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Abstract
Background Tunable Q-factor wavelet transform (TQWT) is a newly developed, updated version of the wavelet transform 
that can break down any vibration signal into low Q-factor, high Q-factor, and residual components depending on the Q-factor 
value. TQWT can be used for feature extraction, signal denoising, and automatic onboard defect detection in rolling element 
bearing fault diagnosis.
Purpose This paper aims to summarize the role of TQWT as a fault diagnosis tool in recent research works on REB. Fol-
lowed by a brief theoretical foundation of TQWT, the role of TQWT in fault diagnosis of REB is categorized into seven 
aspects: Original TQWT fault diagnosis, Improved TQWT fault diagnosis, TQWT fault diagnosis combined with other 
signal processing approaches.
Methods TQWT fault diagnosis combined with classification algorithms, TQWT fault diagnosis combined with computa-
tional optimization techniques, TQWT fault diagnosis combined with machine learning algorithms and TQWT fault diagnosis 
combined with deep learning architectures.
Result A brief explanation of the importance of dynamic modeling of REB is also included.
Conclusion A summary of the applications of TQWT with the supporting techniques is recorded in a table at the end of 
this paper, it will assist the readers to understand the modern trends of TQWT in the fault diagnosis procedure of a machine 
component like REB.

Keywords Fault diagnosis · Rolling element bearings · Signal processing · Dynamic modeling · Tunable Q-factor wavelet 
transform

Introduction

Rolling element bearings (REB) are one of the essential 
components in almost all kinds of machinery and their fail-
ure causes machine breakdown and fatal accidents [1, 2]. 
Nowadays, these failures can be predicted and diagnosed in 
the early stages by a variety of methods, particularly vibra-
tion analysis, wear debris analysis, and acoustic emission 
measurements. Some researchers have reviewed the various 
techniques used in the fault diagnosis (FD) of REB [3–13].

In the fault diagnostic process, signal processing is criti-
cal. A good treatment of the signal is essential in an ideal 
diagnosis method to find the hidden information about the 
defects present in an REB. Signal processing is gathering 
vibration data from the equipment and processing it so that 
the information required can be extracted. A signal can be 
processed in four different ways. Time-domain, frequency 
domain, time–frequency domain, and cyclo-stationary analy-
sis are the four types of analysis. The TQWT is a time–fre-
quency method discussed in this article. The uniqueness 
of this is that in time–frequency analysis, it is possible to 
acquire practically all of a signal’s information on both time 
and frequency scales. The key time–frequency approaches 
and defect diagnosis experiments utilized with them are 
listed as follows.

STFT, EMD, EWT, MP, WVD, WT, and SST are the 
most important time–frequency analysis approaches. Let 
us begin with STFT (short-time Fourier transform), which 
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is a Fourier transform variation that can detect a signal’s 
frequency and phase content. STFT was utilized in a study 
[14] to detect a bearing fault in a motor operating at varying 
speeds. Liu et al. [15] proposed a method for detecting REB 
faults that combined STFT and deep learning architectures. 
H. Gao et al. [16] used STFT to perform a fault detection 
approach for a rolling element bearing.

EMD (empirical mode decomposition) is another 
time–frequency domain signal-processing approach that can 
break down any vibration signal into a limited amount of 
intrinsic mode functions. Lei et al. [17] published a review 
article to describe recent EMD research and development 
in defect diagnostics of rotating machinery. A paper [18] 
explains an EMD-based rolling bearing diagnosis method 
that has the capability to identify bearing damage at a much 
earlier phase. In a 2015 study [19], EMD was utilized in 
conjunction with an artificial neural network to detect REB 
defects. The Hilbert Huang transform (HHT) cannot be over-
looked when it comes to EMD. The EMD method is used 
to perform the decomposition, which is the most important 
aspect of the HHT. References 20–22 provide a few works 
on how to use HHT to discover faults in an REB. With the 
use of a minimum entropy deconvolution filter and a mor-
phological filter, S. Osman et al. [20] developed an improved 
HHT technique for the early detection of REB faults. They 
have also published an article on the Hilbert Huang spec-
trum approach for detecting faults in vibration signals [21]. 
Cheng et al. [22] suggested a CNN-based approach for esti-
mating the RUL of a rolling element bearing in 2020. In this 
study, the HHT approach is used to preprocess the vibration 
data needed for training.

The third one is the empirical wavelet transform (EWT), 
which is a technique that uses an adaptive wavelet subdivi-
sion scheme to construct a multiresolution analysis of a sig-
nal. Jiang et al. [23] introduced a new technique to find the 
compound faults in the rolling bearing based on EWT. Soon 
afterward, in another study [24] EWT was used to denoise 
the vibration signal and to detect the defects in REB. Zhang 
et al. [25] suggested a sparsity-guided multiscale empiri-
cal wavelet transform and its use in rolling bearing defect 
identification. The fourth is the matching pursuit (MP), 
which decomposes the vibration signal into linear waveform 
expansions. Yang et al. [26] released an article comparing 
the performance of the technique with matching pursuit and 
discrete wavelet packet transform for detecting faults in REB 
utilizing basis pursuit. The Wigner Ville distribution (WVD) 
is a time–frequency signal analysis technique that can pro-
vide better precision in the time and frequency domains and 
can characterize how a signal’s spectral content varies over 
time. Zhou et al. [27] put forward an improved WVD tech-
nique in the fault detection of REB.

