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Abstract
Background Free vibrations with high amplitude behave mainly nonlinearly, which can be dangerous to structures. Thus, 
they must be controlled effectively. We used an improved higher-order shear deformation theory for analyzing the nonlinear 
versus linear vibration of a composite sandwich panel with an Electrorheological (ER) Core and examined the hardening 
and softening behaviors.
Methods The boundary conditions and governing equations were extracted by Hamilton’s principle. Via the harmonic bal-
ance method, we solved the equation analytically with quadratic and cubic nonlinearities and the data were compared with 
the established results. Ordinary differential equations were yielded by applying Galerkin’s approximation technique to the 
governing partial differential equations.
Results As each of the parameters of the aspect ratio and the sandwich panel thickness and damping increases, the vibration 
amplitude decreases. This means the increase of non-linear frequency by the increased amplitude. By increasing the thick-
ness of the ER layer, the natural frequency of the structure increased. An increase was found in hardening behavior for the 
orthotropic and thick sandwich panel.
Conclusions By increasing the electric field in the nonlinear state, the structure hardens significantly, which improves the 
system’s stability. To control the vibration behavior, increasing the electric field decreases the structure’s frequency while 
increasing the panel’s aspect ratio increases the frequency.

Keywords Electrorheological core · Harmonic balance · Large amplitude · Nonlinear vibration · Sandwich panel

Introduction

High-strength and lightweight composites were applied 
effectively in numerous fields of material science engineer-
ing. The nonlinear vibration of laminated composite plates 
has obtained a huge deal of attention since they are suitable 
for use in harsh environments. To fit a variety of material 
applications, it is critical to determine the frequency of the 
nonlinear vibration accurately.

The nonlinear vibration behavior of plates was exten-
sively assessed utilizing different approximation methods. 
Several authors studied the plates’ nonlinear vibration 
behavior for laminated and isotropic composite plates.

Large deflection vibration of cross-ply laminated plates 
with certain edge conditions. Journal of Sound and Vibra-
tion studied by Chandra [1]. Chandra et al. analyzed Large 
deflection vibration of angle ply laminated plates [2]. Singh 
et al. investigated Non-linear vibrations of simply supported 
rectangular cross-ply plates. Journal of Sound and Vibration 
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[3]. Singh et al. presented Large amplitude free vibration of 
simply supported antisymmetric cross-ply plates [4]. Non-
linear vibrations of rectangular laminated composite plates 
with different boundary conditions. Was reviewed by Ama-
bili et al. [5]. Analytical Nonlinear Elasto-Plastic Impact 
Response of a Moderately Thick Rectangular Plate has been 
studied by Khorshidi [6].

The Homotopy Perturbation Method (HPM) for nonlinear 
vibration behavior of functionally graded plates analyzed by 
Yazdi [7]. The HPM was further used to analyze the geo-
metrical nonlinear vibrations of thin rectangular laminated 
plates made of functionally graded material (FGM). Using 
Von Karman's strain displacement relations, the structural 
nonlinearity of the system has been modeled. Quan and 
Duc studied Nonlinear vibration and dynamic response 
of shear deformable imperfect functionally graded double 
curved shallow shells resting on elastic foundations in ther-
mal environments [8]. Vibration and nonlinear dynamic 
response of imperfect sandwich piezoelectric auxetic plate 
were reviewed by Quan et al. [9].

Andrianov et al. presented An artificial small perturbation 
parameter and nonlinear plate vibrations. Journal of Sound 
and Vibration [10]. Duc and Tung investigated Nonlinear 
analysis of stability for functionally graded cylindrical shells 
under axial compression [11]. An analytical approach for 
nonlinear thermo-electro-elastic forced vibration of piezo-
electric penta-graphene plates has been done by Quan Quyen 
and Duc [12]. Differential quadrature method for nonlinear 
vibration of orthotropic plates with finite deformation and 
transverse shear effect provided by Li and Cheng [13]. These 
authors assessed the nonlinear free vibration behavior by the 
differential quadrature technique, using the harmonic bal-
ance process to derive the equations of motion. Lal et al. [14] 
presented Nonlinear free vibration of laminated composite 
plates on elastic foundation with random system properties. 
Typical numerical results (second-order statistics) were 
obtained for the composite plates resting on Winkler and 
Pasternak elastic foundations with different support condi-
tions. Quan et al.presented Vibration and nonlinear dynamic 
response of imperfect sandwich piezoelectric auxetic plate 
[9]. Nonlinear buckling and postbuckling of imperfect 
piezoelectric S-FGM circular cylindrical shells with metal-
ceramic–metal layers in thermal environment using Reddy's 
third-order shear deformation shell theory Was reviewed by 
Khoa et al. [15].

Tian et al. [16] presented A new higher-order analysis 
model for sandwich plates with flexible core.

