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Abstract
Purpose The planar dynamical motion of a double-rigid-body pendulum with two degrees-of-freedom close to resonance, 
in which its pivot point moves in a Lissajous curve has been addressed. In light of the generalized coordinates, equations of 
Lagrange have been used to construct the controlling equations of motion.
Methods New innovative analytic approximate solutions of the governing equations have been accomplished up to higher 
order of approximation utilizing the multiple scales method. Resonance cases have been classified and the solvability condi-
tions of the steady-state solutions have been obtained. The fourth-order Runge–Kutta method has been utilized to gain the 
numerical solutions for the equations of the governing system.
Results The history timeline of the acquired solutions as well as the resonance curves have been graphically displayed to 
demonstrate the positive impact of the various parameters on the motion. The comparison between the analytical and numeri-
cal solutions revealed great consistency, which confirms and reinforces the accuracy of the achieved analytic solutions.
Conclusions The non-linear stability analysis of these solutions have been examined and discussed, in which the stability and 
instability areas have been portrayed. All resonance cases and a combination of them have been examined. The archived results 
are considered as generalization of some previous works that are related to one rigid body and for fixed pendulum’s pivot point.
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the analytic approximate solutions of the equations of motion 
(EOM) of such systems. Among these approaches, the mul-
tiple scales method (MSM) has been attracted the attention 
of many researchers to find the approximate solutions (AS) 
of these systems owing to its powerful accuracy. It is known 
that the pendulum’s models are considered, to some extent, 
as simple systems that can be used to emulate the dynam-
ics of a variety of engineering devices and machine parts. 
Various types of pendulums are widely analyzed in many 
scientific works as a substantial source of several practical 
applications in the field of non-linear dynamics.

The chaotic motion of a simple pendulum have been dis-
cussed in [6] and [7], while its approximate periodic motion 
is investigated in [8] utilizing the method of small param-
eter [5] when the pendulum’s suspension point moves on an 
elliptic trajectory. In [9], the motion of a weakly non-linear 
two degrees-of-freedom (DOF) dynamical system is inves-
tigated, in which its chaotic behavior for the case of internal 
resonance is examined. In [10], authors utilized the MSM to 
elucidate the steady behavior of a non-linear spring pendu-
lum, whereas the author in [11] presented an improvement of 

Introduction

The non-linear dynamical systems are studied in many 
research works due to its importance in many fields, for 
example in industrial applications, biology, and medicines, 
see [1–4]. Perturbation approaches [5] can be used to obtain 
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the considered work [10] through the effects of an external 
force on the dynamical motion of the spring pendulum.

Furthermore, other types of pendulums have been studied 
in several works e.g. [12–15]. In [12], the authors used a 
dynamic absorber that can be moved along the longitudi-
nal of transverse direction of the excited pendulum. High 
efficiency of this absorber is found for very little damped 
systems. The influence of the fluid flow on the motion of 
simple pendulum and a spring one is examined in [13] and 
[14] respectively. On the other hand, the motion of a vibrat-
ing absorber pendulum with a rotating base is investigated 
in [14]. The stability analysis is performed on a linear sys-
tem where the rotatory motion is adjusted according to the 
law of proportional control. The chaotic motion of an un-
damped spring pendulum is examined in [16] when its con-
nected point moves in a circular trajectory. The extension 
of this work is found in [17] when the authors relied on 
the fact that the motion of the suspension point is on an 
ellipse. Some special examples for various motion of this 
point are presented. Authors of [18] have turned their atten-
tion to investigate the movement of the suspension point of 
a damped spring with linear stiffness on a Lissajous curve 
under the action of harmonically force and moments. In 
[19], the motion of a tuned absorber connected with sim-
ple pendulum is examined close to resonance. The MSM is 
applied to obtain the approximate solutions of [14, 16–19] 
and represented in various figures to show the significance 
of the applied forces and moments on the considered motion 
of each work.

The motion of a single damped rigid-body-pendulum 
(RBP) is examined in different research works such as 
[20–25], in which its suspension point is considered to 
be fixed in [20], while it was considered in motion on 
different paths as in [21–24]. The stiffness coefficients 
of the spring are constraint to be linear and non-linear in 
[20, 21, 23] and [22, 24] respectively. The investigated 
motions are influenced by external forces and moments 
and studied analytically using the MSM. Resonance cases 
are categorized and examined to obtain the solvability 
conditions and the modulation equations (ME). The non-
linear stability of these equations is introduced in [24] 
to reveal the stability and instability ranges of the fixed 
points at the steady-state case. The numerical solutions 
of the RBP is investigated in [25] using the Runge–Kutta 
algorithms from fourth-order.

There are many theoretical and experimental studies dis-
cuss the motion of double pendulums. In [26], a modified 
midpoint integrator is used to analysis the planar movement 
of a double pendulum numerically, in which Poincaré sec-
tions and bifurcation diagrams are presented for specified 
values of energy. The internal resonance of this pendulum has 
been studied in [27]. The bifurcation structure of a parametric 
excited double pendulum at small amplitudes of oscillation is 

studied in [28] while the resonance and non-resonance cases 
of this pendulum are analyzed in [29]. The rotatory motion of 
a model consists of two pivotal pendulums about horizontal 
axes as investigated in [30]. It is supposed that the model has 
four relative equilibrium locations in which the stabilities of 
these locations are studied. The influence of the gravity force 
on the double pendulum’s motion with a vibrating suspension 
point is investigated in [31].

This work concerns a novel problem of the planar motion 
of dynamical system consists of 2DOF double RBP, whose 
pivot point has been constrained to move in a Lissajous 
curve. The non-linear differential EOM are derived utiliz-
ing the second kind of Lagrange’s equations. Higher estima-
tions of the analytical solutions are achieved using the MSM. 
These solutions are compared with the numerical ones, which 
are obtained using the fourth-order Runge–Kutta method, to 
show the great accuracy between them. In light of the cat-
egorized resonance cases; the solvability conditions and the 
ME are obtained. Criterion of Routh–Hurwitz is applied to 
check the stability of the fixed points of the steady-state solu-
tions. The non-linear stability analysis of the ME is examined 
and discussed through the stability and instability ranges of 
the plotted curves of the frequency responses. The time his-
tories of the solutions are graphed as well as the curves of 
resonance to explore the significance of various values of 
the physical parameters on the systems’ behavior. One of the 
most important applications of this work in our daily life is 
to utilize the vibrational motion for the robotic devices, pump 
compressors, rotor dynamics, and transportation devices.

Dynamical Modeling

The investigated dynamical model in this work consists of 
two pivotally connected double RBP of mass mj (j = 1, 2) 
from the points Oj. The first pivot at O1 is restricted to move 
in a Lissajous curve in the direction of anticlockwise, 
while the second one at O2 is considered a connection point 
between the two bodies, see Fig. 1. Therefore, the kinematic 
coordinates of O1 are

where Rx,Ry,Ωx, and Ωy are known parameters.

It is taken into consideration that the geometric quantities 
ej and l1 express the distance of the gravities centers zj (that 
are calculated from the rotation’s centers) and the pendu-
lum’s link length, respectively. Moreover, let Jj represent the 
moment of inertia, �j are the angular position variables that 
represent the chosen generalized coordinates of the model, 
and g is the acceleration of gravity.

(1)

x = Rxcos(Ωx t),

y = Rysin(Ωyt) ,
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To study the motion, we consider that the motion 
of the model is planar in addition to action of two 
k inema t i c  momen t s  M�1

(t) = M1(t) cos(Ω1t) and 
M�2

(t) = M2(t) cos(Ω2t) around the points O1 and O2 respec-
tively. Here Ω1 and Ω2 denote the forcing frequencies of 
M�1

(t) and M�2
(t) respectively.

Referring to above, we can introduce the potential and 
kinetic energies V  and T  as follows

where dot represents the derivative with respect to time t.
According to the Lagrangian L = T − V  , the govern-

ing EOM were obtained from the following second type of 
Lagrange’s equations

where �̇�j are the generalized velocities corresponding to the 
generalized coordinates �j and Qj are the generalized forces 
which can be written in the forms

(2)

V = −g[(m1 + m2)Rx cosΩxt + (e1m1 + l1m2) cos 𝛾1 + m2e2 cos 𝛾2],

T =
1

2
{[J1 + (m1e

2
1
+ m2l

2
1
)]�̇�2

1
+ [J2 + m2 e

2
2
] �̇�2

2
+ (m1 + m2)[Ω

2
y
R2
y
cos2 Ωyt

+ R2
x
Ω2

x
sin2 Ωxt]} + �̇�1(m1e1 + m2l1)[RyΩy cos 𝛾1 cosΩyt + RxΩx sin 𝛾1 sinΩxt ]

+ e2l1m2�̇�1�̇�2 cos(𝛾1 − 𝛾2) + e2m2�̇�2[RyΩy cos 𝛾2 cosΩyt + RxΩx sin 𝛾2 sinΩxt ],

(3)
d

dt

(

𝜕L

𝜕�̇�j

)

−

(

𝜕L

𝜕𝛾j

)

= Qj; (j = 1, 2)

(4)Qj = Mj(t) cos(Ωjt); (j = 1, 2).

Introducing the dimensionless forms of the generalized 
coordinate, parameters, frequencies and time � as follows

Making use of Eqs. (2), (3), (4), and (5) we get the fol-
lowing dimensionless forms of the EOM

It must me noted that the derivatives in the previous sys-
tem of Eqs. (6) and (7) are considered with respect to the 

dimensionless time parameter � . Moreover, This system has 
two second-order non-linear differential equations regarding 
�1 and �2.