The wavelet transform (WT) is the next stage in this 
section. In the realm of rotating equipment malfunction 

diagnostics, WT is one of the most successful strategies to 
process the non-stationary signals in the time–frequency 
domain analysis [28–36]. Many review papers have been 
written about how WT works and how to use it to process 
a signal. Peng et al. [37] summarized the role of WT for 
defect diagnostics of rotating equipment on the basis of 
the fault feature extraction, singularity detection, time–fre-
quency analysis, signal compression, signal denoising, etc. 
Wavelet transform is a mathematical method for analyzing 
vibration data with properties that vary across scales. Using 
the WT and generalized Gaussian density (GGD) mode-
ling, Tao et al. [38] offered a unique wavelet-based bearings 
defect-recognition methodology. The derivatives of WT are 
first, the continuous wavelet transform, second, the discrete 
wavelet transform, and third, the wavelet packet transform 
[39]. Some researchers [40] centered on CWT, DWT, WPT, 
and second-generation wavelet transforms, summarized the 
applications of wavelets for the FD of rotating machines over 
the last 20 years.

Let us begin with the continuous wavelet transform 
(CWT). It is a formal tool in mathematics that gives an over-
complete representation of a signal by allowing the wavelets’ 
translation and scale parameters to fluctuate continuously. 
Some researchers [41] studied REB fault severity assessment 
using CWT and Lempel–Ziv complexity integral. Kankar 
et al. [42] used CWT and autocorrelation for the FD in REB. 
The next is discrete wavelet transform (DWT), which splits 
a signal into several sets, each of which has a time series of 
coefficients that represent the signal’s evolution over time in 
the corresponding frequency range. Djebala et al. [43] pub-
lished an article on the fault detection of REB using DWT. 
Kumar and Singh [44] used a DWT technique to determine 
the width of a taper roller bearing’s outer race with a defect.

The formalism of the wavelet packet transform (WPT), 
the third subcategory of the WT, is similar to that of the 
DWT, with the exception that the discrete-time signal in 
WPT is processed through more filters than in DWT. Some 
researchers [45] published a research article on FD of REB 
with the application of wavelet packets. A study [46] cen-
tered on the wavelet packet transform, explained an effective 
approach to machine health diagnosis. Involvement in the 
research of signal-processing approaches based on the WPT 
for energy and entropy parameter extraction from vibration 
data for fault identification in non-stationary operations is 
offered in a study [47]. Li et al. [48] investigated the use 
of convolutional neural networks and wavelet packet trans-
form to diagnose rolling bearing faults. Another study [49] 
published in 2020 proposed a revolutionary end-to-end 
defect diagnosis method for rolling bearings based on the 
integration of wavelet packet transform into convolutional 
neural network structures. In a study [50], a fault identifica-
tion system is developed for identifying bearing problems. 
The vibration signal is first pre-processed using the wavelet 
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packet transform, then decomposed into IMFs using the Hil-
bert–Huang transform.

The next and final time–frequency technique in this sec-
tion to discuss is the synchro-squeezing technique. Synchro-
squeezing transform (SST) is a recently developed method 
that includes empirical mode decomposition elements and 
frequency reassignment algorithms into the wavelet trans-
form [51]. Liu et  al. [52] describe a unique high-order 
synchro-squeezing transform-based approach for detecting 
and diagnosing rolling bearing defects. Cheng et al. [53] 
compared a vertical SST, a second-order SST based on the 
STFT, to the traditional STFT, SST, and another form of the 
second-order SST, the oblique SST. Xin et al. [54] proposed 
based on the advanced synchro-squeezing transform, a new 
fault feature extraction method for non-stationary signals. A 
focused time–frequency investigation framework based on 
time-reassigned synchro-squeezing transform is projected 
in a publication [55] to capture the impulse components 
with precision in a condition monitoring signal. Apart from 
this, here are a few articles that have exploited the potential 
of the wavelet transform. In [56], REB fault detection was 
enhanced by integrating independent component analysis 
and wavelet lifting. Li et al. [57] used a non-linear ball-
bearing fault signal denoising using the second-generation 
wavelet transform.

Almost all the major strategies for the REB’s fault diag-
nosis have been discussed here. From the above literature, 
it is obvious that wavelet transform is extensively used in 
the field of FD of machine elements such as REB and gears, 
because of its excellent bandpass filtration ability. It can 
detect the transient fault features in the time and frequency 
domains, with a higher resolution. However, the Q-factor 
of conventional wavelet transform cannot be adjusted; this 
is considered as a drawback while processing the signal. 
To overcome this problem, Selesnick [58] introduced an 
improved wavelet transform technique termed a tunable 
Q-factor wavelet transform.

This paper’s structure is as follows: a brief overview of 
REB’s dynamic modeling is given in Sect. 2. A brief theory 
of the tunable Q-factor wavelet transform is discussed in 
Sect. 3. The role of TQWT in fault diagnosis of rolling ele-
ment bearings is discussed in Sect. 4. Section 5 contains 
the summary and discussion; after all, Sect. 6 is where the 
findings are discussed (Fig. 1).

