even surrogates originally trained with only 25 
points were able to effectively predict the probability of 
failure.

Concluding Remarks

A numerical strategy consisting in the use of Kriging surro-
gates in combination with the First-Order Reliability Method 
was evaluated, with focus on the reliability assessment of 
rotor-bearing systems. Numerical simulations, considering 
a simple rotor modeled with the finite element method, were 
performed to appraise the accuracy and computational effi-
ciency of this strategy, in comparison with three alternative 
procedures.

In general, the Kriging/FORM method presented good 
convergence, with acceptable errors in the failure probabil-
ity estimates. The fact that the Kriging interpolation creates a 
continuous and smooth response surface allowed the FORM 
algorithm to converge to the MPP after a few iterations. Also, 
the time required in the reliability assessment when using the 
Kriging metamodels was remarkably shorter than the one 
demanded by FEM-based approaches. These results corrobo-
rate the effectiveness of the presented numerical approach 
to reliability analysis of rotating machinery and reinforce its 
importance, especially when dealing with implicit nonlinear 
and computationally costly performance functions associ-
ated with the distinguished dynamic characteristics of those 
machines.

The results also enabled to put in evidence some relevant 
features, in particular the influence of the size of the design 
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1

2

( 1, 2) = 0

Original DoE
Additional points
Original MPP
New MPP
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of experiments used to train the Kriging surrogates. It was 
noticed that increasing the number of training points in the 
Kriging surrogate construction, and therefore the surrogate 
global accuracy, did not necessarily improve the accuracy of 
the Kriging-based reliability estimations. This is especially 
true for problems in which the limit-state frontier is located in 
a low probability zone, where the correct position of the sam-
ples into the safe and unsafe regions relies more on the local 
rather than the global accuracy of the surrogate. A procedure 
was devised aiming at improving the accuracy of reliability 
estimates by a local enrichment of the design of experiments 
used for Kriging training, in the vicinity of a previous FORM 
estimation of the most probable failure point. The numerical 
results also showed the effectiveness of this procedure.

In spite of the fact that, in the present study, a FE model 
with a small number of degrees-of-freedom, and a particular 
type of limit-state function were adopted, it is believed that the 
observed trends will hold when complex FE models with much 
larger numbers of degrees-of-freedom and other types of LSF 
applicable to rotating systems are used. Hence, it is believed 
that the combined use of FE modeling, Kriging metamode-
ling and FORM can be applied to more involved applications 
related to rotor-bearing systems.

Appendix A. Short Journal‑Bearing Model

The stiffness and damping matrices of the hydrodynamic bear-
ing are given as:

(A.1)�� =
F

Cr

(

auu auv
avu avv

)

,

(A.2)�� =
F

CrΩ

(

buu buv
bvu bvv

)

,

where F is the bearing static load, Cr is the radial clearance, 
Ω is the rotation speed, and:

with

The dimensionless bearing eccentricity ratio given by 
0 ≤ � ≤ 1 is the smallest root of the quartic equation in �2:

where

is the modified Sommerfeld number for a bearing with 
length L , diameter D and radial clearance Cr , operating at a 

(A.3)
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particular speed Ω with static load F and fluid-film dynamic 
viscosity �.

The viscosity of typical lubricant used in hydrodynamic 
bearing applications is, in turn, a function of the oil tempera-
ture. The equations presented by reference [51], also found in 
the ASTM-D341-17 [52], are used to model the temperature 
effect. The dynamic viscosity, in Pa⋅ s, is given by:

where, the temperature T  is in ◦ C and the density � is in kg/
m3. This last property is given by:

Also, the coefficients A and B are expressed as:

where, � is the kinematic viscosity, in cSt.
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