The Approved Method

This section presents the MSM that has been used to esti-
mate the analytic solutions of the EOM and to categorize 
the resonances cases. Consequently, we can approximate the 
trigonometric functions of �1 and �2 up to third-order using 
Taylor’s series, which are valid at the position of static equi-
librium. Then Eqs. (6) and (7) will take the forms

(5)

� =
�2

�1

, �2

1
=

m1e1g

J1
, �2

2
=

m2e2g

J2
, p1 =

Ω1

�1

, p2 =
Ω2

�1

,

px =
Ωx

�1

, py =
Ωy

�1

, r1x =
Rx

l1
, r1y =

Ry

l1
, B1 =

m1e
2

1
+ m2l

2

1

J1
,

B2 =
m2e

2

2

J2
, s1 =

gm2l1

J1�
2

1

, �1 =
m1e1l1 + m2l

2

1

J1
,

N1 =
e2l1m2

J1
, N2 =

m2e2l1

J2
, f1 =

M1(t)

J1�
2

1

, f2 =
M2(t)

J2 �
2

1

, � = �1t.

(6)

(1 + B1)�̈�1 + N1�̈�2 cos(𝛾1 − 𝛾2)

+𝛼1[r1xp
2

x
cos(px𝜏) sin 𝛾1 − r1yp

2

y
sin(py𝜏)cos𝛾1]

+N1�̇�
2

2
sin(𝛾1 − 𝛾2) + (1 + s1)sin𝛾1 = f1 cos(p1𝜏) ,

(7)

(1 + B2)�̈�2 + N2�̈�1 cos(𝛾1 − 𝛾2)

−N2�̇�
2

1
sin(𝛾1 − 𝛾2) + N2[r1xp

2

x
cos(px𝜏) sin 𝛾2

−r1yp
2

y
sin(py𝜏)cos𝛾2] +𝜛2sin𝛾2 = f2 cos(p2𝜏) .

Fig. 1  Description of the dynamical model
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Now, we introduce the coordinates �1 and �2 as functions 
of small parameter 0 < 𝜀 << 1 as follows as

where � and � are the new variables that can be sought as 
follows [32]

where �n = �nt (n = 0, 1 , 2) are different time scales.
Based on these scales, the time derivatives have been 

transformed regarding to these scales as follows

Furthermore, we propose that

where B̃j, Ñj , f̃j , s̃1 , r̃1x , r̃1y, and �̃�1 are parameters of order 
unity.

Inserting Eqs. (10)–(13) into Eqs. (8) and (9), equaling 
the coefficients of the same power of � to get the following 
three groups of partial differential equations (PDE) accord-
ing to the orders of �.

The first group of PDE of order (�)

(8)

(1 + B1)�̈�1 + N1

�̈�2

36
[9(𝛾2

1
− 2)(𝛾2

2
− 2) + 𝛾1𝛾2(𝛾

2

1
− 6)(𝛾2

2
− 6)]

+ 𝛼1

[

r1xp
2

x
cos(px𝜏) ×

(

𝛾1 −
𝛾3
1

6

)

− r1yp
2

y
sin(py𝜏)

(

1 −
𝛾2
1

2

)]

+
N1�̇�

2

2

12
[𝛾1(𝛾

2

1
− 6)(𝛾2

2
− 2) − 𝛾2(𝛾

2

1
− 2)(𝛾2

2
− 6)]

+ (1 + s1)

(

𝛾1 −
𝛾3
1

6

)

= f1 cos(p1𝜏) ,

(9)

(1 + B2)�̈�2 +
N2�̈�1

36
[9(𝛾2

1
− 2)(𝛾2

2
− 2) + 𝛾1𝛾2(𝛾

2

1
− 6)(𝛾2

2
− 6)]

−
N2�̇�

2

1

12
[𝛾1(𝛾

2

1
− 6) × (𝛾2

2
− 2) − 𝛾2(𝛾

2

1
− 2)(𝛾2

2
− 6)]

+ N2

[

r1xp
2
x
cos(px𝜏)

(

𝛾2 −
𝛾3
2

6

)

− r1yp
2
y
sin(py𝜏) ×

(

1 −
𝛾2
2

2

)]

+𝜛2

(

𝛾2 −
𝛾3
2

6

)

= f2 cos(p2𝜏) .

(10)
�1(�) = � �(�;�) , �2(�) = ��(�;�) ,

(11)

�(�;�) =

3
∑

k=1

�k−1�k(�0, �1, �2) + O(�3),

�(�;�) =

3
∑

k=1

�k−1�k(�0, �1, �2) + O(�3).

(12)

d

d�
=

�

��0
+ �

�

��1
+ �2

�

��2
,

d2

d�2
=

�2

��2
0

+ 2�
�2

��0��1
+ �2

(

�2

��2
1

+ 2
�2

��0��2

)

+ O(�3).

(13)
Bj = 𝜀 B̃j, fj = 𝜀3 f̃j, Nj = 𝜀Ñj, (j = 1, 2)

r1x = 𝜀 r̃1x, r1y = 𝜀 r̃1y, s1 = 𝜀 s̃1, 𝛼1 = 𝜀�̃�1,

The second group of PDE of order (�2)

The third group of PDE of order (�3)

The previous Eqs. (14)–(19) constitute a system of six 
non-linear PDE. The solutions of these equations can be 
gained consecutively. Therefore, the solutions of Eqs. (14) 
and (15) are

where Aj (j = 1, 2) are complex functions of the scales �j 
that can be determined latter, while Aj indicate to their com-
plex conjugate.

(14)

�2�1

��2
0

+ �1 = 0 ,

(15)

�2�1

��2
0

+�2�1 = 0 ,

(16)

𝜕2𝜇2

𝜕𝜏2
0

+ 𝜇2 = �̃�1r̃1yp
2

y
sin(py𝜏0) − s̃1𝜇1 − 2

𝜕2𝜇1

𝜕𝜏0𝜕𝜏1

− Ñ1

𝜕2𝜑1

𝜕𝜏2
0

− B̃1

𝜕2𝜇1

𝜕𝜏2
0

,

(17)

𝜕2𝜑2

𝜕𝜏2
0

+𝜛2𝜑2 = Ñ2r̃1y p
2
y
sin(py𝜏0) − B̃2

𝜕2𝜑1

𝜕𝜏2
0

− Ñ2

𝜕2𝜇1

𝜕𝜏2
0

− 2
𝜕2𝜑1

𝜕𝜏0𝜕𝜏1
,

(18)

𝜕2𝜇3

𝜕𝜏2
0

+ 𝜇3 = f̃1 cos p1𝜏0 − 2
𝜕2𝜇2

𝜕𝜏0𝜕𝜏1
− 2

𝜕2𝜇1

𝜕𝜏0𝜕𝜏2

−
𝜕2𝜇1

𝜕𝜏2
1

− B̃1

𝜕2𝜇2

𝜕𝜏2
0

− 2B̃1

𝜕2𝜇1

𝜕𝜏0𝜕𝜏1

− Ñ1

𝜕2𝜑2

𝜕𝜏2
0

− 2Ñ1

𝜕2𝜑1

𝜕𝜏0𝜕𝜏1

− �̃�1r̃1xp
2

x
𝜇1 cos px𝜏0 +

𝜇3

1

6
− s̃1𝜇2,

(19)

𝜕2𝜑3

𝜕𝜏2
0

+𝜛2𝜑3 = f̃2 cos p2𝜏0 +
𝜛2𝜑3

1

6
−

𝜕2𝜑1

𝜕𝜏2
1

− 2
𝜕2𝜑2

𝜕𝜏0𝜕𝜏1
− 2

𝜕2𝜑1

𝜕𝜏0𝜕𝜏2

− B̃2

𝜕2𝜑2

𝜕𝜏2
0

− 2B̃2

𝜕2𝜑1

𝜕𝜏0𝜕𝜏1
− Ñ2

𝜕2𝜇2

𝜕𝜏2
0

− 2Ñ2

𝜕2𝜇1

𝜕𝜏0𝜕𝜏1

− Ñ2 r̃1x p
2
x
𝜑1 cos px𝜏0 +

𝜛2

6
𝜑3
1
.

(20)�1 = A1e
i �0 + A1e

−i �0 ; (i =
√

−1)

(21)�1 = A2e
i� �0 + A2e

−i� �0 ,
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Introducing Eqs. (20) and (21) into Eqs. (16) and (17), 
then omitting terms that yield the secular ones to obtain the 
conditions for omitting these terms as follows

Based on these conditions, the second-order solutions 
become

where the letters CC are the complex conjugates of the pre-
ceding terms.

The conditions of the elimination of the secular elements 
from the third-order approximate Eqs. (18) and (19) have 
the forms

Thus, the third-order approximations �3 and �3 can be 
written as follows

(22)
2i
𝜕A1

𝜕𝜏1
+ A1(s̃1 − B̃1) = 0 ,

2i
𝜕A2

𝜕𝜏1
−𝜛 A2B̃2 = 0 ,

(23)𝜇2 =
𝜛2Ñ1A2

(1 −𝜛2)
ei𝜛𝜏0 +

�̃�1r̃1yp
2

y
ei py𝜏0

2 i(1 − p2
y
)

+ CC,

(24)𝜑2 =
Ñ2A1e

i 𝜏0

(𝜛2 − 1)
+

Ñ2r̃1yp
2

y
ei py𝜏0

2 i(𝜛2 − p2
y
)
+ CC,

(25)

𝜕2A1

𝜕𝜏2
1

+ 2i

(

𝜕A1

𝜕𝜏2
+ B̃1

𝜕A1

𝜕𝜏1

)

−
Ñ1Ñ2

(𝜛2 − 1)
A1 −

1

2
A2

1
A1 = 0 ,

(26)

𝜕2A2

𝜕𝜏2
1

+ 2i𝜛

(

𝜕A2

𝜕𝜏2
+ B̃2

𝜕A2

𝜕𝜏1

)