Dynamic Modeling OF REB

The study of the dynamic responses of healthy and defec-
tive bearings is important in the FD and fault classification 
of REB. A dynamic model represents the time-depend-
ent behavior of a system, which helps to understand the 
dynamic characteristics of various working environments. 

The dynamic behavior of an REB is affected by a number 
of factors such as the shaft speed, geometry of the bearings, 
and type of faults, which form a vibration signature. The 
experimental study of a faulty bearing under different oper-
ating conditions by considering various factors and param-
eters is a difficult task and sometimes costlier. Therefore, 
various researchers have come up with analytical modeling 
for investigating the dynamic behavior of REB, where the 
real-time results can be simulated using a computer code or 
software package. Some of them are ADORE—Advanced 
dynamics of rolling element bearings, Finite Element mod-
els, vector bond graph method, MATLAB Simulink, Adams, 
etc. [59–61]. The degrees of freedom (DOF) of the rotating 
elements, lubricant traction features of the contact areas, etc. 
are some of the key attributes to develop dynamic models 
of REB [62–65]. The motion equations for a two-degree-of-
freedom rotor-bearing device are as follows [66]:

where cx and cy are the x and y damping coefficients, kx and 
ky are the x and y stiffness coefficients, Fbx and Fby are the x 
and y bearing forces, and Fux and Fuy are the x and y unbal-
ance forces, respectively. The above motion equations can 
be written as follows:

(1)mẍ + cxẋ + kxx = Fbx cos 𝜃 + Fux cos 𝜃,

(2)mÿ + cyẏ + kyy = Fby cos 𝜃 + Fuy cos 𝜃,

(3)Mq̈ + Cq̇ + Kq = Fb + Fu.

Fig. 1  Research direction in REB fault diagnosis
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The mass matrix is M, the damping matrix is C, and the 
stiffness matrix is K. The bearing force and unbalance force, 
respectively, are Fb and Fu.

Nasir et al. [67] by integrating FEA, surrogate modeling, 
and Monte Carlo simulations, a detailed model for the prop-
agation of cracks in a ball-bearing due to rolling contact 
fatigue was proposed. Patil et al. [68] proposed a fusion of 
the multi-body dynamic model and the acoustic emission 
model for REB and they considered the effect of lubrication, 
surface topography, and load zone in AE generation. Liu 
proposed [69] a dynamic modeling technique by consider-
ing lubricating oil film, additional excitation zone, localized 
faults, deformable housing, etc. in a rotor-bearing housing 
assembly. A complex dynamic model of an REB was devel-
oped in [70] with the consideration of surface texture on 
raceways such as surface roughness and surface waviness. 
The paper also looked at the contact force between the race-
ways and the rolling section, the roller’s rotational speed, 
and the bearings’ radial clearance.

The majority of the dynamic models for REB are estab-
lished to determine the localized faults. The Hertzian theory 
is one of the most popular theories to investigate the defects 
caused by the cracks. So many research works have been 
conducted in dynamic modeling of REB for investigating 
the crack depth, crack shape, the influence of contact load, 
the effect of masses, fault edge shapes, surface topography, 
varying stiffness, the effect of gravity and inertia forces, cage 
influences, centrifugal and gyroscopic influences, slip, etc. 
[71–75].

Tunable Q‑Factor Wavelet Transform (TQWT)

The wavelet transform’s quality factor, or Q-factor, should 
ideally be set based on the oscillatory nature of the signal to 
be applied. Unfortunately, typical wavelet transforms have 
limited or no flexibility to adjust the Q-factor. However, 
in 2011, Selesnick devised a method to remedy this short-
coming of the wavelet transform, which he dubbed TQWT. 
In short, the tunable Q-factor wavelet transform is a more 
advanced version of the wavelet transform that allows the 
Q-factor to be easily adjusted [76]. The TQWT was created 
with the goal of efficiently representing signals with some 
degree of oscillatory nature. A more effective signal repre-
sentation is thought to be produced by changing the Q-factor 
of the wavelet transform to match the oscillatory nature of 
the signal under study. The increased sparsity should help 
sparsity-based signal-processing algorithms perform better 
in applications such as denoising, classification, de-convo-
lution, signal decomposition, and so on.

TQWT depends on three constraints: first, the Q-factor 
(abbreviated as Q), second, the redundancy (abbreviated 
as r), and third, the decomposition level (abbreviated as 

j). Let us begin with the Q-factor. The ratio of the sig-
nal’s center frequency to its bandwidth is known as the 
Q-factor. In other words, it represents the measure of 
signal oscillation. Mathematically it can be expressed 
as given in Eq. 8. Depending on the Q-factor value, the 
TQWT will separate any vibration signal into high, low, 
and residual components [77, 78]. Q can be 1 or greater; 
for non-oscillatory signals, choose 1, and for oscillatory 
signals, choose larger than 1. Let us move to redundancy. 
Redundancy is defined as the ratio of the number of wave-
let coefficients to the length of the signal to which TQWT 
is applied. The parameter r can alternatively be thought 
of as a measurement of the amount of spectral overlap 
between consecutive bandpass filters. To ensure that the 
analysis or synthesis functions are appropriately localized, 
choose r is greater than or equal to 3 as the value.

