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Abstract
Purpose  The motion of three degrees-of-freedom (DOF) of an automatic parametric pendulum attached with a damped 
system has been investigated. The kinematics equations of this system have been derived employing Lagrange’s equations 
in accordance to it’s the generalized coordinates.
Methods  The method of multiple scales (MMS) has been used to obtain the solutions of the controlling equations up to the 
third-order of approximation. The solvability criteria and modulation equations for primary external resonance have been 
explored simultaneously.
Results  The non-linear stability approach has been used to analyze the stability of the considered system according to its 
different parameters. Time histories of the amplitudes and the phases of this system have been graphed to characterize the 
motion of the system at any given occurrence.
Conclusions  The different zones of stability and instability of this study have been checked and examined, in which the 
system's behavior has been revealed to be stable for various values of its variables.

Keywords  Non-linear vibrations · Resonance · Auto-parametric vibration · Perturbation techniques

Introduction

The development of vibrating systems is seen as one of the 
critical developments in mechanics, because of its different 
applications for the duration of regular daily existence, for 
example, building structures, rotor dynamics, rotor compo-
nents, pumps, sieves, the motion of ships, compressors, and 
transportation devices [1–3].

Auto-parametric system is one of the essential systems that 
at least consists of two non-linearly subsystems. The first can 
be excited by an external harmonic force attached to a second 
one called an absorber. In this manner, one can get the essen-
tial parametric resonance of other subsystems (auto-parametric 
interaction) by decreasing the reaction of the first one [4–10]. 
The non-linear damping response 2DOF dynamical system 
connected with spring is investigated in [7]. In [8], the authors 
studied a dynamical oscillatory system with 4DOF compris-
ing an auto-parametric pendulum and attached to a rigid body. 
Nonetheless, the auto-parametric system's behavior under the 
effect of kinematic excitation is studied numerically and illus-
trated experimentally in [9]. The authors examined whether the 
motion was regular or not through specific plots. In [10], the 
authors investigated an auto-parametric system's behavior con-
sisting of a pendulum absorber connected to a damped vibrated 
system. The resonance case is obtained by using the technique 
for harmonic balance [5]. The MMS is utilized in [11] to acquire 
the auto-parametric states of a damped Duffing system linked 
with a pendulum. By uprightness of this method, a two coupled 
mass spring response is gotten in [12]. The author explained new 
excitation conditions within the sight of auto-parametric reso-
nance. This resonance of an oscillatory system in the existence 
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of a non-linear coupling term of third-order is discussed in 
[13]. The stability and the system’s bifurcation under external 
harmonic forces are explored [14, 15]. Besides, the MMS is 
used to get an autonomous framework up to the third order for a 
spring-suspended motion on a circular path [16]. The response 
of 2DOF for a non-linear dynamical system characterized by a 
damped elastic pendulum in an inviscid fluid flow is examined 
in [17]. The fourth-order Runge–Kutta calculation of the ode45 
solver [18] is utilized in [19] to get the numerical solution of 
the state of an oscillatory rigid body using the Matlab program. 
The author showed the achieved results, which are consistent 
with the previous works. The harmonic damped spring pendu-
lum's behavior is explored in [20] when the hanged point follows 
an elliptic route with stationary angular velocity. The MMS is 
used to obtain resonance cases and get the modulation equation 
that decides all possible steady-state solutions. The impersonal-
ized of this model is introduced in [21] where a rigid body is 
attached to a spring in the existence of a harmonic force along 
the spring’s arm adding two moments, the first at the point of 
the body with the spring and the second at the auto-parametric 
pendulum suspending point of the pendulum. The resonances 
cases are explored and the solvability conditions are studied. The 
comparison between both the numerical solutions and approxi-
mate ones explain the high consistency between them.

Then the vibrational systems must be controlled in our applica-
tions through absorbers' existence to avoid disturbance and dev-
astation of the structures or the studied systems. There are a lot 
of works studied such motions, for example [20–25]. Recently, 
the movement of a damped pendulum’s of rigid body with 3DOF 
is explored in [26] and [27] for the cases of linear and non-linear 
Stiffness, respectively. In [24], the authors researched a dynamical 
system consisting of a pendulum and absorber along the pendulum 
arm. The system is exposed to an active control, for example, the 
velocity with a negative value and angular displacement or the 
squares or cubic values. The approximate solutions are obtained 
using the MMS. The influences of absorbers on the system's 
behavior and the stability of the system and are considered. The 
response of non-linear spring pendulum 2DOF is studied in [25] at 
different resonance cases and in the presence of control.

In this work, the 3DOF dynamical motion of an auto-para-
metric system consists of mass M connected with two massless 
springs with linear stiffness is investigated. The studied motion is 
examined under the influence of external harmonic forces. The 
equations of motion (EOM) are investigated applying Lagrange's 
equations. The MMS is used to obtain the equations' solutions 
up to the third approximation and discuss the system's resonance 
cases. Also, the phase and amplitude variables are discussed to 
investigate these solutions at the steady-state in line with the sta-
bility requirements. The domain of stability and instability areas 
is studied and analyzed. The variations of the obtained solutions 
are plotted for different parameters to show the influence of the 
applied external forces and moments on the behavior of the sys-
tem under consideration.

Problem Formulation

Let us consider a dynamic system consisting of a mass M∗ con-
nected to two massless springs of stiffness k1 and k2 with linear 
stiffness k1r and k2x respectively. These springs are attached 
with linear damper with damping coefficients c1, c2, and c3 . 
It worthy to mention that, the first spring is a pendulum with 
length � and the other one is horizontally directed with length 
�
′ as shown in Fig. 1. Consider a moment M(t) = M0 cos(�3t) 

that acts at the point z besides two external harmonic forces; 
the first one Fr(t) = F1 cos(�1t) acts on the mass m along the 
pendulum arm and the other one is Fx(t) = F2 cos(�2t) acts on 
the horizontal direction of X-axis in which �1,�2, and �3 are 
the frequencies of the external forces and moment. Therefore, 
the motion of the mechanical system can be described by the 
generalized coordinates x(t) (translation M ), r(t) (elongation of 
the spring pendulum), and �(t) (link rotation).