−
𝜛4Ñ1Ñ2

(1 −𝜛2)
A2 −

𝜛2

2
A2

2
A2 = 0 ,

(27)
𝜇3 =

f̃1e
i p1𝜏0

2(1 − p2
1
)
−

A3
1
e3i 𝜏0

48
+

�̃�1r̃1xp
2
x
ei (px+1)𝜏0A1

2px (px + 2)
+

�̃�1r̃1xp
2
x
ei (px−1)𝜏0A1

2px (px − 2)
−

ei𝜛𝜏0

(1 −𝜛2)2
[𝜛2Ñ1B̃2A2

− Ñ1A2(B̃1𝜛
4 − s̃1𝜛

2)] +
eipy𝜏0

(1 − p2
y
)

[

p4
y
Ñ2Ñ1r̃1y

2i (𝜛2 − p2
y
)
+

�̃�1r̃1yp
2
y
(B̃1p

2
y
− s̃1)

2 i (1 − p2
y
)

]

+ CC,

(28)
𝜑3 =

f̃2e
i p2𝜏0

2(𝜛2 − p2
2
)
−

A3
2
e3i𝜛 𝜏0

48
+

ei 𝜏0

(𝜛2 − 1)2
[Ñ2B̃2A1 − Ñ2𝜛

2A1(B̃1 − s̃1)] +
p4
y
Ñ2r̃1ye

ipy𝜏0

2i (𝜛2 − p2
y
)

×

[

B̃2

(𝜛2 − p2
y
)
+

�̃�1

(1 − p2
y
)

]

− Ñ2r̃1xp
2
x

[

A2e
i𝜏0(px+𝜛)

2(𝜛2 − (px +𝜛)2)
+

A2e
i𝜏0(px−𝜛)

2(𝜛2 − (px −𝜛)2)

]

+ CC.

It is worthy to mention that the functions Aj (j = 1, 2) 
can be calculated from the eliminating conditions of secular 
terms Eqs. (22), (25), and (26).

Modulation Equations (ME)

This section’s purpose is to characterise resonance cases, to 
gain the conditions of solvability, and to obtain the ME. It 
is known that if the denominators of the solutions Eqs. (27) 
and (28) approach to zero [33], then these solutions break 
down and the resonance cases are noticeable. As a result, it 
falls under the following categories:

 (i) The major external resonance appears when 
p1 ≈ 1 , p2 ≈ �,

 (ii) T h e  i n t e r n a l  r e s o n a n c e  a r i s e s  w h e n 
� ≈ 1 , px ≈ 2 , px ≈ 2�, py ≈ 1 , py ≈ �.

If any of the preceding conditions are met, the system's 
dynamical performance will be extremely tough. It's worth 
noting that when oscillations escape from resonances posi-
tions, the AS in the previous section are still valid.

First, we'll look at two major external resonances that are 
presenting at the same time, in which the nearness of p1, p2 
to 1 , � can be expressed by using the detuning parameters 
of �1 and �2 (which refer to the distance between vibrations 
and the stringent resonance [34]) as follows

Therefore, we can introduce them in terms of O(�) as 
follows

(29)
p1 = 1 + �1 , p2 = � + �2.
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Substituting Eqs. (29)–(30) into Eqs. (16)–(19), and elim-
inating terms that lead to secular ones to get the conditions 
of solvability of the second-order of approximation as in Eq. 
(22) and the third-order of approximation as follows

Making use of conditions Eq. (22) into Eq. (31), to yield

It is noted from Eqs. (22) and (32) that the conditions of 
solvability of the investigated model consisting of four PDE 
regarding the functions Aj (j = 1, 2) , in which conditions 

(30)

𝜎j = 𝜀�̃�j; (j = 1, 2).

(31)

𝜕2A1

𝜕𝜏2
1

+ 2i
𝜕A1

𝜕𝜏2
+ 2iB̃1

𝜕A1

𝜕𝜏1
−

Ñ1Ñ2

(𝜛2 − 1)
A1 −

1

2
A2

1
A1 −

f̃1

2
ei�̃�1𝜏1 = 0,

𝜕2A2

𝜕𝜏2
1

+ 2i𝜛
𝜕A2

𝜕𝜏2
+ 2i𝜛B̃2

𝜕A2

𝜕𝜏1
−

𝜛4Ñ1Ñ2

(1 −𝜛2)
A2 −

𝜛2

2
A2

2
A2 −

f̃2

2
ei�̃�2𝜏1 = 0 .

(32)

3

4
A1B̃

2
1
−

1

2
s̃1A1B̃1 −

1

4
A1s̃

2
1
+ 2i

𝜕A1

𝜕𝜏2
−

Ñ1Ñ2

(𝜛2 − 1)
A1 −

1

2
A2

1
A1 −

f̃1

2
ei�̃�1𝜏1 = 0,

3

4
𝜛2B̃2

2
A2 + 2i𝜛

𝜕A2

𝜕𝜏2
−

𝜛4Ñ1Ñ2

(1 −𝜛2)
A2 −

𝜛2

2
A2

2
A2 −

f̃2

2
ei�̃�2𝜏1 = 0 .

Eqs. (22) and (32) reveal that Aj depend upon the slow time 
parameters �1 and �2 . Then we can represent Aj as in the fol-
lowing polar form

Let us consider the following modified phases [35]

(33)

Aj(𝜏1, 𝜏2) =
ãj(𝜏1, 𝜏2)

2
ei𝜓j(𝜏1,𝜏2), aj = 𝜀ãj; (j = 1, 2).

(34)

𝜃j(𝜏1, 𝜏2) = �̃�j𝜏1 − 𝜓j(𝜏1, 𝜏2), 𝜎j = 𝜀�̃�j; j = (1, 2).

Fig. 2  Sketches the temporal variation of the amplitude a1 when �1 = 0.002 and �2 = 0.001 : a 
f1(= 0.001, 0.002, 0.003), f2 = 0.0002, � = 0.74 , b f2(= 0.0009, 0.004, 0.01), f1 = 0.002, � = 0.74, c �(= 0.67, 0.69, 0.74), f1 = 0.002.
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Fig. 3  Describes the temporal variation of the amplitude a2 when �1 = 0.002 and �2 = 0.001 : a 
(f1 = 0.001, 0.002, 0.003), f2 = 0.0002, � = 0.74 , b(f2 = 0.0009, 0.004, 0.01), f1 = 0.002, � = 0.74, c (� = 0.67, 0.69, 0.74), f1 = 0.002.

Fig. 4  Describes the temporal variation of the modified phase �1 when �1 = 0.002 and �2 = 0.001 : 
a f1(= 0.001, 0.002, 0.003), f2 = 0.0002, � = 0.74 , b f2(= 0.0009, 0.004, 0.01), f1 = 0.002, � = 0.74, c �(= 0.67, 0.69, 0.74), f1 = 0.002.
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Substituting Eqs. (13), (33), and (34) into Eqs. (22) and 
(32), and separating real and imaginary parts to obtain the 
following four first-order ODE constituting the ME

This system has been inspected to show that it has the 
solutions aj (j = 1, 2) and �j which describe the modulations 
of the amplitudes and the phases, respectively. These solu-
tions are graphed for various selected values of the system’s 
parameters as displayed in Figs. 2, 3, 4 and 5 in accordance 
with the following data

(35)

a1
d�1

d�
= a1�1 +

N1N2

2(�2 − 1)
a1 +

a3
1

16
+

a1B1

8
(4 − 3B1)

+
a1s1

8
(2B1 − 4 + s1) +

f1

2
cos �1,

da1

d�
=

f1

2
sin �1,

a2
d�2

d�
= a2�2 +

�B2

8
a2(4 − 3B2) +

�

16

a3
2
+

�3N1N2a2

2(1 −�2)
+

f2

2�
cos �2,

da2

d�
=

f2

2�
sin �2.

Fig. 5  Describes the temporal variation of the modified phase �2 when �1 = 0.002 and �2 = 0.001 : 
a f1(= 0.001, 0.002, 0.003), f2 = 0.0002, � = 0.74 , b f2(= 0.0009, 0.004, 0.01), f1 = 0.002, � = 0.74, c �(= 0.67, 0.69, 0.74), f1 = 0.002.

A closer examination of Figs. 2, 3, 4 and 5 reveals that 
these figures are plotted at �1 = 0.002, �2 = 0.001 when 
f1(= 0.001, 0.002, 0.003), f2(= 0.0009, 0.004, 0.01), and 
�(= 0.67, 0.69, 0.74) as in parts (a), (b), and (c) of these 
figures, respectively. These figures describe the time histo-
ries of the amplitudes aj (j = 1, 2) and the modified phases 
�j as seen in Figs. 2, 3, 4, and 5 respectively. It is clear that 
when the value f1 increases, periodic waves are produced, 
in which the amplitudes of the waves describing a1 increase 
and the number of oscillations increases to some extent as 
seen in Fig. 2a, contrary with the �1 decreasing behaviour as 
drawn in Fig. 4a. Moreover, there is no significant change 
of the waves characterizing a2 and �2 with the change of f1 
values as observed from parts (a) Figs. 3 and 5. The reason 
is due to the third and fourth equations of Eq. (35). The same 
conclusion can be applied on the parts (b) of Figs. 2 and 4 
which is owing to that the first two equations of Eq. (35) 
don’t depend on f2 explicitly.

f1(= 0.001, 0.002, 0.003), f2(= 0.0009, 0.004, 0.01),

�(= 0.67, 0.69, 0.74)�1 = 0.002, �2 = 0.001, g = 9.8 m/s2,

m1 = 6 kg, m2 = 5 kg, Ω1 = �1(1 + �1),

Ω2 = �1(� + �2), l = 1.5 m, e1 = e2 = 0.5 m.
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Fig. 6  The time history of the approximate solutions �1 when �1 = 0.002 and �2 = 0.001 : a f1(= 0.001, 0.002, 0.003), f2 = 0.0002, � = 0.74 , b 
f2(= 0.0009, 0.004, 0.01), f1 = 0.002, � = 0.74, and c �(= 0.67, 0.69, 0.74), f1 = 0.002.