The next and final is the decomposition level. The 
frequency coverage of the wavelets is expressed by the 
decomposition level. The higher the value of j, the broader 
the frequency spectrum covered by the wavelet, which can 
also exceed 0 Hz. In other words, j is the number of itera-
tions of the two-channel filter bank. There will be a total 
of j + 1 sub-bands, with the low-pass sub-band being the 
last. To implement the TQWT, Selesnick used a reversible 
oversampled filter bank with a real-valued sampling factor. 
The low-pass and high-pass frequency responses of TQWT 
are given by Eqs. 4 and 5 [79]. The low-pass scaling factor 
and the high-pass scaling factor, respectively, are α and β. 
The range of the values is as given in Eq. 6:

The low pass frequency response:

The high-pass frequency response:

where

The Q-factor can be represented as

where �c is the center frequency

(4)Hl(𝜔) =

⎧
⎪⎨⎪⎩

1, �𝜔� ≤ (1 − 𝛽)𝜋

𝜃

�
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�
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√
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(8)Q =
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BW is the bandw€idth

When Eqs. 9 and 10 are substituted in Eq. 8, the result is

The redundancy can be represented as

The maximum number of decomposition levels:

where N represents the length of the input signal.
From Eqs. 11 and 12, α and β can be expressed in terms 

of Q and r., i.e.,

(9)�c = �j 2 − �

2�
�

(10)BW =
1

2
��j−1�

(11)Q =
2 − �

�
.

(12)r =
�

1 − �
.

(13)jmax =

[
log(�N∕8)

log(1∕�)

]
,

A researcher must understand how the Q, r, and j param-
eters affect signal analysis. We will use an example from I. 
W. Selesnick’s TQWT toolbox guide, which was published 
in 2011 [80]. The frequency decomposition obtained by the 
TQWT method is shown in Fig. 2. When r is increased while 
Q is kept constant, the overlap between neighboring fre-
quency responses increases. The overall shape of the wave-
let of frequency response is unaffected by the parameter r. 
Because of the higher overlap, the number of levels j should 
be raised with a bigger r to be able to cover a similar fre-
quency range. When comparing Fig. 2A, B, it can be seen 
that when r is bigger, adjacent bands overlap more. The user 
has the option of specifying the Q-factor with the TQWT. 
By considering Fig. 2C, it can be seen that the wavelets 
grow more oscillatory as Q increases. Since the frequency 
responses get narrower as the value of Q increases from 1 
to 4, more stages are required to span the same frequency 
range.

This section addressed some basic theories about TQWT, 
as well as the parameters that determine TQWT perfor-
mance. The TQWT applications in REB fault diagnosis will 
be discussed in the following section.

(14)� = 1 −
�

r
� =

2

Q + 1
.

Fig. 2  Frequency responses 
were obtained by TQWT
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Role OF TQWT in Fault Diagnosis of REB

TQWT can be used to derive fault characteristics from a 
signal, denoising of the raw signal, automated onboard fault 
diagnosis of the machine components, etc. Some researchers 
have used TQWT alone; some of them have used the combi-
nation of two or more algorithms along with TQWT to get 
more finite results. This paper aims to review the method-
ologies of fault diagnosis schemes of REB done by various 
researchers using TQWT in the following sections (Fig. 3).

Original TQWT Fault Diagnosis

Until now, Selesnick’s original TQWT has been commonly 
used in the fault diagnostics of REB. This subsection would 
look at research papers that only used original TQWT and 
did not combine it with any other techniques. In 2015, Ding 
et al. [81] recommended a sparsity-enabled denoising pro-
cess for the FD of REB on the basis of TQWT. Soon after-
ward A. Kumar et al. [82] published a research article on the 
application of TQWT for processing the vibration signal’s 
weak bursts. The raw vibration signal was decomposed using 
TQWT into various frequency sub-bands, then the energy 
level of each sub-band was calculated. In the second stage, 
the maximum energy sub-band was chosen for recreating 
the signal by using inverse TQWT, finally defect frequency 
was evaluated with the help of envelope demodulation. Gu 
et al. [83] authored a research paper on the application of 
the TQWT technique for extracting the defect features of 
REB. They conducted experiments in order to classify bear-
ing defects and the assessment of performance degradation 
of bearings for validating the efficiency and robustness of 
the suggested work.

The above methods have been proven effective in extract-
ing the fault features, but further investigation is required to 
develop a methodology for multiple defect identification. 
Moreover, it is undeniable that the computational cost and 
storage will increase when multiscale TQWT is applied in 
the feature extraction process.

Improved TQWT Fault Diagnosis

This section will review the research publications in which 
an improved form of TQWT is used to detect faults in REB. 
At first, Xiang et al. [84] studied the bearing signal defect 
feature extraction utilizing a double TQWT. On the basis 
of the resonance of the measured signals, two Q-factors 
were selected in this method, one was related to a high reso-
nance component and the other one was to a low resonance 
component. Kong et al. [85] presented a feature extraction 
process for the detection of hidden repetitive transients in 
noisy vibration signals based on an adaptive TQWT filter. 
Ding et al. [86] wrote an article about using TQWT to diag-
nose a bearing system’s fault. A multi-Q-factor, multi-level 
TQWT technique was proposed in the paper to enhance the 
frequency resolution of characteristic features of the accel-
eration signals at high frequencies. In 2019, Chen and Yang 
[87] introduced an iterative TQWT for the detection of early 
faults in REB. A research work [88] proposes a unique roll-
ing bearing defect diagnostic approach based on improved 
tunable Q-factor wavelet transform to overcome the diffi-
culty of multiple defect diagnosis of rolling bearings.