The Vibration Controllability of Sandwich Structures 
with Smart Materials of Electrorheological Fluids and 
Magnetorheological Materials was explored by Kolekar 
et al. [17]. Nonlinear stability of eccentrically stiffened 
S-FGM elliptical cylindrical shells in thermal environment 
has been studied by Duc et al. [18]. Malekzadeh et al. [19] 

investigated the dynamic response of in-plane pre-stressed 
sandwich panels with a viscoelastic flexible core and vari-
ous boundary conditions. A Three-Layer Quasi-3D Finite 
Element Analysis for Smart Actuation on Sandwich Plates 
has been studied by Nabarrete [20]. Lv et al. presented 
The Dynamic Models, Control Strategies and Applications 
for Magnetorheological Damping Systems: A Systematic 
Review [21]. Duc investigated Nonlinear thermo-electro-
mechanical dynamic response of shear deformable piezoe-
lectric Sigmoid functionally graded sandwich circular cylin-
drical shells on elastic foundations [22]. Nonlinear analysis 
of stability for functionally graded cylindrical shells under 
axial compression has been done by Tungand and Duc [23].

For moderately thick laminated plates, applying classical 
theories can result in imprecise data. In anisotropic materi-
als, a coupling exists between the stretching and bending 
of laminated composite plates. It is caused by overlooking 
the rotary inertia and shear strains effects. Hence, both the 
first-order shear deformation and higher-order SDT theo-
ries have been used to assess the laminated plates’ nonlinear 
vibration behavior. Frostig [24] developed the higher-order 
sandwich panel theory. Malekzadeh et al. [25]introduced 
the enhanced higher-order sandwich plate theory using the 
first-order shear deformation theory to the face sheets. Most 
studies conducted in recent years, focused on the Vibration 
of a sandwich plate equipped with an electrorheological fluid 
core. the concepts of ER adaptive structures based on mate-
rials for the first time were introduced by Carlson [26]. Yeh 
and Chen investigated the dynamic stability problems of an 
ER sandwich beam and explained the dynamic behavior of a 
variety of sandwich plates (annular, orthotropic, orthotropic 
annular, and rotating polar orthotropic annular plates) with 
various thicknesses of the ER layer and electric field strength 
[27–32]. high-order linear vibration behavior of moderately 
thick sandwich panel equipped with an ER core evaluated 
by Keshavarzian et al. [33].

Despite the fact that wide studies have been conducted 
on the vibration performance of sandwich panels equipped 
with ER fluid cores, fewer studies have been published on 
the nonlinear vibration behavior of sandwich panels con-
sisting of ER fluid cores. Therefore, there is a definite need 
for research to elucidate this subject further. Considering 
these facts, this study was designed for deriving the non-
linear equations of motion for sandwich panels with multi-
layer face sheets and an ER fluid core. For this purpose, 
we used the first-order shear deformation theory, including 
rotary inertia. Our primary focus was to examine the impacts 
of geometric aspect ratio, electric field magnitude, and ER 
core layer thickness versus the sandwich panels dynamic 
properties in terms of Galerkin’s method. These equations 
were decreased to some coupled nonlinear partial differen-
tial equations (PDEs) plus a compatibility equation after 
the introduction of a force function. This was accomplished 
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after establishing the validity of our study on isotropic and 
investigating the laminated rectangular panels, nonlinear and 
linear free vibration of a panel. Moreover, we studied the 
impacts of the system’s parameters on the nonlinear vibra-
tion frequency.

Theoretical Formulation

Basic Assumptions

The basic assumption was having a thick composite sand-
wich panel comprising two composite laminated face sheets 
and a core layer, in which the thickness of the bottom and top 
covers, and the core material were as follows: ht, hb, hc. The 
proposed sandwich panel would have its length “a”, width 
“b” and total thickness as “h”. In addition, the orthogonal 
coordinates (xi, yi, zii = t, b, c) would be as represented in 
Fig. 1. In that model, the “t” index represents the upper 
sheet, “b” shows the lower sheet, and “c” represents the core.

Mathematical Formulations

The “u, v and w” of the face sheets plus the “x, y (longitudi-
nal) and z (thickness) axes” are stated as:

where “zi” represents the vertical coordinate of each face 
sheet (i = t, b), which was measured upward from each face 
sheet mid-plane. Regarding the first-order shear deformation 
theory, f1

(
zi
)
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(
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)
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where
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Fig. 1  A sandwich panel with laminated face sheets, an ER core and orthogonal coordinates
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Displacement fields are oriented by the second Frostig’s 
model for the thick core layer, as follows [24]:

The kinematic relations of the core layer are:

By placing the (4) in the relations (5) the strains in terms 
of the displacement of the mid-plane can be obtained as 
follows:

where

The following compatibility circumstances are obtained 
assuming a perfect bonding between the bottom and top face 
sheets and core interfaces:
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Applying Eqs. (4) and (6) with some simplifications, the 
compatibility circumstances may be expressed as:

According to Eq.  (7), the number of unknown ele-
ments in the core layer is decreased to five items as: 
uc
0
, uc

1
, vc

0
, vc

1
and wc

0
 . Therefore, the unknowns for a flat com-

posite sandwich panel consist of fifteen items as follows:

resultants of the Stress for the Core

The stress has the following results on core:
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Resulting Stress per Unit Length of the Face Sheets

resultant stress per unit length of the face sheets is defined 
as follows:

where ks is the shear correction factor.