Fig. 7  The time history of the approximate solutions �2 when �1 = 0.002 and �2 = 0.001 : a f1(= 0.001, 0.002, 0.003), f2 = 0.0002, � = 0.74 , b 
f2(= 0.0009, 0.004, 0.01), f1 = 0.002, � = 0.74, c �(= 0.67, 0.69, 0.74), f1 = 0.002.
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Fig. 8  The comparison between the AS and the NS of the variable �1 when �1 = 0.002, �2 = 0.001, � = 0.74 , f1 = 0.002, and f2 = 0.0009

Fig. 9  The comparison between the AS and the NS of the variable �2 at �1 = 0.002, �2 = 0.001, � = 0.74 , f1 = 0.002, and f2 = 0.0009

The change of the f2 values on the behavior of a2 and �2 
has a good impact in which periodic waves are yielded as 
in parts (b) of Figs. 3 and 5. Here, the amplitudes of plotted 
waves increase and decrease with the increasing of f2 val-
ues as drawn in Figs. 3a and 5a respectively. On the other 
hand the different values of � has an excellent impact on 

the behavior of aj (j = 1, 2) and �j as plotted in Figs. 2, 3, 4, 
and 5 respectively.

The attained AS of the rotation angles �1 and �2 via time � 
are plotted in Figs. 6 and 7 to explore the variation of these 
solutions with time when f1, f2, and � have various values 
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at �1 = 0.002 and �2 = 0.001 , in which the above data are 
used to sketch both of them.

A closer look at the drawn curves in the parts of Fig. 6 
shows that we have increasing amplitude waves due to the 
increasing of the selected values of f1 and f2 as explored in 
parts (a) and (b). Moreover, this increment becomes slightly 

with the increasing of � values as seen in parts (c) and (b) 
while the change becomes constant when � increases, see 
part (c). Regarding parts of Fig. 7, we can say that the waves 
describing �2 when f1(= 0.001, 0.002, 0.003) as in part (a) 
have no noticeable change with the values of f1 , while the 
waves amplitudes increasing with the increasing of f2 and 
� as seen Fig. 7b,c. At all, periodic waves are produced 

Fig. 10  The diagrams of phase planes for the solutions �1 and �2 at f1(= 0.001, 0.002, 0.003), f2 = 0.0002 ,�1 = 0.002, �2 = 0.001 , and � = 0.74

Fig. 11  The diagrams of phase planes for the solutions �1 and �2 at f2(= 0.0009, 0.004, 0.01), f1 = 0.002 , �1 = 0.002, �2 = 0.001 , and � = 0.74
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which express about the steady state behavior and the stabil-
ity of the acquired AS. These solutions are compared with 
the numerical solutions (NS) which are obtained using the 
method of Runge–Kutta from fourth-order when �1 = 0.002,

�2 = 0.001,� = 0.74 , f1 = 0.002, and f2 = 0.0009 to reveal 
high matching between them and to indicate about the great 
accuracy of the utilized perturbation method, as shown 
in Figs. 8 and 9 for the generalized coordinated �1 and �2 
respectively. The relations between the AS and their deriva-
tives from first-order are portrayed in Figs. 10, 11 and 12 to 
constitute the phase planes figures when f1, f2, and � take 
different values. It is notable that, we have closed symmetric 
trajectories to some extent which assert that the gained AS 

have a stable behaviors, which are predicted before, during 
the tested interval of time.

Steady‑State Solutions for the Case 
of External Resonances

The purpose of the present section is to inspect the steady-
state oscillations of the scrutinized dynamical system when 
the oscillations of the transitory processes have disappeared. 
Therefore, the conditions of the steady-state can be obtained 

when daj
d�

=
d�j

d�
= 0 (j = 1, 2) [36]. As a result, regarding the 

unknowns, aj and �j we can obtain a system of four algebraic 
equations as follows:

(36)

a1

[

�1 +
N1N2

2(�2 − 1)
+

a2
1

16
+

B1

8
(4 − 3B1) +

s1

8
(2B1 − 4 + s1)

]

+
f1

2
cos �1 = 0,

f1

2
sin �1 = 0,

a2

[

�2 +�

(

B2

8
(4 − 3B2) +

a2
2

16
+

�2N1N2

2(1 −�2)

)]

+
f2

2�
cos �2 = 0,

f2

2�
sin �2 = 0.

Fig. 12  Illustrates the diagrams of phase planes for the solutions �1 and �2 at �(= 0.67, 0.69, 0.74),�1 = 0.002, f1 = 0.002, 
f2(= 0.0001, 0.0001, 0.0002), and �2 = 0.001
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Omission of the modified phases �j from this system 
produces the next two non-linear algebraic relationships 
between amplitudes aj and the frequency response functions 
described by the detuning parameters �j in the following 
forms

It should be noted that, the steady-state part is considered 
as a significant part in the procedure of stability examina-
tion. Therefore, we concentrate our investigation on a region 

(37)

f 2
1
= 4a2

1

[

N1N2

2(�2 − 1)
+

a2
1

16
+

B1

8
(4 − 3B1) + �1 +

s1

8
(2B1 − 4 + s1)

]2

,

f 2
2
= 4�2a2

2

[

�

(

B2

2
−

3

8
B2

2
+

a2
2

16
+

�2N1N2

2(1 −�2)

)

+ �2

]2

.

that close to the fixed points. To achieve this goal, let us 
consider the following forms of amplitudes and phases [37]

where a10 , a20, �10, and �20 are the solutions of steady state, 
while a11 , a21, �11, and �21 are the corresponding perturba-
tions. Inserting Eq. (38) into Eq. (35), after linearization we 
can obtain

(38)
a1 = a10 + a11, �1 = �10 + �11,

a2 = a20 + a21, �2 = �20 + �21,

Fig. 13  The resonance 
curves of the amplituudes 
aj (j = 1, 2) as a function of �1 
at �2 = −0.2 ,� = 0.74, and 
f1(= 0.001, 0.002, 0.003)

Fig. 14  Resonance curves of 
the amplituudes aj (j = 1, 2) 
as a function of �2 when 
�1 = −0.2 ,� = 0.74, and 
f1(= 0.001, 0.002, 0.003)

Fig. 15  Resonance curves 
of aj(�1) (j = 1, 2) at 
�2 = −0.2 ,� = 0.74, and 
f2(= 0.0009, 0.004, 0.01)



1968 Journal of Vibration Engineering & Technologies (2022) 10:1955–1987

1 3

(39)

a10
d�11

d�
= a11

[

�1 +
N1N2

2(�2 − 1)
+

3a2
10

16
+

B1

8
(4 − 3B1) +

s1

8
(2B1 − 4 + s1)

]

−
f1

2
�11sin�10,

da11

d�
=

f1

2
�11cos�10,

a20
d�21

d�
= a21

[

�2 +�

(

B2

2
−

3

8
B2

2
+

3

16
a2
20

+
�2N1N2

2(1 −�2)

)]

−
f2

2�
�21 sin �20,

da21

d�
=

f2

2�
�21cos�20,

To achieve the solutions of the given system Eq. (39), 
we can write the unknown functions aj1 (j = 1, 2) and �j1 in 
exponential forms as qse�� where qs (s = 1, 2, 3, 4) are con-
stants and � is the appropriate eigenvalues of these functions. 
In this case, the steady-state solutions aj0 and �j0 (j = 1, 2) 
are stable asymptotically if the real parts of the roots of the 
following characteristic equations must be negative [38]

where

(40)�4 + Γ1�
3 + Γ2�

2 + Γ3� + Γ4 = 0,

Fig. 16  Resonance curves 
of aj(�2) (j = 1, 2) at 
�1 = −0.2 ,� = 0.74, and 
f2(= 0.0009, 0.004, 0.01)

Fig. 17  Resonance curves of 
a1(�1) and a2(�1) at �2 = −0.2 
and �(= 0.67, 0.69, 0.74)

Fig. 18  Resonance curves of 
a1(�2) and a2(�2) at �1 = −0.2 
and �(= 0.67, 0.69, 0.74)
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(41)

Γ1 =
1

2

(

f1 sin �10

a10
+

f2 sin �20

�a20

)

,

Γ2 = −
1

32�(�2 − 1)a10a20
{−8f1f2(�

2 − 1) sin �10 sin �20 +�f1a20 cos �10[3a
2
10
(�2 − 1)

+ 2(−3B2
1
(�2 − 1) + 4N1N2 + 2B1(�

2 − 1)(s1 + 2) + (�2 − 1)((s1 − 4)s1 + 8�1))]

+ a10f2 cos �20(�(�2 − 1)(3a2
20
+ 2B2(4 − 3B2) − 8�3N1N2 + 16�2(�

2 − 1))},

Γ3 =
f1f2

64�(�2 − 1)a10a20
{cos �10 sin �20[−3a

2
10
(�2 − 1) + 2(3B2

1
(�2 − 1) − 4N1N2

− 2B1(�
2 − 1)(s1 + 2) − (�2 − 1)((s1 − 4)s1 + 8�1))] + cos �20 sin �10(−3�(�2 − 1)a2

20

+ 2B2�(�2 − 1)(−4 + 3B2) + 8�3N1N2 − 16�2(�
2 − 1))},

Γ4 =
f1f2 cos �10 cos �20

1024�(�2 − 1)2a10a20
[3a2

10
(�2 − 1) + 2(−3B2

1
(�2 − 1) + 4N1N2 + 2B1(�

2 − 1)

× (s1 + 2) + (�2 − 1)((s1 − 4)s1 + 8�1)][(�(�2 − 1)(3a2
20
+ 2B2(4 − 3B2))

− 8�3N1N2 + 16�2(�
2 − 1)].

Table 1  The critical and peaks 
fixed points for different values 
of f1.