The above-said methods proved their superiority by 
comparing the results with other methods, but some points 
need to be discussed. Ding et al. [86] pointed out that, the 
MQML-TQWT has a far higher computational cost than 
standard TQWT. Second, when dealing with large amounts 
of data, iterative TQWT can be inefficient (Fig. 4).

TQWT Fault Diagnosis Combined with Other 
Signal‑Processing Approaches

This subsection reviews the research publications in which 
TQWT in conjunction with other signal-processing proce-
dures in FD of REB. In 2013, some researchers [89] pre-
sented an adaptive demodulation technique based on TQWT 
for the detection of bearing defects. Soon afterward He et al. 
[90] put forward an innovative denoising method in FD of 
machine elements particularly REB and gearbox with the 

Fig. 3  j-stage decomposition of 
TQWT
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help of TQWT and neighboring coefficient denoising. The 
process was carried out in three stages such as the decompo-
sition of vibration signal into various wavelet coefficients by 
TQWT, the application of the neighboring coefficients to the 
detailed coefficients, and the reconstruction of the wavelet 
coefficients through inverse TQWT. The theory of neighbor-
ing coefficient denoising is illustrated in [91].

In 2014, Wang et al. [92] studied the initial weak defect 
detection of REB by the combined application of ensem-
ble empirical mode decomposition (EEMD) and TQWT. In 
the proposed work, EEMD was used to break down the raw 
vibration signal into many intrinsic mode functions (IMFs). 
After that, TQWT was applied to the selected IMF with the 
largest kurtosis value. See reference [93] for EEMD. In the 
same year, He and Zi [94] published an article on fault diag-
nosis of rotating machinery using TQWT with overlapping 
group shrinkage (OGS) technique. Parameter selection and 
TQWT decomposition were carried out in the sparse decom-
position stage, coefficient detailing, and OGS processing was 
performed in the post-processing stage, wavelet reconstruc-
tion, and result classification was implemented in the fea-
ture extraction stage. In [95], the comprehensive theory for 
overlapping group shrinkage is given.

In the light of compressive sensing [96, 97], Wang 
et al. [98] developed a strategy to suppress the noise and 
to increase the compressibility of the vibration signal with 
the help of a TQWT and compressible sensing (CS) tech-
nique. Initially, raw vibration signals were classified into 
high Q-factor valued signals and low Q-factor valued signals 

by the spectral kurtosis method. Then the classified signals 
were decomposed into the high-frequency parts contain-
ing noise and transient parts containing fault features with 
the help of TQWT. The fault characteristic frequency was 
obtained by applying a compressible sensing technique to 
the transient impact components of the signal. In 2017, 
TQWT in conjunction with the matching pursuit algorithm 
was used to publish a research paper on multi-fault detection 
of REB in the incipient stage [99]. The authors tried to over-
come the difficulty of detecting the multiple faults presented 
in the same bearing in actual operating conditions. In the 
proposed work, the TQWT method was employed to select 
an optimal Q-factor and a decomposition scale. The match-
ing pursuit algorithm was used as a sparse representation 
method to extract transient impulse signals. The matching 
pursuit algorithm is illustrated in [100] (Fig. 5).

In 2017, Li et al. [101] studied the characteristic feature 
extraction of REB defects by the combined application of 
TQWT and intrinsic characteristic-scale decomposition 
(ICD). Preprocessing of the signals which include, acquir-
ing several product components (PC) from the measured 
signals and selection of the principal PC with a maximum 
kurtosis value were carried out by the ICD technique. Appli-
cation of envelope demodulation procedure to the selected 
low Q-factor part was carried out by TQWT-based signal 
decomposition method. The ICD technique is described in 
[102]. Soon afterward, in a study [103], the maximum spec-
tral kurtosis TQWT and group sparsity total variance denois-
ing (GS-TVD) method were used to diagnose an incipient 

Fig. 4  TQWT’s filter bank for analysis
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Fig. 5  TQWT’s filter bank for synthesis
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REB fault. The maximum SK-TQWT was employed to 
determine the best Q-factor and the decomposition stage 
automatically. Whereas the GS-TVD method is employed 
to remove the high-frequency noise components from the 
re-constructed signals by applying the inverse TQWT. The 
theory of GS-TVD is illustrated in [104–106]. In [107], a 
morphological analysis was used to develop a new signal 
reconstruction procedure. In [108], TQWT and the Hilbert 
energy spectrum were used to propose a system for detect-
ing bearing faults. In 2020, some researchers [109] offered a 
sparse feature extraction process on the basis of dual-channel 
self-adaptive TQWT and orthogonal matching pursuit. At 
the same time, Fan et al. [110] introduced a condition moni-
toring and FD method for rolling bearing in high-speed rails 
with the help of TQWT and multiscale statistical process 
control (MSSPC).