Let L = T − V  indicates Lagrangian, where T  and V  rep-
resent kinetic and potential energies of the considered sys-
tem that have the forms

where g is the acceleration of gravity and dots denote to 
the time differentiation of the variables r, x, and �.

It is known that the potential energy V  is the sum of 
the energies due to the elongation of the two springs and 
the gravitational force of the connector. Consequently, 
Lagrange's equations have in the form

(1)

T =
1

2
(m ṙ2 + 2m sin 𝜃 ṙ ẋ + (m +M∗)ẋ2

+ 2m cos 𝜃 (� + r)ẋ 𝜃̇ + m(� + r)2𝜃̇2)

V =
1

2
k1ṙ

2 +
1

2
k2x

2 + mg(� + r)(1 − cos 𝜃),

Fig. 1   Description of the auto-parametric system
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Here (ṙ, ẋ, 𝜃̇) refer to the generalized velocities.
Substituting (1) into (2), we get the EOM as follows:

It is obvious that the last three equations represent sec-
ond-order non-linear differential equations in terms of r, x, 
and �.

Considering the following dimensionless variables

to convert (3–5) into the following dimensionless form:

(2)

d

dt

(
𝜕L

𝜕ṙ

)
−
(
𝜕L

𝜕r

)
= F1 cos(𝜛1t) − c1ṙ,

d

dt

(
𝜕L

𝜕ẋ

)
−
(
𝜕L

𝜕x

)
= F2 cos(𝜛2t) − c2ẋ,

d

dt

(
𝜕L

𝜕𝜃̇

)
−
(
𝜕L

𝜕𝜃

)
= M0 cos(𝜛3t) − c3𝜃̇.

(3)
m r̈ + k1r = mg

(
1 −

𝜃2

2

)
+ mr 𝜃̇2 − mg + m�𝜃̇2

−m ẍ

(
𝜃 −

𝜃3

6

)
− c1ṙ + F1 cos(𝜛1t),

(4)

(m +M
∗)ẍ + k2x = m(� + r)

(
𝜃 −

𝜃3

6

)
𝜃̇2 − m r̈

(
𝜃 −

𝜃3

6

)

−2m ṙ 𝜃̇

(
1 −

𝜃2

2

)

−m

(
1 −

𝜃2

2

)
(� + r)𝜃̈ − c2ẋ + F2 cos(𝜛2t),

(5)

m�2𝜃̈ + mg(� + r)

(
𝜃 −

𝜃3

6

)
= −2m�r 𝜃̈ − m�ẍ

(
1 −

𝜃2

2

)
− m r(� + r)

−2m�ṙ 𝜃̇ − 2m r ṙ 𝜃̇ − m rẍ

(
1 −

𝜃2

2

)
− c3𝜃̇ +M0 cos(𝜛3t).

(6)

r

�
= 𝜀 r̃,

x

�
= 𝜀x̃, 𝜃 = 𝜀𝜃, t =

�
�

g
t̃,

F1

mg
= 𝜀3 f̃1,

h

�
= 𝜀I, 𝜔2

1
=

k1

m
,

𝜔2
2
=

�

g
, W1 =

𝜛1

𝜔2

, W2 =
𝜛2

𝜔2

, W3 =
𝜛3

𝜔2

,
c1

m

�
�

g
= 𝜀2c̃1,

c2

(m +M∗)

√
�g = 𝜀2c̃2,

F2

(m +M∗)g
= 𝜀3 f̃2, B = 𝜇g�,

g�

B
= 𝜀J, Ω2

1
= 𝜔2

1
𝜔2
2
,

c3

m

�
2

3g
= 𝜀2c̃3, 𝜇 =

m

m +M∗
,

M0

mg�
= 𝜀3 f̃3, h = m�2g, Ω2

2
=

k2�

(m +M∗)g
,

(7)

𝜀̈̃r + Ω2
1
𝜀r̃ = −𝜀2(

𝜃2

2!
− ̇̃𝜃2 + ̈̃x𝜃 + c̃1 ̇̃r) + 𝜀3[r̃ ̇̃𝜃2 + f̃1 cos(W1 t̃)],

𝜀̈̃x + Ω2
2
𝜀x̃ = 𝜇𝜀3 ̇̃𝜃2𝜃 − 𝜇𝜀2 ̈̃r𝜃 − 𝜀2J ̈̃𝜃(1 + 𝜀̈̃r) − 𝜀2c̃2 ̇̃x − 2𝜇𝜀2 ̇̃r ̇̃𝜃 + 𝜀3 f̃2 cos(W2 t̃),

𝜀 ̈̃𝜃 + 𝜀𝜃 = −𝜀2r̃𝜃 + 𝜀2r̃ ̈̃𝜃 − 𝜀2I ̈̃x(1 − 𝜀2
𝜃2

2!
) − 2𝜀2 ̇̃r ̇̃𝜃 − 2𝜀3r̃ ̇̃r ̇̃𝜃 − 𝜀2r ̈̃x(1 − 𝜀2

𝜃2

2!
)

−𝜀2r̃(1 + 𝜀r̃) ̈̃𝜃 − 𝜀2c̃3
̇̃𝜃 + 𝜀3 f̃3 cos(W3 t̃).

Here, � is known as the small parameter affecting the 
coupling between the pendulum absorber and the damping, 
external force, and nonlinearities of the system. Its important 
influence appears in current non-linear frequency analysis 
at the desired approximation. To simplify the notation, the 
sign ~ (tilde) is omitted below.