Figure Peaks of fixed points Critical fixed points f1

Figure 13a (−0.07959, 0.04676),

(−0.06, 0.0518704),

(−0.07064,−0.2092)

(−0.06, 0.0518704) 0.001

(−0.07936, 0.1021),

(−0.06, 0.099229),

(−0.06514,−0.2602)

(−0.06, 0.099229) 0.002

(−0.08051, 0.1855),

(−0.06, 0.140419),

(−0.06567,−0.2969)

(−0.06, 0.140419) 0.003

Figure 13b – (−0.06, 0.000874021) 0.001, 0.002, 0.003

Figure 14a – (−0.02, 0.00391468) 0.001

(−0.02, 0.00782953) 0.002

(−0.02, 0.0117447) 0.003

Figure 14b (−0.03244, 0.03803) (−0.02, 0.025389) 0.001, 0.002, 0.003

It is noted that Γs (s = 1, 2, 3, 4) depend on some param-
eters like aj0, �j0, and fj . The stability conditions at steady-
state solutions can be written as follows using the criterion 
of Routh-Hurwitz [39]

(42)

Γ1 > 0,

Γ3(Γ1Γ2 − Γ3) − Γ2
1
Γ4 > 0,

Γ1Γ2 − Γ3 > 0,

Γ4 > 0.

Table 2  The critical and peaks fixed points for different values of f2.

Figure Peaks of fixed points Critical fixed points f2

Figure 15a (−0.07936, 0.1021),

(−0.07118,−0.2602),

(−0.06, 0.099229)

(−0.06, 0.099229) 0.0009,

0.004, 0.01

Figure 15b – (−0.06, 0.0034961) 0.0009

(−0.06, 0.0174818) 0.004

(−0.06, 0.0437234) 0.01

Figure 16a – (−0.03, 0.00782953) 0.0009

(−0.04, 0.00782953) 0.004

(−0.05, 0.00782953) 0.01

Figure 16b (−0.03, 0.351874) (−0.03, 0.351874) 0.0009

(−0.04, 0.635683) (−0.04, 0.635683) 0.004

(−0.05, 0.842501) (−0.05, 0.842501) 0.01
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The Stability Analysis for the Case 
of External Resonances

In the current section, the approach of the non-linear stability 
is utilized to study the motion of the investigated dynamical 
system of the double RBP that subjected to the harmonic exter-
nal moments M�1

(t) and M�2
(t) . In addition to simulating the 

equations of the non-linear system, the stability criteria are also 
performed. It is observed that the parameters of detuning �1, �2, 
and the frequency � have a positive impact on the destabili-
zation of the stability criteria. To sketch the stability areas or 
ranges of system Eq. (37), a specified procedure with various 
settings of the system was tested. The changes of the amplitudes 
a1, a2 via time are plotted for distinct parametric regions. There-
fore, Figs. 13, 14, 15, 16, 17 and 18 is drawn to show how the 
variations of the values of �1 and �2 effect on the possible fixed 
points, in which we considered the selected values of the param-
eters f1(= 0.001, 0.002, 0.003), f2(= 0.0009, 0.004, 0.01) , 
and �(= 0.67, 0.69, 0.74) are used.

The inf luence of the selected values of 
f1(= 0.001, 0.002, 0.003), on the frequency responses curves 
in the planes aj�1 (j = 1, 2) and aj�2 is described in Figs. 13 and 
14, respectively. A closer look at these figures explores that we 
have only one critical fixed point with three peaks for each value 
of f1 as shown in Fig. 13a, while no peaks are observed in Fig. 13b 
for the curves in the plane a2�1 with the variation of f1 . The vari-
ation of a1 via �2 in Fig. 14a reflects the number of critical fixed 
points which is one distinct point for each value of f1 , whereas in 
Fig. 14b there exists one stationary critical point for the plotted 
curves of f1 . Overall, the areas of stable and unstable fixed points 
of Fig. 13 lie in the range just �1 ≤ −0.06 and −0.06 < 𝜎1 , respec-
tively. According to the curves depicted in Fig. 14, we observe 

Table 3  The critical and peaks fixed points for different values of �.

Figure Peaks of fixed points Critical fixed points �

Figure 17a (−0.08, 0.279982) (−0.08, 0.279982) 0.67

(−0.08, 0.318593) (−0.08, 0.318593) 0.69

(−0.07936, 0.1),

(−0.07,−0.260666),

(−0.05891, 0.08965)

(−0.07,−0.260666) 0.74

Figure 17b – (−0.08, 0.000745528) 0.67

(−0.08, 0.000775041) 0.69

(−0.07, 0.000874021) 0.74

Figure 18a – (−0.01, 0.00841571) 0.67

(−0.01, 0.00828679) 0.69

(−0.02, 0.00782953) 0.74

Figure 18b (−0.01894, 0.0375) (−0.01, 0.0217523) 0.67

(−0.01961, 0.1146) (−0.01, 0.0169547) 0.69

(−0.0303, 0.03803) (−0.02, 0.025389) 0.74

Fig. 19  Frequency response when �2 = −0.2 : a at � = 0.67 , b at � = 0.69 , c at � = 0.74
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that the stable and unstable regions are −0.3 ≤ �2 ≤ −0.02 and 
−0.02 < 𝜎2 ≤ 0.3 , respectively. It is worthwhile to mention that 
the solid curves describe the domain of stable points while the 
dashed ones represent the unstable ranges.

On the other hand, Figs. 15 and 16 show the frequency 
responses curves in the planes aj�1 (j = 1, 2) and aj�2 when 
f2(= 0.0009, 0.004, 0.01) . It can be seen that there exists 
only three typical and different critical fixed points as seen in 
Fig. 15a, b, respectively. The stable and unstable areas of fixed 
points are found in Fig. 15 at the ranges −0.3 ≤ �1 ≤ −0.06 and 
−0.06 < 𝜎1 ≤ 0.3 , respectively. The observed curves in Fig. 16 
indicate that we identical response curves with the same critical 
point as in part (a), while in part (b) three various critical fixed 
points are obtained with the variation of f2 values. The areas of 
fixed points whether stable or not for different values of f2 are 
classified according to:

1- At f2 = 0.01, we observed that the fixed points have 
stable and unstable ranges −0.3 ≤ �2 ≤ −0.05 and 
−0.05 < 𝜎2 ≤ 0.3 respectively.

2- When f2 = 0.004 , the stability and instability regions 
are found in the domains −0.3 ≤ �2 ≤ −0.04 and 
−0.04 < 𝜎2 ≤ 0.3 , respectively.

3- When f2 has the value 0.0009 , one found the stable fixed 
points lie in the range of −0.3 ≤ �2 ≤ −0.03 while the 
unstable ones occurs in the range of −0.03 < 𝜎2 ≤ 0.3.

However, the influence of the values of the natural fre-
quency �(= 0.67, 0.69, 0.74) on the frequency responses 
are portrayed in parts of Figs. 17 and 18. There is only one 
critical fixed point for each value of � has plotted in Figs. 17 
and 18 as follows, in which two pints are directed upward 
at � = 0.67 and � = 0.69 while the third one is directed 
downward at � = 0.74 with three peaks as explored in part 
(a) of Fig. 17. Moreover, three different critical points are 
found in the plane a2�2 with the considered values of � , sees 
Fig. 18b. Contrary, we have three different critical points 
at the different values of � as seen in parts (b) and (a) of 
Figs. 17 and 18, respectively. The stability ranges and insta-
bility ones have the following categorization:

1. At � = 0.74 , the stable and unstable points are existing 
in the domains −0.3 ≤ �1 ≤ −0.07 and −0.07 < 𝜎1 ≤ 0.3 
respectively, as graphed in Fig. 17. Whereas the stable 
points takes place in the range −0.3 ≤ �2 ≤ −0.02 and 
the unstable ones occur in the range −0.02 < 𝜎2 ≤ 0.3 
as shown in Fig. 18.

2. At �(= 0.67, 0.69) , one found stable fixed point in 
the range −0.3 ≤ �1 ≤ −0.08 while the unstable ones 
are exists in the range −0.08 < 𝜎1 ≤ 0.3 as plotted in 
Fig. 17. Moreover, in Fig. 18 the stable points take place 
in the domain −0.3 ≤ �2 ≤ −0.01 and the unstable ones 
are found in the domain −0.01 < 𝜎2 ≤ 0.3.

Fig. 20  Frequency response when �1 = −0.2 : a at � = 0.67 , b at � = 0.69 , c at � = 0.74
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Tables 1, 2, and 3 show the relation between the criti-
cal and peaks fixed points and the values of the parameters 
f1, f2, and � respectively.

The inspection of Figs. 19 and 20 shows the frequency 
responses when �2 = −0.2 and �1 = −0.2 respectively. These 
figures are calculated at �(= 0.67, 0.69, 0.74), f1 = 0.002, 
m1 = 6, and m2 = 5 . It is clear that from curves of Fig. 19, 
there are no intersection of fixed points when � = 0.67 and 
� = 0.69 , i.e. no common solutions while at � = 0.74 there 
are two stable unique solutions. Whereas curves of Fig. 20 
reflect that we have two unique common fixed points of the 
solutions, in which one of them is stable and the other is unsta-
ble. It is notable that through the regions −0.03 ≤ �1 ≤ 0.03 
and −0.03 ≤ �2 ≤ 0.03 there is a high resonance among the 
frequency which in turn leads to a notable increase in the 
amplitudes of the steady-state solutions.

Non‑linear Analysis for the External 
Resonance Case

This section aims to study the characteristic of the non-linear ampli-
tude for the system of Eq. (35) and explores their stabilities. There-
fore, the accompanying transformation is taken into account [40]

(43)
Aj(𝜏1, 𝜏2) =

1

2
[ũj(𝜏1, 𝜏2) + i ṽj(𝜏1, 𝜏2)]e

i �̃�j 𝜏1 ;

uj = 𝜀ũj, vj = 𝜀ṽj (j = 1, 2).