While all the proposed methods are capable of detecting 
the existence of REB failures, there are some drawbacks 
that must be addressed. Some signal-processing techniques 
like EEMD are computationally expensive. Moreover, some 
researchers pointed out that, by their method, it is hard to 
identify the exact sparsity of the analyzed signal, it may 
adversely affect the effectiveness of fault detection. By 
considering algorithms like matching pursuit, it should be 
noted that the density of the dictionary determines the per-
formance of such algorithms, if the density increases, the 
computational cost will also increase. When it comes to GS-
TVD, it still has to answer questions like how to choose suit-
able parameters based on minimal knowledge of the signal 
characteristics (Fig. 6).

TQWT Fault Diagnosis Combined with Classification 
Algorithms

This section reviews the combination of TQWT with some 
classification algorithms in FD of REB. Naive Bayes is one 
of the most well-known probabilistic classification methods 

on the basis of the Bayes theorem, which has gained much 
attention due to its simple model and better classification 
efficiency [111]. The basic theory about the NB classifier 
and Bayes net classifier is given in [112].

I. Bharath et al. [113] developed a condition monitoring 
technique for REB by the application of TQWT along with 
spectral features and different classification algorithms. In 
the proposed technique TQWT was used as a signal-process-
ing mechanism for decomposing vibration signals into sub-
bands. Spectral features were utilized to the sub-bands of 
the signal for extracting fault features in time and frequency 
domains. Different classification algorithms such as bayes 
net and naive bayes were used to compare the accuracy of 
the results. In 2017, Zhao et al. [114] published a research 
article in fault diagnosis of REB with the help of TQWT-
based multiscale dictionary learning and the K-SVD method. 
The details of the K-SVD method are illustrated in [115]. In 
the light of sparse representation classification [116], cen-
tered on a TQWT and the SRC algorithm, a compound fault 
diagnosis approach for REB has been proposed in [117].

However, the above-said classification algorithms require 
prior probabilities, which have to be considered while imple-
menting this method. Moreover, most of the classification 
algorithms like K-SVD are iterative, which does not guar-
antee finding an optimum solution (Table 1).

TQWT Fault Diagnosis Combined 
with Computational Optimization Techniques

Different computational optimization algorithms such as 
particle swarm optimization (PSO), genetic algorithm (GA), 
and fuzzy logic are used for the fault classification for REB. 
Particle swarm optimization is proposed by Kennedy and 
Eberhart [119], by considering its simple idea and mecha-
nism, rapid convergence, and good global search perfor-
mance, PSO is ideal for the selection of optimum parameters 

Fig. 6  Research works conducted in fault diagnosis of REB based on TQWT
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[120]. Genetic algorithms can be used to solve linear and 
non-linear problems with its simple evolution principle of 
survival of the fittest by exploring all regions of search space 
[121]. Fuzzy logic proposed by Zadeh [122], can be used 
for decision making in many applications like fault severity 
assessment of rotating machinery [123]. The detailed theory 
about computational intelligence is explained in [124].

Ma et al. [125] published an article on early fault detec-
tion of REB by the combined application of TQWT, fre-
quency slice wavelet transform (FSWT), and PSO. FSWT 
technique was employed for obtaining the frequency bands 
of the vibration signals from a faulty bearing. TQWT was 
employed to decompose the extracted frequency bands into 
high resonant, low resonant, and residual components. PSO 
was used to classify the bearing faults accurately and effec-
tively. Zhao et al. [126] investigated the defect feature extrac-
tion of an REB by the application of the adaptive TQWT and 
spectral kurtosis method. PSO was employed to select the 
optimum Q-factor, based on this Q-factor, the TQWT was 
utilized to break down the raw signal from the faulty bearing 
into transient impact and continuous oscillation parts. After 
all, the spectral kurtosis method was utilized to the transient 
impact component of the decomposed signal to determine 
the frequency band of fault features.

However, these optimization algorithms have some 
limitations such as the computational complexity when the 
problem is complex or high dimensional, it requires human 
knowledge and expertise. It must be taken into considera-
tion while doing the real-time condition monitoring in REB.

TQWT Fault Diagnosis Combined with Machine 
Learning Algorithms

Artificial intelligence includes Machine Learning (ML) as 
a subset, that emphasizes a machine’s ability to acquire and 

learn a set of data for themselves, modifying algorithms 
as they learn more about the data they process. Machine 
learning can be seen in three categories, they are supervised 
learning, unsupervised learning, and reinforcement learn-
ing [127]. A detailed theory of supervised and unsupervised 
learning is illustrated in [128]. The most commonly used 
machine learning methods in the field of REB fault diagno-
sis are support vector machines, artificial neural networks, 
decision trees, and deep neural networks [129]. SVM is a 
supervised learning method that can be used for regression 
and classification when there are fewer data points. The 
description of SVM strategies is illustrated by Cortes and 
Vapnic [130]. An artificial neural network is inspired by a 
human brain, which consists of a bunch of interconnected 
neurons, each neuron takes several real-valued inputs and 
gives a single real-valued output [131]. The decision tree 
is one of the most famous classification practices and its 
classification accuracy is competitive with other methods 
[132] (Fig. 7).