The Proposed Method

The MMS is an analytical method that used to determine 
approximate solutions with high accuracy of non-linear differ-
ential equations for which exact solutions cannot be obtained. It 
can be used to demonstrate, predict and describe phenomena in 
vibrating systems that caused by non-linear effects. Moreover, 
it can be applied to non-linear and linear systems with variable 
coefficients or complex boundary conditions, where the exact 
closed-form solution is unknown. Therefore, this method is uti-
lized to solve the system of Eqs. (7) up to the third approxima-
tion. Therefore, we need three timescales, which has the forms 
Tn =�

nT(n = 0, 1 , 2) where T0, T1, and T2 are various time 
scales. According to the method of the MS perturbation, the 
solutions r, x, and � can be sought in the powers of � as [28, 29]

(8)

r =

3∑
k=1

�krk(T0, T1, T2) + O(�4),

x =

3∑
k=1

�kxk(T0, T1, T2) + O(�4),

� =

3∑
k=1

�k�k(T0, T1, T2) + O(�4).
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The derivatives in terms of the new time scales in (8) are 
expressed as follows [5]:

Substituting (8) and (9) into (7) and collecting the coef-
ficients of equal powers of � in both sides leads to the follow-
ing system containing the following nine partial differential 
equations.

Order (�)

Order of (�2)

Order of (�3)

(9)

d

dT
=

�

�T0
+ �

�

�T1
+ �2

�

�T2
,

d2

dT2
=

�2

�T2
0

+ 2�
�2

�T0�T1
+ �2

(
�2

�T2
1

+ 2
�2

�T0�T2

)
+ O(�3).

(10)
�2r1

�T2
0

+ Ω2
1
r1 = 0,

(11)
�2x1

�T2
0

+ Ω2
2
x1 = 0,

(12)
�2�1

�T2
0

+ �1 = 0.

(13)

�2r2

�T2
0

+ Ω2
1
r2 = −2

�2r1

�T0�T1
−

1

2
�2
1
+

(
��1

�T0

)2

−
�2x1

�T2
0

�1,

(14)

�2x2

�T2
0

+ Ω2
2
x2 = −2

�2x1

�T0�T1
− �

�2r1

�T2
0

�1 − J
�2�1

�T2
0

− 2�
�r1

�T0

��1

�T0
,

(15)
�2�2

�T2
0

+ �2 = −2
�2�1

�T0�T1
− r1�1 + r1

�2�1

�T2
0

− I
�2x1

�T2
0

− 2
�2r1

�T2
0

�2�1

�T2
0

− r1
�2�1

�T2
0

,

(16)

�2r3

�T2
0

+ Ω2
1
r3 = −

�2r1

�T2
1

− 2
�2r1

�T0�T1
− 2

�2r2

�T0�T1
− �1�2 + r1

(
��1

�T0

)2

−
�2x1

�T2
0

�2

+2
��1

�T0

��1

�T1
− 2

�2x1

�T0�T1
�1 +

�2x2

�T2
0

�1 − c1
�r1

�T0
+ f1 cos(W1T0),

(17)

�2x3

�T2
0

+ Ω2
2
x3 = −

�2x1

�T2
1

− 2
�2x1

�T0�T1
− 2

�2x2

�T0�T1
+ �

(
��1

�T0

)2

�1 − �
�2r1

�T2
0

�2 − 2�
�2r1

�T0�T1
�1

−J
�2�1

�T2
0

r1 − 2J
�2�1

�T0�T1
− c2

�x1

�T0
− J

�2�2

�T2
0

− 4�
�r1

�T0

��1

�T1
+ f2 cos(W2T0),

Equations (10–12) are mutually independent homogene-
ous equations. Thus, the polar forms of their solutions are 
as follows:

where A1,A2, and A3 are complex functions that can 
be determined later and A1,A2, and A3 are their complex 
conjugate.

It is obvious that the solutions of (13–18) depend on the 
solutions of (10–12) significantly. Therefore, substituting the 
solutions (19–21) into (13–15) and removing terms that lead 
to the secular ones, we can get the second approximation in 
the form

(18)

�2�3

�T2

0

+ �3 = −
�2�1

�T2

1

− 2
�2�1

�T0�T1
− 2

�2�2

�T0�T1

− r1�2 − r2�1 + 2r1
�2�1

�T0�T1
+ r2

�2�1

�T2

0

− 2I
�2x1

�T0�T1
− 4

�2r1

�T2

0

�2�1

�T0�T1
− 4

�2r1

�T0�T1

�2�1

�T2

0

− 2r1
�2r1

�T2

0

�2�1

�T2

0

− 2
�2x1

�T0�T1

− r2

�2�1

�T2

0

− c3

��1

�T0
+ f3 cos(W3T0).

(19)r1 = A1(T1, T2)e
iΩ1T0 + A1(T1, T2)e

−iΩ1T0 ,

(20)x1 = A2(T1, T2)e
iΩ2T0 + A2(T1, T2)e

−iΩ2T0 ,

(21)�1 = A3(T1, T2)e
iT0 + A3(T1, T2)e

−T0 ,
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where c.c. are the complex conjugate of the previous 
terms. This symbol benefits from providing long terms that 
we use frequently.