Fig. 21  The time histories of u1 and v1 , and the corresponding paths of the modulation equations on u1v1 plane when f1(= 0.001, 0.002, 0.003),

�1 = 0.002, �2 = 0.001, and � = 0.74 .
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Substituting Eqs. (13) and (43) into Eqs. (22) and (32), 
then splitting the real parts and imaginary ones to obtain

The altered amplitudes were then evaluated over the used 
time interval in different parametric areas and the ampli-
tudes characteristics were depicted in phase-plane curves, 
as illustrated in Figs. 21, 22, 23, 24, 25 and 26. The values 
of parameters are as follows

(44)

dv1

d�
+ u1

[

�1 +
1

8

(

B1(4 − 3B1 + 2s1) + s1(s1 − 4) +
4N1N2

(�2 − 1)
+

1

2
(u2

1
+ v2

1
)

)]

+
f1

2
= 0,

du1

d�
+ v1

[

−�1 +
1

8

(

B1(3B1 − 2s1 − 4) + s1(4 − s1) −
4N1N2

(�2 − 1)
−

1

2
(v2

1
+ u2

1
)

)]

= 0,

dv2

d�
+ u2

[

�2 +
1

8

(

�B2(4 − 3B2) +
4�3N1N2

(1 −�2)
+

�

2
(u2

2
+ v2

2
)

)]

+
f2

2�
= 0,

du2

d�
+ v2

[

−�2 +
1

8

(

�B2(3B2 − 4) −
4�3N1N2

(1 −�2)
−

�

2
(v2

2
+ u2

2
)

)]

= 0.

f1(= 0.001, 0.002, 0.003), f2(= 0.0009, 0.004, 0.01) , �(= 0.67, 0.69, 0.74),

�1 = 0.002, �2 = 0.001, u1(0) = 0.07, v1(0) = 0.02, u2(0) = 0.02, v2(0) = 0.02.

The plotted curves of Figs. 21, 22, 23, 24, 25 and 26 

illustrate the change of the modified phases u1, u2, v1, and 
v2 versus time � when f1, f2, and � have the above values as 
in parts (a) and (b) respectively. The behaviour of the rep-
resented waves of u1, v1 and u2, v2 behave periodic attitude, 
in which the amplitudes of these waves increase with the 

Fig. 22  The time histories of u2 and v2 , and the paths of the modulation equations on the plane u1v1 when (f1 = 0.001, 0.002, 0.003),�1 = 0.002, 
�2 = 0.001, and � = 0.74 .
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increasing of the values of f1 and f2 , respectively, (sees parts 
(a) and (b) of Figs. 21 and 24). Therefore, we can predict 
that the system have a stable behavior. The influence of the 
various values of � on the trajectories of u1, v1 and u2, v2 is 
drawn in Figs. 25 and 26 respectively. Periodic waves are 
portrayed as in parts (a) and (b) of these figures, in which 
the number of oscillations increases to some extent with 
the increasing of the values of natural frequency � besides 
decreasing of the wavelengths. On the other hand, there is 
no significant change in the behavior of the describing waves 
of u1, v1 and u2, v2 with each change of the values of f1 and f2 
as seen in parts (a) and (b) of Figs. 22 and 23 respectively. 
The reason is due to the formal construction of the system of 
Eq. (44). Moreover, the projections of the trajectories of the 
ME on the phase planes u1v1 and u2v2 are represented in parts 
(c) of Figs. 21, 22, 23, 24, 25 and 26 for the selected values 
of f1, f2, and � . A closed symmetric trajectories curves are 
observed which assert our prediction for the steady motion 
of the investigated system.

A Combination Case of Internal and External 
Resonance

We are going to study the case of combination of external 
and internal resonances. The closeness of �, p2 to 1 ,� is 
expressed through introducing the detuning parameters of 
�1 and �2 as follows

Therefore, we can introduce them in terms of O(�) as 
follows

Substituting Eqs. (45)–(46) for Eqs. (16)–(19) and remov-
ing terms that lead to secular ones, the following solvability 
criteria are obtained as in Eq. (22) and as in the following 
conditions

(45)� = 1 + �1 , p2 = � + �2 .

(46)𝛿j = 𝜀 𝛿j (j = 1, 2).

Fig. 23  The variation of u1 and v1 via � , and the trajectories of the modulation equations on the plane u1v1 when f2(= 0.0009, 0.004, 0.01),

�1 = 0.002, �2 = 0.001, and � = 0.74 .
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Conditions (22) and (47) show how functions Aj are 
dependent on �1 and �2 that can be stated in polar form as

Let us consider the following modified phases [35]

(47)

A1

4

[

B̃1(2s̃1 − 3B̃1) + s̃2
1
+

4Ñ1Ñ2

(𝜛2 − 1)
+ 2A1A1

]

− 2i
𝜕A1

𝜕𝜏2

+
𝜛2Ñ1A2

(1 −𝜛2)
(B̃1𝜛

2 − s̃1 − B̃2)e
i𝛿1𝜏1 = 0,

𝜛2A2

4

[

4𝜛2Ñ1Ñ2

(1 −𝜛2)
− 3B̃2

2
+ 2A2A2

]

− 2i𝜛
𝜕A2

𝜕𝜏2
+

f̃2

2
ei𝛿2𝜏1 = 0 .

(48)Aj(𝜏1, 𝜏2) =
b̃j(𝜏1, 𝜏2)

2
ei𝛽j(𝜏1,𝜏2), bj = 𝜀b̃j; j = 1, 2.

(49)
𝜙1(𝜏1, 𝜏2) = 𝛿1𝜏1 + 𝛽2(𝜏1, 𝜏2) − 𝛽1(𝜏1, 𝜏2),

𝜙2(𝜏1, 𝜏2) = 𝛿2𝜏1 − 𝛽2(𝜏1, 𝜏2).

Inserting Eqs. (13), (48) and (49) into Eqs. (22) and (47), 
and separating the real and imaginary parts, we obtain the 
ME of four first-order ODE as follow

The solutions bj (j = 1, 2) and �j of this system describes 
represent the modulations of the amplitudes and the phases, 
respectively. These solutions have been graphed for vari-
ous selected values of the system’s parameters as shown in 
Figs. 27 and 28 using the following data

(50)

b1
d�1

d�
= b1(�1 + �2) − b1

d�2

d�

+
b1

16

[

8N1N2

(�2 − 1)
+ b2

1
+ 2B1(4 − 3B1) + 2s1(2B1 + s1 − 4)

]

+
�2N1b2

2(1 −�2)
(B1�

2 − s1 − B2) cos�1,

db1

d�
=

�2N1b2

2(1 −�2)
(B1�

2 − s1 − B2) sin�1,

b2
d�2

d�
= b2�2 +

b2�

16

[

8B2 − 6B2

2
+ b2

2
+

8�2N1N2

(1 −�2)

]

+
f2

2�
cos�2,

db2

d�
=

f2

2�
sin�2.

Fig. 24  The variation of u2 and v2 via � , and the trajectories of the modulation equations on the plane u2v2 when f2(= 0.0009, 0.004, 0.01),

�1 = 0.002, �2 = 0.001, and � = 0.74 .
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A closer look at Figs. 27 and 28 reports that these figures 
are plotted at �1 = 0.11, �2 = 0.001, and f1 = 0.002 when 
f2(= 0.001, 0.0015, 0.002) to reveal the time histories of 
the amplitudes bj (j = 1, 2) and the modified phases �j . It is 
clear that when the value f2 increases, periodic waves are 
produced, in which the amplitudes of the waves describing 
b1 and b2 increase and the number of oscillations remain 
stationary to some extent as seen in Fig. 27, while the oscil-
lation’s number of �1 increases with the increasing of time as 
drawn in Fig. 28b. Moreover, there is no significant change 
of the waves characterizing �2 with the change of f2 values, 
and the behavior of the waves is decreasing with the time as 
observed from Fig. 28b.

The achieved AS of the rotation angles �1 and �2 through 
time � are drawn in Fig. 29 (for the combination case of inter-
nal and external resonance) to examine the variation of these 

f1 = 0.002, �1 = 0.11 , �2 = 0.001,

f2(= 0.001, 0.0015, 0.002),

g = 9.8 m/s2, m1 = 6 kg, m2 = 5 kg,

l = 1.5 m, e1 = e2 = 0.5 m,

Ω1 = 0.99, Ω2 = �1(� + �2), � = 1.11.

solutions with time when f2 have various values at �1 = 0.11 
and �2 = 0.001.This figure has been drawn according to the 
previous data. An inspection of the plotted curves in parts (a) 
and (b) of Fig. 29 explores that we have periodic waves with 
some package, in which there is no noticeable change of the 
waves describing �1 when f2(= 0.001, 0.0015, 0.002), while 
the amplitudes waves describing �2 increase with the increas-
ing of f2 as explored in Fig. 29b. These waves express that 
the motion has a steady behavior and the AS has a manner 
of stationary behavior. The phase plane figures that describe 
the stability of the system’s motion have been portrayed in 
Fig. 30, which reveal the relation between the AS and their 
first-order derivatives at f2(= 0.001, 0.0015, 0.002). Closed 
trajectories are observed to indicate that the gained AS have 
a stable behaviors.

Verification of the Steady State Solutions

To examine the solutions at the case of steady state, we con-
sider as studied previously in Sect. 5 the zero values of the 
first derivatives of amplitudes and modified phase i.e., 

Fig. 25  The change of u1 and v1 with time � , and the trajectories of the modulation equations on the plane u1v1 when �(= 0.67, 0.69, 0.74),

�1 = 0.002, f1 = 0.002, f2(= 0.0001, 0.0001, 0.0002) and �2 = 0.001.
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Fig. 26  The change of u2 and v2 with time � , and the trajectories of the modulation equations on the plane u2v2 when �(= 0.67, 0.69, 0.74),

�1 = 0.002, f1 = 0.002, f2(= 0.0001, 0.0001, 0.0002) and �2 = 0.001.