Some researchers [134] attempted to develop a new 
technique for the FD of REB with the help of TQWT and 
some ML algorithms. In the proposed work, the collected 
vibration signals from the experimental setup were decom-
posed into various sub-bands by the TQWT technique. Cer-
tain statistical and fractal features were calculated for each 
decomposed sub-band and some ML algorithms such as 
ANN, SVM, and decision tree were applied to the above-
said features to classify the bearing defects effectively. T. 
Dovedi and R. Upadhyay [133] studied the integrated appli-
cation of TQWT-based permutation entropy features with 
some soft computing techniques for instance ANN, random 
forest tree classifier, and SVM. In this work, the permuta-
tion entropy features were calculated for each decomposed 
time–frequency coefficient with the help of TQWT, and the 
fault features were classified as inner race fault, ball fault, 

Table 1  Artificial intelligence techniques: benefits and drawbacks [118]

Techniques Benefits Drawbacks

Deep learning 1. The feature extractor is not required
2. Because of the deep design, it is possible to learn more compli-

cated structures from data
3. Automatically identifying faults and learning features

1. Long-term preparation
2. There is no physical significance
3. Large-scale sample requirements

ANN 1. Complex nonlinear function with good approximation
2. Extremely accurate categorization

1. The training method is not visible
2. There is no physical significance
3. There are a lot of factors, and it is simple to over-fit

SVM 1. Can handle multi-dimensional features
2. Exceptional classification precision

1. There is no physical significance
2. Big data have low efficiency

NB 1. Ability to explain things physically
2. It only takes up a little amount of storage space
3. Robust in the face of missing values

1. Prior probability is required
2. Problem of combinatorial explosion and computing
3. Strong preconceptions

k-NN 1. It has the ability to be utilized for both classification and regres-
sion

2. A well-developed theory that is simple to put into practice

1. Large computations need a large amount of storage space
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outer race fault, and healthy bearing with the help of ANN, 
SVM, and RF.

The classification accuracy of ML algorithms is depend-
ent on the size of the training data set. If the size of training 
data sets is enormous, the computational cost may increase 
and require more storage space, so there is still a need for 
future research to focus more on the improvement of fault 
diagnosis schemes of REB.

TQWT Fault Diagnosis Combined with Deep 
Learning Architectures

Because of its ability to scale with input data and generalize 
across problems with similar underlying feature distribu-
tions, deep learning has increased in popularity. The main 
types of deep learning algorithms are deep neural networks 
(DNN), deep belief networks (DBN), stacked autoencoders 
(SAE), convolution neural networks (CNN), recurrent neural 
networks (RNN), etc. [136]. A DNN is a multilayered neural 
network containing multiple numbers of hidden layers. In 
a study, Sohaib et al. [137] used a sparse stacked autoen-
coder-based DNN for fault pattern recognition and fault 
size measurement of REB. In another study, Sun et al. [138] 
applied a combination of compressive sensing techniques 
and DNN for the fault diagnosis and fault classification of 
REB. A DBN is a generative graphical model composed 
of multiple layers of latent variables that represent hidden 
features in the input data [139]. Xu and Tse [140] presented 
a procedure for the FD of REB with the help of a DBN and 
affinity propagation clustering algorithm. Autoencoders are 
a kind of unsupervised learning that consists of an encoder 
and a decoder. The encoder converts input data into hidden 
code, while the decoder reconstructs the data from the hid-
den code [141]. Sun et al. [142] proposed a sparse stacked 
autoencoder for FD of REB.

One of the most used deep learning techniques is CNN, 
which can be used to extract features and identify faults 
in rotating machinery [143]. Hou and Li [135] published 
a research article on fault diagnosis of REB by the appli-
cation of TQWT and CNN to minimalize the influence of 

noise in the vibration signal and the amount of time spent 
by humans in the fault classification process. It has been 
found that the FD accuracy and the generalization capability 
of the recommended work are higher than the conventional 
methods. RNNs are the form of artificial neural networks 
with memories that are skillful to pick up all information 
stored in the previous sequential layers [144]. Liu et al. [145] 
introduced an FD technique for REB with the help of RNN-
based autoencoders.

However, only a few researchers have used the deep 
learning architectures with TQWT, so there are some scope 
and challenges still exist to develop new methodologies in 
the area of FD of REB by combining the advantages of these 
techniques.

Summary and Discussion

The involvement of TQWT in FD of REB was described in 
Sect. 4. In the light of various methodologies and practical 
applications described so far, it is obvious that a one-page 
overview is necessary for a better understanding. Therefore, 
this paper has summarized the various research publications 
of TQWT in fault diagnosis of REB in Table 2 with the sup-
porting techniques. By considering various experts’ opin-
ions, the following points are derived.

1. For a perfect diagnosis method, better treatment of the 
signal is necessary. It involves noise elimination and 
faults feature extraction from bearing signals, fault fea-
ture enrichment, identification of fault characteristic 
frequencies, fault frequency isolation from rotational 
frequencies of other system parts, defect size and posi-
tion estimation, and so on. Moreover, signal processing 
should be robust, reliable, less time-consuming, and 
easier to implement.