Substituting the solutions (19–24) into Eqs. (16–18) and 
using the elimination conditions of secular terms. So, one 
gets the third-order approximations in the forms

(22)r2 =
1

Ω2
1

A3A3 −
3A2

3

2Ω2
1
− 8

e2iT0 + Ω2
2
A3

(
A2 e

i(1+Ω2)T0

Ω2
1
− (1 + Ω2)

2
+

A2 e
i(1−Ω2)T0

Ω2
1
− (1 − Ω2)

2

)
+ c.c,

(23)x2 = � A1(Ω1 + 2)

(
A3 e

i(Ω1+1)T0

Ω2
2
− (Ω1 + 1)2

+
A3 e

i(Ω2−1)T0

Ω2
2
− (Ω1 − 1)2

)
+ J

A3

Ω2
2
− 1

eiT0 + c.c,

(24)�2 = (3 − 2Ω2
1
)A1

(
A3 e

i(Ω1+1)T0

Ω2
1
+ 2Ω1

+
A3 e

i(Ω1−1)T0

Ω2
1
− 2Ω1

)
+

Ω2
2
A3I

1 − Ω2
2

eiΩ2T0 + c.c.,

(25)

r3 =
(3 − 2Ω2

1
)A1A

2
3

(Ω2
1
+ 2Ω1)(4 + 4Ω1)

ei(Ω1+2)T0 −
6iA2

3

(Ω2
1
− 4)2

e2iT0 +
Ω2

2
A2A3I e

i(1+Ω2)T0

(Ω2
2
− 1)[Ω2

1
− (1 + Ω2)

2]

−

(
(3 − 2Ω2

1
)

(Ω2
1
− 2Ω1)

+ 1

)
A1A

2

3

(4Ω1 − 4)
ei(Ω1−2)T0 −

Ω2
2
A2A3I e

i(Ω2−1)T0

(1 − Ω2
2
)[Ω2

1
− (Ω2 − 1)2]

+
A1A

2
3

4Ω1 + 4
ei(Ω1+2)T0 +

Ω4
2
A2
2
e2iΩ2T0

(1 − Ω2
2
)(Ω1 − 4Ω2)

+
(3 − 2Ω2

1
)Ω2

2
A1A2A3 e

i(Ω1+Ω2+1)T0

(Ω2
1
+ 2Ω1)[Ω

2
1
− (Ω1 + Ω2 + 1)2]

+
Ω4

2
A2A2 I

(1 − Ω2
2
)Ω2

1

+
JA2

3
e2iT0

(1 − Ω2
2
)(Ω1 − 4)

+
�(Ω1 + 2)(Ω1 + 1)2A1A

2
3

[Ω2
2
− (Ω1 + 1)2](2Ω1 + 2)

ei(Ω1+2)T0

+
(3 − 2Ω2

1
)Ω2

2
A1A2A3 e

i(Ω1+Ω2−1)T0

(Ω2
1
− 2Ω1)[Ω

2
1
− (Ω1 + Ω2 − 1)2]

+
JA3A3

(1 − Ω2
2
)Ω2

1

+
(3 − 2Ω2

1
)Ω2

2
A1A2A3 e

i(Ω1−Ω2+1)T0

(Ω2
1
+ 2Ω1)[Ω

2
1
− (Ω1 − Ω2 + 1)2]

+
(3 − 2Ω2

1
)Ω2

2
A1A2A3 e

i(Ω1−Ω2−1)T0

(Ω2
1
− 2Ω1)[Ω

2
1
− (Ω1 − Ω2 − 1)2]

+
f1

Ω2
1
−W2

1

eiW1T0 + c.c,

(26)

x3 =
�A2

3
A3 e

iT0

(Ω2
2
− 1)

−
�A3

3
e3iT0

(Ω2
2
− 9)

+
(3 − 2Ω2

1
)�Ω1A

2

1
A3i e

i(1−2Ω1)T0

(Ω2
1
+ 2Ω1)[Ω

2
2
− (1 − 2Ω1)

2]
+

A1A3Je
i(Ω1+1)T0

[Ω2
2
− (Ω1 + 1)2]

−
(3 − 2Ω2

1
)�Ω1A

2
1
A3i e

i(1+2Ω1)T0

(Ω2
1
+ 2Ω1)[Ω

2
2
− (1 + 2Ω1)

2]
+

�Ω1Ω
2
2
IA1A2i e

i(Ω2−Ω1)T0

(1 − Ω2
2
)[Ω2

2
− (Ω2 − Ω1)

2]
+

A1A3Je
i(Ω1−1)T0

[Ω2
2
− (Ω1 − 1)2]

−
�Ω1Ω

2
2
A1A2i e

i(Ω1+Ω2)T0

(1 − Ω2
2
)[Ω2

2
− (Ω1 + Ω2)

2]
− (3 − 2Ω2

1
)J

{
(Ω1 + 1)A1A3i e

i(Ω1+1)T0

(Ω2
1
+ 2Ω1)[Ω

2
2
− (Ω1 + 1)2]

+
(Ω1 − 1)A1A3i e

i(Ω1−1)T0

(Ω2
1
− 2Ω1)[Ω

2
2
− (Ω1 − 1)2]

}
+

f2

Ω2
2
−W2

2

eiW2T0 + c.c,
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Thus, the required approximate solutions can be easily 
obtained if we substitute (19–27) into (8).

Stability of the System

In this section, we examine the system’s stability of 
Eqs. (16–18) and investigate the simultaneous three primary 
external resonances case. Therefore, the following detuning 
parameters �j (j = 1, 2, 3) are considered [30]

Substituting (28) into (13–18) and removing the secular 
terms, the following solvability requirements for the third-
order approximation are obtained

(27)

�3 =
(3 − 2Ω2

1
)A2

1
A3i e

i(1+2Ω1)T0

(Ω2
1
+ 2Ω1)(4Ω

2
1
+ 4Ω1)

−
Ω2

2
A1A2I e

i(Ω1+Ω2)T0

(1 − Ω2
2
)[1 − (Ω1 + Ω2)

2]
−

3A3
3
e3iT0

8(Ω2
1
− 4)

−
Ω2

2
A1A2I e

i(Ω2−Ω1)T0

(1 − Ω2
2
)[1 − (Ω2 − Ω1)

2]
−

(3 − 2Ω2
1
)A2

1
A3i e

i(1+2Ω1)T0

(Ω2
1
− 2Ω1)(4Ω1 − 4Ω2

1
)