Fig. 27  The temporal variation 
of the amplitudes b1, b2 when 
f2(= 0.001, 0.0015, 0.002) , 
f1 = 0.002, �1 = 0.11 , 
�2 = 0.001, and � = 1.11

Fig. 28  The temporal 
variation of the modi-
fied phase �1,�2 when 
f2(= 0.001, 0.0015, 0.002) , 
f1 = 0.002, �1 = 0.11 , 
�2 = 0.001, and � = 1.11
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(

dbj

d�
=

d�j

d�
= 0 ; j = 1, 2

)

[36]. Then Eq. (50) produce the 
following system

Fig. 29  Time history of 
the approximate solu-
tions �1, �2 via � when 
f2(= 0.001, 0.0015, 0.002) , 
f1 = 0.002, �1 = 0.11 , 
�2 = 0.001, and � = 1.11

Fig. 30  The phase plane portraits when f2(= 0.001, 0.0015, 0.002), f1 = 0.002, �1 = 0.11 , �2 = 0.001, and � = 1.11 : a for the plane 𝛾1 �̇�1 and b 
for the plane 𝛾2 �̇�2

Fig. 31  Resonance curves 
for the amplitudes b1 and b2 
as functions of �1 for com-
bination resonances case at 
f2(= 0.001, 0.0015, 0.002) and 
�2 = −0.2 ,� = 1.11.
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Table 4  Critical and peaks fixed points when f2 have different values 
for combination resonance case

Figure Peaks of fixed points Critical fixed points f2

Figure 31a (0.1827,−0.7342) (0.16,−0.024247),

(0.6, 0.00321081)

0.001

(0.17,−0.0452452),

(0.1894, 0.08595),

(0.2092,−0.3332)

(0.17,−0.0452452),

(0.57, 0.00521922)

0.0015

(0.1894,−0.6433) (0.17,−0.0604742),

(0.53, 0.00783284)

0.002

Figure 31b – (0.16, 0.00196522),

(0.6, 0.00196522)

0.001

(0.17, 0.00294783),

(0.57, 0.00294783)

0.0015

(0.17, 0.00393045),

(0.57, 0.00393045)

0.002

Figure 32a (0.006156,−0.02673),

(0.04426, 0.1285),

(0.2856, 0.7253).

(−0.18, 0.00277735) 0.001

(0.03166, 0.6488),

(0.2666, 0.8241),

(0.292, 0.09138),

(0.311, 0.3117)

(−0.17, 0.00446287) 0.0015

(0.03791, 0.2408),

(0.2602,−0.05145),

(0.2856, 0.7418)

(−0.14, 0.00745147) 0.002

Figure 32b (0.03633, 0.05668) (−0.18, 0.00215043) 0.001

(0.03643, 0.26) (−0.17, 0.00338518) 0.0015

(0.0298, 0.1049) (−0.14, 0.0052999) 0.002

Fig. 32  Resonance curves 
for the amplitudes b1 and b2 
as functions of �2 for com-
bination resonances case at 
f2(= 0.001, 0.0015, 0.002) and 
�1 = −0.3 ,� = 1.11.

Cancellation of the modified phases �j from preceding 
system Eq. (51), two non-linear algebraic relationships in 
terms of bj, �j and the frequency response functions are 
obtained in the forms

Let us consider the following forms of amplitudes and 
phases [37]

where b10 , b20,�10, and �20 are the solutions of steady state, 
while b11 , b21,�11, and �21 are the corresponding perturba-
tions. Substituting Eq. (53) into Eq. (50), and making lin-
earization we can obtain

(51)

b1(�1 + �2) +
b1

16

[

8N1N2

(�2 − 1)
+ b2

1
+ 2B1(4 − 3B1) + 2s1(2B1 + s1 − 4)

]

+
�2N1b2

2(1 −�2)
(B1�

2 − s1 − B2) cos�1 = 0,

�2N1b2

2(1 −�2)
[B1�

2 − s1 − B2] sin�1 = 0,

b2�2 +
b2�

16

[

8B2 − 6B2

2
+ b2

2
+

8�2N1N2

(1 −�2)

]

+
f2

2�
cos�2 = 0,

f2

2�
sin�2 = 0.

(52)

�4N2

1
b2
2

4(1 −�2)2
(B1�

2 − s1 − B2)
2

= b2
1

{

�1 + �2 +
1

16

[

8N1N2

(�2 − 1)
+ b2

1
+ 2B1(4 − 3B1) + 2s1(2B1 + s1 − 4)

]}2

,

f 2
2
= 4�2 b2

2

{

�

16

[

8B2 − 6B2

2
+ b2

2
+

8�2N1N2

(1 −�2)

]

+ �2

}2

.

(53)

b1 = b10 + b11, �1 = �10 + �11,

b2 = b20 + b21, �2 = �20 + �21,
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Fig. 33  Resonance curves for 
the amplitudes b1 and b2 as 
functions of �1 for combina-
tion resonances case when 
�(= 1.08, 1.11, 1.29) and 
�2 = −0.2 .

Fig. 34  Resonance curves for 
the amplitudes b1 and b2 as 
function of �2 for combina-
tion resonances case when 
�(= 1.08, 1.11, 1.29) and 
�1 = −0.3 .

Table 5  Critical and peaks fixed points when � have different values 
for combination resonance case

Figure Peaks of fixed points Critical fixed points �

Figure 33a (0.1298,−0.8047) (0.1,−0.0271466),

(0.69, 0.00300795)

1.08

(0.1827,−0.7262) (0.16,−0.024247),

(0.6, 0.00321081)

1.11

(0.3354,−0.337) (0.31,−0.0263871),

(0.51, 0.00377562)

1.29

Figure 33b – (0.1, 0.00167782),

(0.69, 0.00167782)

1.08

(0.16, 0.00196522),

(0.6, 0.00196522)

1.11

(0.31, 0.00277461),

(0.51, 0.00277461)

1.29

Figure 34a (0.08236, 1.614),

(0.184, 1.099),

(0.2411, 0.5662)

(−0.36, 0.00160435) 1.08

(0.006156,−0.02673),

(0.04426, 0.1245),

(0.2792, 0.7133)

(−0.18, 0.00277735) 1.11

(−0.02, 0.0284925),

(0.4253, 0.4921)

(−0.02, 0.0284925) 1.29

Figure 34b (0.06247, 0.1132) (−0.36, 0.00104283) 1.08

(0.03633, 0.05638) (−0.18, 0.00215043) 1.11

(−0.02, 0.0544651) (−0.02, 0.0544651) 1.29
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Fig. 35  The frequency response when �2 = −0.2 : a at � = 1.08 , b at � = 1.11 , c at � = 1.29

Fig. 36  The frequency response when �1 = −0.3 : a at � = 1.08 , b at � = 1.11 , c at � = 1.29
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Fig. 37  Six possible 
steady-state amplitudes 
at f1 = 0.002, f2 = 0.001, 
�1 = 0.11 , �2 = 0.001, and 
� = 1.11, where red points 
refer to stable points and green 
points refer to unstable points

Fig. 38  Time histories of n1 and q1 besides the modulation’s equations projection on the plane n1q1 when f2(= 0.001, 0.0015, 0.002), f1 = 0.002, 
�1 = 0.11 , �2 = 0.001, and � = 1.11



1983Journal of Vibration Engineering & Technologies (2022) 10:1955–1987 

1 3

Fig. 39  Time histories of n2 and q2 in addition to the projection of the modulation equations on the plane n2q2 when f2(= 0.001, 0.0015, 0.002), 
f1 = 0.002, �1 = 0.11 , �2 = 0.001, and � = 1.11

(54)

b10
d�11

d�
= b11

[

�1 + �2 +
1

16

(

8N1N2

(�2 − 1)
+ 3b2

10
+ 2B1(4 − 3B1) + 2s1(2B1 + s1 − 4)

)]

+
�2N1

2(1 −�2)
(B1�

2 − s1 − B2)(b21 cos�10 − b20�11 sin�10) − b10
d�21

d�
,

db11

d�
=

�2N1

2(1 −�2)
(B1�

2 − s1 − B2)(b20�11 cos�10 + b21 sin�10),

b20
d�21

d�
= b21

[

�2 +
�

16

(

8B2 − 6B2

2
+ 3b2

20
+

8�2N1N2

(1 −�2)

)]

−
f2

2�
�21 sin�20,

db21

d�
=

f2

2�
�21cos�20.

The solutions of the preceding system can be obtained 
if we express the unknown functions bj1 and �j1 (j = 1, 2) 
in an exponential form as Cse

ℏ� . Here Cs (s = 1, 2, 3, 4) 
are constants and ℏ is the functions’ eigenvalues. In such 
case, the steady-state solutions bj0 and �j0 (j = 1, 2) will be 

asymptotically stable, if the roots’ real parts of the following 
characteristic equations have negative values [38]

where

ℏ4 + Σ1ℏ
3 + Σ2ℏ

2 + Σ3ℏ + Σ4 = 0,
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Taking into account the stability conditions at steady-state 
solutions by using the criteria of Routh-Hurwitz [39] are

The Stability Analysis for the Case 
of Combination Resonances

In the present section, the approach of the non-linear sta-
bility can be used to study the mentioned dynamical sys-
tem of the investigated problem. The frequency � and the 
parameters of detuning �1, �2 play a significance role on the 
destabilization of the stability criteria. The stability dia-
grams have been drawn for the system Eq. (50) using vari-
ous selected values of these parameters. The changes of the 
amplitudes b1, b2 via time are drawn for various parametric 
regions. The response of the frequency of them as a func-
tion of �1 is plotted in Fig. 31, in which the different values 
of f2(= 0.001, 0.0015, 0.002) have been taken into consid-
eration. It can be seen that, there are two fixed points cor-
responding to every value of f2 . The stability and instability 
areas of these points are classified in Table 4 and described 
according to:

1. At f2 = 0.001 , the unstable fixed points have been 
explored in the range −1 ≤ �1 ≤ 0.16 and the stable ones 
have been detected in the range of 0.16 < 𝛿1 ≤ 0.6 , in 
which they are followed by unstable fixed points in the 
range 0.6 < 𝛿1 ≤ 1.