2. The TQWT can decompose any vibration signal into 
high oscillation components, low oscillation compo-
nents, and residual components, and fault features can 
be extracted from these components. In addition, it 

Fig. 7  Q-factor vs classifica-
tion accuracy for different ML 
algorithms [133]
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overcomes the limitations of the conventional type of 
wavelet transform. In general, TQWT can be considered 
a powerful tool in the FD of REB.

3. As per Sect. 4, some researchers used TQWT alone, 
some used a combination of one or more techniques 
along with TQWT in fault diagnosis of REB. Recently, 
this combination of techniques, especially TQWT with 
deep learning architectures, attracts more and more 
attention in the fault diagnosis field.

4. In the light of the literature described so far, it is 
observed that most of the researchers have focused on 
single-seeded defects. The identification of a single 
defect is comparatively an easier task. When comes to 
practical applications, the researchers have to come for-
ward to develop new methodologies to detect multiple 
faults.

5. Another point is, only a few researchers have focused on 
defect width measurement. Therefore, there is a future 
scope and challenges still exist to measure the defect size 
or width of naturally originating spall that occurs in the 
inner race and outer race of the bearings.

6. It is noted that some technique is suitable for some types 
of problem, they may not be appropriate for a different 
task. Therefore, the researchers should consider various 
factors and parameters for the real-time working condi-
tions in a cost-effective manner.

Conclusion

Tunable Q-factor wavelet transform is a recently evolved, 
modified form of the wavelet transforms, which can over-
come the drawbacks of conventional wavelet transform 
for signal-processing tasks. TQWT is a promising tool for 
extracting the fault features, signal denoising, and automated 
onboard fault detection of rotating machine elements such 
as REB and gears The application studies of TQWT have 
been divided into seven groups in this study: (1) original 
TQWT fault diagnosis; (2) improved TQWT fault diagno-
sis; (3) TQWT fault diagnosis combined with other signal-
processing approaches; (4) TQWT fault diagnosis combined 
with classification algorithms; (5) TQWT fault diagnosis 
combined with computational optimization techniques; (6) 
TQWT fault diagnosis combined with machine learning 
algorithms; (7) TQWT fault diagnosis combined with deep 
learning architectures.

TQWT separates complicated signals based on a novel 
perspective, oscillatory behavior, and can uncover fault 
features from original mechanical vibration signals more 
efficiently than previous frequency band-based approaches. 
TQWT’s future potential applications include automated 
fault diagnosis of critical industrial components such as 

Table 2  TQWT applications of REB fault diagnosis in a nutshell

Classification Bearing type Supporting techniques References

Original TQWT 7205B
6205-SKF

None
None

[82]
[83]

Improved TQWT N203
6205-SKF
roller bearing
NTN6204

Double TQWT
Adaptive TQWT
MQML-TQWT
Iterative TQWT

[84]
[85]
[86]
[87]

TQWT combined with other signal-processing approaches 32,007
GB203
552732QT
NF206W
ball bearing
SKF6211
ZA-2115, MBER-16 K
FAG-32310-A
SKF-6205
NTN Nu 204
roller bearing

NC denoising
EEMD
OGS
CS
MP
ICD
GS-TVD
TQWT-MCA
Hilbert energy spectrum
OMP
MSSPC

[90]
[92]
[94]
[98]
[99]
[101]
[103]
[107]
[108]
[109]
[110]

TQWT combined with classification algorithms SKF-32005
SKF-6203
N205EM

NB Classifier
K-SVD
SRC

[113]
[114]
[117]

TQWT combined with computational optimization techniques ZA-2115
SKF-6308

PSO [125],
[126]

TQWT combined with machine learning algorithms NBC 6307
ball bearing

SVM, ANN, Decision Tree [134],
[133]

TQWT combined with deep learning architectures Ball bearing CNN [135]
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bearings, gearboxes, and rotors, as well as medical appli-
cations such as cardiovascular arrhythmia classification, 
detection of abnormal heart sound signals, detection of heart 
valve disorders, speech signal-processing algorithms for Par-
kinson’s disease, epileptic seizure detection in EEG signals, 
surface EMG signal classification, and so on.

It has already been noticed, how the quality factor, also 
known as the Q-factor, has a significant impact on TQWT's 
performance. As a result, picking the right Q-factor is criti-
cal. The Q-factor should be chosen based on the type of 
signal to be examined and the features that will be extracted 
from it. It is possible to execute a very successful signal 
analysis if it is applied an optimal Q-factor for the TQWT 
decomposition. To find the best Q-factors, many optimi-
zation strategies can be utilized. As a result, flaws can be 
diagnosed with greater accuracy using any deep learning 
method after being decomposed by the ideal Q-factor. It is 
hoped that a more beneficial TQWT will be developed for 
fault diagnosis, fault width measurement, and multiple faults 
detection in future research works.

This paper intends to summarize the role of TQWT in 
fault diagnosis of REB, and it offers an in-depth systematic 
review for researchers involved in TQWT and fault diagnosis 
of REB. It must be noted that only limited research is avail-
able utilizing TQWT in fault diagnosis of REB, this paper 
has covered almost all the significant works. A summary 
of the applications of TQWT with supporting techniques is 
listed in a table so that the readers will get a clear idea about 
the recent developments of fault diagnosis of REB with the 
help of TQWT.
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