−2
Ω2

2
A2
3
A2 e

i(2+Ω2)T0

[Ω2
1
− (1 + Ω2)

2](1 − (2 + Ω2)
2)

− 2
Ω2

2
A3A3A2 e

−i(Ω2)T0

[Ω2
1
− (1 − Ω2)

2](1 + Ω2
2
)

−2
Ω2

1
A2
1
A3 e

i(2Ω1−1)T0

1 − (2Ω1 − 1)2
−

3Ω2
2
A2
3
A2 e

i(2+Ω2)T0

2(Ω2
1
− 4)[1 − (2 + Ω2)

2]
−

3Ω2
2
A2
3
A2 e

i(2−Ω2)T0

2(Ω2
1
− 4)[1 − (2 − Ω2)

2]

+
Ω2

2
A3A3A2 e

−iΩ2T0

2(Ω2
1
− 4)[1 − (2 + Ω2)

2]
+

Ω2
2
A3A3A2 e

−iΩ2T0

[Ω2
1
− (1 − Ω2)

2](1 + Ω2
2
)
−

3A3
3
e3iT0

2(Ω2
1
− 4)

+
Ω4

2
A
2

2
A3 e

i(1−2Ω2)T0

[Ω2
1
− (1 − Ω2)

2][1 − (1 − 2Ω1)
2]

+
Ω2

2
A2
3
A2 e

i(2+Ω2)T0

[Ω2
1
− (1 + Ω2)

2][1 − (1 + Ω2)
2]

+
Ω2

2
A2
3
A2 e

i(2−Ω2)T0

[Ω2
1
− (1 − Ω2)

2][1 − (2 − Ω2)
2]

+
Ω4

2
A2
2
A3 e

i(1+2Ω2)T0

[Ω2
1
− (1 + Ω2)

2][1 − (1 + 2Ω2)
2]

+
f3

1 −W2
3

eiW3T0 + c.c.

(28)W1 = Ω1 + ��1, W2 = Ω2 + ��2, W3 = 1 + ��3.

(29)

−2iΩ1

�A1

�T2
−

(3 − 2Ω2
1
)

(Ω2
1
− 2Ω1)

A1A3A3 −
(3 − 2Ω2

1
)

(Ω2
1
+ 2Ω1)

A1A3A3 + 2A1A3A3

−
(Ω1 − 1)2

(Ω2
2
− (Ω1 − 1)2)

A1A3A3 − i c1Ω1A1 −
1

2
f1e

i�1T1 = 0,

(30)−2iΩ2

�A2

�T2
−

Ω4
2
J I A2

(1 − Ω2
2
)
− i c2Ω2A2 −

1

2
f2e

i�2T1 = 0,

These equations can be analyzed through expressing 
Aj (j = 1, 2, 3) in the polar forms [31] as follows:

where ãj and 𝜓̃j are the amplitudes of the generalized 
coordinates r, x, and � and their corresponding phases

Substituting (32–34) into (29–31) and then matching the 
real and imaginary parts in both sides to gain the next modu-
lation equations for amplitudes and phases

(31)

− 2i
�A

3

�T
2

−
(3 − 2Ω2

1
)

(Ω2

1
+ 2Ω

1
)
A
1
A
3
A
1
− i c

3
A
3

− 4Ω2

1
A
1
A
3
A
1
+

Ω4

2
A
2
A
3
A
2

Ω2

1
− (Ω

2
+ 1)2

+
Ω4

2
A
2
A
3
A
2

Ω2

1
− (1 − Ω

2
)2

−
1

2
f
3
e
i�

3
T
1 = 0.

(32)Ai =
ãj(T2)

2
ei𝜓̃jT2 , aj = 𝜀ãj,

(33)
�Aj

�T
= �2

�Aj

�T2
,

(34)𝜃j(T1, T2) = Tj𝜎̃j − 𝜓j(T2).
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Examining the behavior of modest deviations from the 
steady-state solutions is an intriguing way to evaluate the 
stability requirements. Therefore, we take into account the 
following aspects of substitutions [32] when pursuing this 
goal

where aj0 and �j0 (j = 1, 2, 3) are the unperturbed solu-
tions which corresponds to the steady-state solutions of (35), 
while aj1 and �j1 are their corresponding perturbations which 
should be small relative to its predecessors.

Substitution (36) into Eq. (35) yields

(35)

a1
d�1

dT
=

a1a
2
3

4Ω1

−

(
1

Ω2
1
− 2Ω1

+
1

Ω2
1
+ 2Ω1

)
(3 − 2Ω2

1
)a1a

2
3

8Ω1

+ a1�1

−
(Ω1 − 1)2a1a

2
3

8Ω1(Ω
2
2
− (Ω1 − 1)2)

+
f1

2Ω1

cos �1,

d a1

dT
=

f1

2Ω1

sin �1 −
a1c1

2
,

a2
d�2

dT
=

f2

2Ω2

cos �2 −
J I a2Ω

3
2

2(1 − Ω2
2
)
+ a2�2,

d a2

dT
=

f2

2Ω2

sin �2 −
a2c2

2
,

a3
d�3

dT
=

Ω4
2
a3a

2
2

8(Ω2
1
− (1 + Ω2)

2)
−

(3 − 2Ω2
1
)a3a

2
1

8(Ω2
1
+ 2Ω1)

−
1

2
Ω2

1
a3a

2
1

+
Ω4

2
a3a

2
2

8(Ω2
1
− (1 − Ω2)

2)
+ a3�3 +

f3

2
cos �3,

d a3

dT
=

f3

2
sin �3 −

a3c3

2
.