(55)

Σ1 =
f2 sin�20

2b20�
+

�2b20N1 sin�10(B2 + s1 −�2B1)

2(�2 − 1)b10
,
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−1

32�(�2 − 1)2b10b20
{8�2f2b20N1(�

2 − 1) sin�10 sin�20(�
2B1 − B2 − s1) + b10f2

× (�2 − 1) cos�20 [�(�2 − 1)(3b2
20

+ 2B2(4 − 3B2)) − 8�3N1N2 + 16(�2 − 1)�2]

+�3N1b
2

20
cos�10(�

2B1 − B2 − s1)[−3(�
2 − 1)b2

10
+ 2(3(�2 − 1)B2

1
− 4N1N2

− 2B1(�
2 − 1)(s1 + 2) − (�2 − 1)((s1 + 4)s1 + 8(�1 + �2)))]},

Σ3 =
�N1f2

64(�2 − 1)2b10
(�2B1 − B2 − s1){cos�20 sin�10[�(�2 − 1)(3b2

20
+ 2(4 − 3B2)B2)

− 8�3N1N2 + 16(�2 − 1)�2] + cos�10 sin�20[3(�
2 − 1)b2

10
+ 2(−3B2

1
(�2 − 1) + 4N1N2

+ 2(�2 − 1)B1(s1 + 2) + (�2 − 1)((s1 − 4)s1 + 8(�1 + �2)))]},

Σ4 =
�N1f2 cos�10 cos�20(�

2B1 − B2 − s1)

1024(�2 − 1)3b10
[−3�b2

20
(�2 − 1) + 2�(�2 − 1)B2(−4 + 3B2)

+ 8�3N1N2 − 16(�2 − 1)�2][3b
2

10
(�2 − 1) + 2(−3(�2 − 1)B2

1
+ 4N1N2 + 2(�2 − 1)

× B1(s1 + 2) + (�2 − 1)((s1 − 4)s1 + 8(�1 + �2)))].

(56)

Σ1 > 0,

Σ3(Σ1Σ2 − Σ3) − Σ2
1
Σ4 > 0,

Σ1Σ2 − Σ3 > 0,

Σ4 > 0,

2. When f2 = 0.0015, the unstable fixed points exist in the 
area −1 ≤ �1 ≤ 0.31 , while the stable points occur in 
the zone 0.31 < 𝛿1 ≤ 0.51 which are followed again with 
unstable fixed points in the range 0.51 < 𝛿1 ≤ 1.

3. At f2 = 0.002, one found the unstable fixed points in the 
zone −1 ≤ �1 ≤ 0.1 , while the stable ones lie in the range 
0.1 < 𝛿1 ≤ 0.69, and latter it followed by the unstable 
fixed points in the zone 0.69 < 𝛿1 ≤ 1.

The variation of b1 and b2 via �2 is displayed in Fig. 32 
when f2 has the values (0.001, 0.0015, 0.002) . A closer look 
at this figure explores that we have only one critical fixed 
point for each value of f2 as shown in Fig. 32. The domains 
of fixed points whether stable or not for f2 values are classi-
fied in Table 4 which can be illustrated according to:

1. At f2 = 0.001, the stability and instability regions 
are found in the domains −1 ≤ �2 ≤ −0.18 and 
−0.18 < 𝛿2 ≤ 1, respectively.

2. When f2 = 0.0015, the stable and unstable points are 
existed in the areas −1 ≤ �2 ≤ −0.17 and −0.17 < 𝛿2 ≤ 1 
respectively, whereas at f2 = 0.002, the stable and unsta-
ble areas are −1 ≤ �2 ≤ −0.14 and −0.14 < 𝛿2 ≤ 1 , 
respectively.

On the other side, Fig.  33 represents the frequency 
responses curves of b1 and b2 as a function of �1 when � 
takes the values (1.08, 1.11, 1.29). There are two criti-
cal fixed points corresponding to each value of � . The 
unstable and stable areas of fixed points are found in 
ranges −1 ≤ �1 ≤ 0.1, −1 ≤ �1 ≤ 0.16, −1 ≤ �1 ≤ 0.31 
and 0.1 < 𝛿1 ≤ 0.69, 0.16 < 𝛿1 ≤ 0.6, 0.31 < 𝛿1 ≤ 0.51 
respectively, in which it is followed by unstable ranges 
0.69 < 𝛿1 ≤ 1, 0.6 < 𝛿1 ≤ 1,0.51 < 𝛿1 ≤ 1.
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According to the curves of Fig.  34 there exists 
one critical fixed point appropriate to each value of 
� . The stable and unstable ranges of fixed points are 
−1 ≤ �2 ≤ −0.36, −1 ≤ �2 ≤ −0.18,  −1 ≤ �2 ≤ −0.18, 
−1 ≤ �2 ≤ −0.02, and  −0.36 < 𝛿2 ≤ 1,−0.18 < 𝛿2 ≤ 1,

−0.02 < 𝛿2 ≤ 1 respectively.
Tables 4 and 5 describe the relation between the critical, 

peaks fixed points of the different values f2 and �.
The frequency responses can be seen in Figs. 35 and 36 

when �1 = −0.2 and �2 = −0.3 respectively, in which they 
are drawn at �(= 1.08, 1.11, 1.29), f1 = 0.002, m1 = 6, and 
m2 = 5 . It is obvious from curves of Fig. 35 that there are no 
intersection of fixed points when � = 1.08 and � = 1.29 , i.e. 
no common solutions, while at � = 1.11 there are two stable 
different solutions. Whereas curves of Fig. 36 reflect that we 
have two unstable unique common fixed points of the solutions. 
It is observed that in the regions −1 ≤ �1 ≤ 1 and −1 ≤ �2 ≤ 1 , 
there is a significant rise in the amplitudes of the steady-state 
solutions due to a high resonance among the frequencies.

Based on Fig. 37 and Routh–Hurwitz stability conditions, 
there exists six possible intersection points, four of them 
are unstable and the others two points (1.58528,−0.660867) 
and (1.60119,−0.675496) are stable. The stable and unstable 
points are marked with red and green colours, respectively.

Now, we will look at the properties of the non-linear 
amplitudes of system Eq. (50) and their stability according 
to the following transformation [40, 41]

Substituting Eqs. (13), (57) into Eqs. (22), (47) and then 
separating the real and imaginary parts to obtain

(57)

A1(𝜏1, 𝜏2) =
1

2
[ñ1(𝜏1, 𝜏2) + i q̃1(𝜏1, 𝜏2)]e
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A2(𝜏1, 𝜏2) =
1

2
[ñ2(𝜏1, 𝜏2) + i q̃2(𝜏1, 𝜏2)]e

i𝛿2 𝜏1 ,

nj = 𝜀ñj, qj = 𝜀q̃j (j = 1, 2).

(58)
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dq2
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16
(n2
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16
(q2

2
+ n2

2
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]

= 0.

The amended amplitudes were evaluated in various 
parameter regions over the specified time interval, and the 
amplitude characteristics were displayed in phase-plane 
curves as in Figs. 38 and 39 using the following data

The impact of the various selected values of f2 on the paths 
of n1 and q1 is drawn in Fig. 38. Quasi-periodic decelerating 
waves are portrayed in parts (a) and (b) of this figure, in which 
the number of oscillations increases to some extent with the 
increasing of f2 values besides decreasing of the wavelengths. 
On the other hand, the depicted curves of Fig. 39 reflect the 
change of the modified phases n2 and q2 with time � when f2 
has the above values as in parts (a) and (b), respectively. The 
behaviors of the represented waves of n2 and q2 have periodic 
attitude, in which the amplitudes of these waves increase with 
the increasing of f2 values. Moreover, the projections of the 
trajectories of the ME on the phase planes n1q1 and n2q2 are 
represented in parts (c) of Figs. 38 and 39. A closed symmetric 
trajectories curves are observed which confirm our prediction 
for the steady motion of the studied system.

Conclusions

A dynamical system with 2DOF double RBP is investi-
gated as a novel model. The motion of its suspension point 
is restricted to be along a Lissajous curve in the presence 
of two subjected external harmonic moments. The general 
EOM are derived using the second kind of Lagrange's equa-
tions and solved analytically up to the third-order of approxi-
mation using the MSM. The solvability conditions and the 

f2(= 0.001, 0.0015, 0.002), f1 = 0.002, �1 = 0.11 ,

�2 = 0.001,� = 1.11, n1(0) = 0.07, q1(0) = 0.06,

n2(0) = 0.02, q2(0) = 0.02.
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ME have been obtained in light of the categorized reso-
nance cases. Two mainly external resonances are examined 
together in addition to a combination case of both the inter-
nal and the external resonance. The numerical results of the 
EOM have been obtained using Runge–Kutta method from 
fourth-order to draw the solutions. It has been found that the 
numerical results agree with analytical ones which show the 
efficiency of the used perturbation method. Moreover, the 
time-dependent of the gained analytic solutions, besides both 
of the resonance curves, amplitudes and modified phases are 
plotted. The stability areas of the fixed points at the steady-
state have been examined in accordance with the non-linear 
analysis approach of Routh–Hurwitz. The properties of the 
modified amplitude of the non-linear analysis of the external 
resonance cases are examined and discussed. This model is 
very distinctive for its use in many engineering applications, 
for example, the vibrational of the motion of the robot as a 
dynamic system and analysis the control aspects of flexible 
arm robotics, pumps compressors, rotor dynamics, trans-
portation devices, shipboard cranes, and human or robotic 
walking analysis.
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