(36)

a1 = a10 + a11, �1 = �10 + �11,

a2 = a20 + a21, �2 = �20 + �21,

a3 = a30 + a31, �3 = �30 + �31,

It must be remembered that the perturbation terms aj1 and 
�j1 are unknown functions and we can express their solutions 
in the exponential form cke�T ; in which ck (k = 1, 2, ...., 6) 
are constants and � represents the eigenvalue congruent to 
the unknown perturbations that can be obtained from the 
real parts of the roots. If the steady-state solutions aj0 and 
�j0 are considered to be stable asymptotically, then the real 
components of the roots of the below characteristic equation 
must be negative [33]

where

The previous coefficients Γk (k = 1, 2, ..., 6) depend on 
some parameters such as aj0, �j0, ck and fj (j = 1, 2, 3) . Based 
on the Routh-Hurwitz criterion [16, 34],

(37)

a10

d�11

dT
=

(
1

4Ω1

−
(Ω1 − 1)2

8Ω1(Ω
2

2
− (Ω1 − 1)2)

−

(
1

Ω2

1
− 2Ω1

+
1

Ω2

1
+ 2Ω1

)
×
(3 − 2Ω2

1
)

8Ω1

)

(a11a
2

30
+ 2a10a31a30)

−
f1

2Ω1

sin �10 �11 + a11�1,

d a11

dT
=

f1

2Ω1

cos�10 �11 −
a11c1

2
,

a20

d�21

dT
= a21�2 −

f2

2Ω2

sin �20 �21 −
J I a21 Ω

3

2

2(1 − Ω2

2
)
,

d a21

dT
=

f2

2Ω2

cos �20 �21 −
a21c2

2
,

a30

d�30

dT
=

f3

2
sin �30 �31 + a31�3

−

(
(3 − 2Ω2

1
)

8(Ω2

1
+ 2Ω1)

+
1

2
Ω2

1
)(a31a

2

10
+ 2a10a11a30)

)

+
Ω4

2

8

(
1

(Ω2

1
− (1 − Ω2)

2)
+

1

(Ω2

1
− (1 + Ω2)

2)

)

(a31a
2

20
+ 2a20a21a30),

d a31

dT
=

f3

2
cos �30 �31 −

a31c3

2
.

(38)�6 + Γ1�
5 + Γ2�

4 + Γ3�
3 + Γ4�

2 + Γ5� + Γ6 = 0,

(39)
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Fig. 2   The slight effect of c
1
 on the behavior of the solution r when c

1
= (0.002, 0.02, 0.2) : a at T ∈ [0, 1000] , b at T ∈ [0, 100]

Fig. 3   The slight effect of c
1
 on the behavior of the solution x when c

1
= (0.002, 0.02, 0.2) : a at T ∈ [0, 1000] , b at T ∈ [0, 100]

Fig. 4   The effect of c
1
 on the behavior of the solution � when c

1
= (0.002, 0.02, 0.2) : a at T ∈ [0, 1000] , b at T ∈ [0, 100]

Fig. 5   The effect c
2
 on the behavior of the solution r when c

2
= (0.002, 0.02, 0.2) : a at T ∈ [0, 1000] , b at T ∈ [0, 100]
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Fig. 6   The slight effect of c
2
 on the behavior of the solution x when c

2
= (0.002, 0.02, 0.2) : a at T ∈ [0, 1000] , b at T ∈ [0, 100]

Fig. 7   The slight effect of c
2
 on the behavior of the solution � when c

2
= (0.002, 0.02, 0.2) : a at T ∈ [0, 1000] , b at T ∈ [0, 100]

Fig. 8   The slight effect of c
3
 on the behavior of the solution r when c

3
= (0.001, 0.01, 0.1) : a at T ∈ [0, 1000] , b at T ∈ [0, 100]

Fig. 9   The effect of c
3
 on the behavior of the solution x when c

3
= (0.001, 0.01, 0.1) : a at T ∈ [0, 1000] , b at T ∈ [0, 100]
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Fig. 10   The slight effect of c
3
 on the behavior of the solution � when c

3
= (0.001, 0.01, 0.1) : a at T ∈ [0, 1000] , b at T ∈ [0, 100]

Fig. 11   The effect of Ω
1
 on the behavior of the solution r when Ω

1
= (0.65, 0.9, 1.65) : a at T ∈ [0, 1000] , b at T ∈ [0, 100]

Fig. 12   The slight effect of Ω
1
 on the behavior of the solution x when Ω

1
= (0.65, 0.9, 1.65) : a at T ∈ [0, 1000] , b at T ∈ [0, 100]

Fig. 13   The slight effect of Ω
1
 on the behavior of the solution � when Ω

1
= (0.65, 0.9, 1.65) : a at T ∈ [0, 1000] , b at T ∈ [0, 100]
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Detk

⎛
⎜⎜⎜⎜⎜⎜⎝

Γ1 1 0 0 .. 0

Γ3 Γ2 Γ1 1 .. 0

Γ5 Γ4 Γ3 Γ2 .. 0

Γ7 Γ6 Γ5 Γ4 .. 0

∶ ∶ ∶ ∶ ∶ ∶

Γ2k−1 Γ2k−2 Γ2k−3 .. .. Γk

⎞⎟⎟⎟⎟⎟⎟⎠

,

we can write the stability conditions of the steady-state 
solutions in the following form:

(40)

Γ1 > 0, Det

�
Γ1 1

Γ3 Γ2

�
> 0

Det

⎛⎜⎜⎝

Γ1 1 0

Γ3 Γ2 Γ1

Γ5 Γ4 Γ3

⎞⎟⎟⎠
> 0, Det

⎛⎜⎜⎜⎝

Γ1 1 0 0

Γ3 Γ2 Γ1 1

Γ5 Γ4 Γ3 Γ2

0 Γ6 Γ5 Γ4

⎞⎟⎟⎟⎠
> 0,

Det

⎛⎜⎜⎜⎜⎜⎝

Γ1 1 0 0 0

Γ3 Γ2 Γ1 1 0

Γ5 Γ4 Γ3 Γ2 Γ1

0 Γ6 Γ5 Γ4 Γ3

0 0 0 Γ6 Γ5

⎞⎟⎟⎟⎟⎟⎠

> 0, Det

⎛⎜⎜⎜⎜⎜⎜⎝

Γ1 1 0 0 0 0

Γ3 Γ2 Γ1 1 0 0

Γ5 Γ4 Γ3 Γ2 Γ1 1

0 Γ6 Γ5 Γ4 Γ3 Γ2

0 0 0 Γ6 Γ5 Γ4

0 0 0 0 0 Γ6

⎞⎟⎟⎟⎟⎟⎟⎠

> 0.

Simulation of the Results

Now, we are going to investigate the influence of the param-
eters c1, c2, c3,Ω1, and Ω2 on the motion of the system under 
investigation taking into the following value of different 
parameters:

Figures 2, 3, 4 represent the variation of the solutions r, x, 
and � via T  , respectively, when c1 = (0.002, 0.02, 0.2) with 
the same previous data, during the specified time T  intervals 
for each figure. Whereas Figs. 5, 6, 7 indicate the behavior of 
the solutions r, x, and � at c2 = (0.002, 0.02, 0.2).

A look at Fig. 2 reveals that when c1 increases from 0.002 
to 0.2 with the constancy of other parameters and the num-
ber of oscillations decreases with the notable increment of 
the amplitudes. This means that through variation of time 
T  from 0 to 100 , the motion of the mass m is sinusoidal. On 
the other hand, the amplitudes of x and � during the same 
time interval decrease. There is decay in the variation of 

c1 = (0.002, 0.02, 0.2), f1 = 0.003, �1 = 0.01, c2 = 0.002,

c3 = 0.001, Ω1 = 0.65, �2 = 0.02, m = 0.5 kg, M∗ = 1 kg,

W1 = 0.2, W2 = 0.1, Ω2 = 1.2, f1 = 0.001, f1 = 0.002,

W3 = 0.3, � = 0.001.

Fig. 14   The slight effect of Ω
2
 on the behavior of the solution r when Ω

2
= (0.2, 0.8, 1.2) : a at T ∈ [0, 1000] , b at T ∈ [0, 100]

Fig. 15   The slight effect of Ω
2
 on the behavior of the solution x when Ω

2
= (0.2, 0.8, 1.2) : a at T ∈ [0, 1000] , (b) at T ∈ [0, 100]
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Fig. 16   The slight effect of Ω
2
 on the behavior of the solution � when Ω

2
= (0.2, 0.8, 1.2) : a at T ∈ [0, 1000] , b at T ∈ [0, 100]

Fig. 17   Adjustment of the mod-
ified amplitudes as a function of 
the detuning parameter σ

3

Fig. 18   The modified ampli-
tudes’ variation for the same 
case in Fig. 17, but when 
c
2
= 0.02.
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Fig. 19   The modified ampli-
tudes vs the parameter of 
detuning σ

3
 for the same case in 

Fig. 17, but when c
3
= 0.001.

Fig. 20   The modified ampli-
tudes vs the parameter of 
detuning σ

3
 for the same case in 

Fig. 17, but when �
1
= −1.
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Fig. 21   The modified ampli-
tudes vs the parameter of 
detuning σ

3
 for the same case in 

Fig. 17, but when �
2
= −0.005.

Fig. 22   The trajectory of the 
modulation equation’s projec-
tion on plane p

2
q
2
 and the 

adjusted amplitudes via time T
2



1897Journal of Vibration Engineering & Technologies (2022) 10:1883–1903	

1 3

Fig. 23   The same system 
considered in Fig. 22, but with 
c
2
= 0.02

Fig. 24   The projection p
2
q
2
 

plane and the correspond-
ing modified amplitudes with 
c
3
= 0.001 , and it is correspond-

ing to the first fixed point in 
Fig. 19
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Fig. 25   The projection p
2
q
2
 

plane and the corresponding 
modified amplitudes where 
c
3
= 0.001 corresponding to the 

second fixed point in Fig. 19

Fig. 26   The projection of the 
modulation equation path on 
the plane p

2
q
2
 and the adjusted 

amplitudes versus T
2
 at �

1
= −1 , 

and it is corresponding first 
point in Fig. 20
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Fig. 27   The projection of the 
equation of modulation on 
the phase plane p

2
q
2
 and the 

adjusted amplitudes versus T
2
 at 

�
1
= −1 , and it is corresponding 

second fixed point in Fig. 20

Fig. 28   The projection of the 
modulation equation trajec-
tory on the plane p

2
q
2
 and the 

adjusted amplitudes versus T
2
 

at �
2
= −0.005 , and it is cor-

responding first fixed point in 
Fig. 21
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the amplitude to some extent; see Fig. 3 and Fig. 4. Also, 
in Figs. 5, 6, 7, 8, 9, 10, when c2 and c3 increases, the num-
ber of oscillations of x and � decreases. The time history 
under the variation of Ω1 is reported in Figs. 11, 12, 13 for 
the solutions r, x, and � , respectively, when time intervals 
T = [0 ∶ 1000] and T = [0 ∶ 100] . On the other side, we plot 
the time history for the solutions r, x, and � under the slight 
effect of Ω2 as shown in Figs. 14, 15, 16.

It is obvious from Fig. 11 that the behavior of the attained 
waves for r varies between periodicity and decay and there 
is a slight effect for x and � as in Fig. 12 and Fig. 13. On the 
other side, we plot the time history for our solutions under 
the variation of Ω2 in Figs. 14, 15, 16. According to the 
calculations depicted in these figures, when Ω2 increases the 
amplitude of the waves of x decreases to reach to the decay 
behavior. Accordingly, we conclude that the motion of the 
system under consideration is stable and free of chaos.

Non‑linear Analysis

Our goal in this part is to show graphical representations 
of the analytical treatment developed in this paper for reso-
nance situations of (28).

Frequency–Response Curves

In Fig. 17, the modulation amplitudes of the three resonant 
modes are plotted via the parameter of detuning �3 as a 

control one to highlight the influence of some parameters 
on the system behavior up to the third-order of non-linearity. 
The physical dimensionless parameters have the next values

In the region, −10 < σ3 < 10 there exists one possible 
fixed point, in which it is stable in the range −0.8 < σ3 ≤ 10 
while it loses its stability as −10 < σ3 < −0.8 . Also Fig. 18 
describes the modulation amplitudes under the impact of c2 
when c2 = 0.02 . It is self-evident that, there is only one criti-
cal fixed point in which the stable and unstable fixed point 
exists in the domain 4.8 < σ3 < 10 and −10 < σ3 ≤ 4.8 , 
respectively. In Fig. 17, the detuning parameter σ3 takes the 
value −0.8 , while in Fig. 18 has the value of 4.8 . The varia-
tion of c3,�1 and �2 on the frequency response are explored 
in Figs. 19, 20, 21. The range of unstable and stable fixed 
points is drawn with a dashed line and a solid one, respec-
tively. At certain instances, the system exhibits a transcritical 
bifurcation.   

Now, we will provide the following transformation to 
explore the features of the equations of the system (35) for 
the non-linear amplitude. These equations will be modi-
fied by intruding the detuning parameter �k (k = 1, 2, 3) to 

c1 = 0.2, c2 = 0.2, c3 = 0.1, f1 = 0.1, f2 = 0.2, f3 = 0.3,

Ω1 = 0.65, Ω2 = 1.2, J = 1, m = 0.5kg, M∗ = 1 kg, h = 0.1,

∈= 0.001, � = 0.5, �1 = �2 = 0.

Fig. 29   The modulation 
equation’s projection on the 
plane p

2
q
2
 and the adjusted 

amplitudes via time T
2
 when 

�
2
= −0.005 , and it is corre-

sponding second fixed point in 
Fig. 21
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examine the non-linear stability of this system. Therefore, 
the following convenient transformations are [35]

where pk and qk are the real and imaginary parts of Ak 
respectively. We will have the following system:

Ak =
(
pk + iqk

)
ei�kT1 ,

(41)

−2Ω1p
�
1
+ 2Ω1�1q1 − [

3 − 2Ω2
1

Ω1(Ω1 − 2)
+

3 − 2Ω2
1

Ω1(Ω1 + 2)
+

(Ω1 − 1)2

Ω2
2
− (Ω1 − 1)2

]

+2 (q1p
2
3
− q1q

2
3
+ 2p1p3q3) − c1Ω1p1 = 0,

−2Ω1q
�
1
− 2Ω1�1p1 + [

3 − 2Ω2
1

Ω1(Ω1 − 2)
+

3 − 2Ω2
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+
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2
3

−q2q
2
3
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�
2
− 2Ω2�2p2 +
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2
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2
)
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2
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3
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2
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2
3
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2
+
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2
]

×
(
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2
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1

(
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1
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)
− [
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2
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2
+
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2
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1
− (1 − Ω2)

2
]

×(q3q
2
2
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2
2
− 2q3p2q2) −

1

2
f3 = 0.

The modified amplitudes were justified with the variation 
of time T2 in different parametric regions and the ampli-
tudes’ properties are graphed in the phase plane curves, as 
seen in Figs. 22, 23, 24, 25, 26, 27, 28, 29. In Fig. 22, the 
system has the same previous physical values of the param-
eters in Fig. 17. In Fig. 23, the same system is considered in 
Fig. (22), but with c2 = 0.02 . In Figs. 24, 25, The projection 
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p2q2 plane and the corresponding modified amplitudes 
with c3 = 0.001 and it is corresponding to the fixed point in 
Fig. 19 in which σ3 takes the values, −2.9,−0.9 , respectively. 
Also, Figs. 26, 27, 28, 29 show the projection p2q2 plane and 
the corresponding modified amplitudes but in Figs. 26, 27 
when σ1 has the value −1 and these figures are corresponding 
to the first and the second fixed point in Fig. 20 in which σ3 
equal −4.4 and 0.5 . In Figs. 27, 28, when σ2 has the value 
−0.005 and these figures are corresponding to the first and 
the second fixed point in Fig. 21 in which σ3 has the values 
−3.5,−0.4 , respectively. These figures are clearly demon-
strate that, the amplitudes diminish gradually with time and 
the density of the spiral cycle rapidly declines. This means 
that the system is stable under changing of parameters.

Conclusion

The motion of the auto-parametric pendulum model with 
3DOF consisting of a mass M attached to two massless 
springs with linear stiffness was investigated. Lagrange's 
equation is used to derive the controlling equations of 
motion. The approximate solutions and the resonance cases 
obtained using MMS. Criterion of Routh–Hurwitz is used 
to obtain the solvability condition at the steady state. The 
variations of the solutions via time are graphed to have the 
influence of some different parameters on the behavior of the 
dynamical model. The obtained results of higher consistency 
with the results in [11]. The characteristics of the non-linear 
amplitudes of the system are discussed to investigate its sta-
bility. The modulation amplitudes of the resonant modes are 
plotted via one of the detuning parameter as a control one to 
examine the impact of some parameters on the behavior of 
system. It is remarked that at certain values of this param-
eter, the system produces transcritical bifurcations. The solu-
tions of modulation equations have stable fixed points, as 
shown from the solutions’ projections on the plane p2q2 . 
The achieved solutions are considered as a generalization 
of which are obtained in [29] for the case of rigid pendulum 
arm. The significance of the examined model can be seen 
in its applications in a variety of domains, including ship 
motion, transportation equipment, swaying buildings, and 
rotor dynamics.
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