Equations of Motion

The Hamilton’s principle was used for extracting the sand-
wich panel motion equations. Analytically, the principle may 
be expressed as:
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üC
1
+

(
4IC

4

h4
c

−
16IC

6

h6
c

)

üb
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Lamina Constitutive Relations

For kth orthotropic Lamina, the linear constitutive relations 
in the principal material coordinates are:

where Q(k)

ij
 are the plane stress-reduced stiffness. For Qij of 

each layer, relations (19) are also available:

The stress–strain relations in the direction of the sand-
wich panel geometrical axes are derived as follows:

where, Qij represents the transmitted stiffness in the geomet-
ric axis of the sandwich panel.
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,Q12 =
v12E1
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The association between the transferred stiffness and axial 
stiffness is derived by the following equation:

By placing relation (21) in relations (11) and (10) and 
using relation (4), the multi-layered and thick core layer 
constitutive relations related to face sheets are written as 
follows in terms of in-plane displacements. Due to a large 
number of equations, the most relevant ones were placed in 
Appendices A, B and C.

Model of ER Material

The complex modulus of the utilized ER fluid was measured 
by a previous study experimentally[34] and can be stated as 
follows. They are called fluid types 2a and 2b, and the rela-
tions have been presented previously by [35].

no normal stress exists in the ER layer and there exist 
only transverse shear stresses as follows:

The assumed responses of the relationship satisfy simply 
supported boundary conditions, as shown by the following 
relations:

(21)
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where  �m =
mπ

a
  and �n =

nπ

b
In Eq.  (26), Uj

0mn
 , Vj

0mn
 , Wj

0mn
 , � j

xmn , �
j
ymn , Uc

kmn
 , Vc

kmn
 

andWj

lmn
 ,  represent the Fourier coefficients while “m” and 

“n” representing half wave numbers along “x” and “y” direc-
tions, respectively. The nonlinear ordinary-differential equa-
tion may be obtained by substituting Eq. (26) into equations 
of motion, in displacement terms and applying Galerkin’s 
process. To solve these equations of motion of nonlinear 
ordinary differential, each of the equations of motion can be 
obtained according to one of the unknowns:

Given that transverse oscillations are considered in this 
paper, all time-dependent variables of relations (26) are 
obtained using the equation of motion, in terms of w(t).the 
nonlinear equation of motion can be obtained symbolically 
as:

(26)
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(27)ẅ(t) + 𝜔2
L
w(t) + 𝛼2w(t)

2 + 𝛼3w(t)
3 = 0.

In the above relation, �L is the natural linear frequency,�2 
and �3 coefficient of nonlinear stiffness.

Solving the Equation of Motion

The obtained nonlinear equation of motion (27) can be 
solved, using perturbation techniques including the har-
monic balance method as described by a previous study [36].

Hardening/Softening Behavior in Nonlinear 
Oscillations

According to the same study[36], the effective nonlinearity 
coefficient δ is obtained by:

Hence, “δ” represents the extent of the resonance curves 
bending. When the value of δ > 0, the frequency response 
curves are declined to the right where the type of effective 
nonlinearity becomes hardening. Conversely, when the value 
of δ < 0, the frequency–response curves are bent to the left 
and the effective nonlinearity becomes a softening type. 
Also, when δ = 0, the frequency–response curves are not 
bent to either right or left and, by the second approximation, 
the system’s response becomes linear in nature.

Considering Eq. (28), it follows that the quadratic nonlin-
earity possesses a softening effect. When a3 is positive, the 
effective nonlinearity “δ” may be negative or positive, based 
on the relative magnitudes of “a2” and “a3”.

(28)� =
10a2

2
− 9a3�

2
L

24�2
L

.

Table 1  First dimensionless period of the flat square panel with H = h/a = variable, a = b = 1, m, n = 1 (T
N
= T

N
(E∕p)1∕2∕a)

TN: Non-linear period with FSDT (non-dimensional)-TL: linear period with FSDT (non-dimensional)

Present Model (FSDT-harmonic balance method)

TNAmplitude ratio

1/H 0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0

10 10.79 10.52 9.60 8.49 7.44 6.52 4.86 3.81 3.12 2.63
20 21.46 20.92 19.10 16.89 14.79 12.97 9.66 7.59 6.21 5.24
30 32.16 31.35 28.62 25.32 22.17 32.16 14.48 11.37 9.30 7.85
40 42.87 41.79 38.14 33.75 29.55 25.91 19.31 15.16 12.40 10.47

(FSDT- Runge -Kutta numerical integration method) [37]

TN Amplitude ratio

1/H 0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 TL

10 10.84 10.65 10.00 9.14 8.25 7.42 5.76 4.62 3.83 3.26 10.90
20 21.11 20.76 19.53 17.91 16.20 14.59 11.37 9.13 7.56 6.44 21.229
30 31.51 30.99 29.17 26.75 24.21 21.82 17.01 13.67 11.33 9.64 31.684
40 41.93 41.25 38.83 35.62 32.25 29.07 22.66 18.22 15.11 12.85 42.170
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Results and Discussion

Validation of the Equations

The following examples justify our research approach.

Example 1 The non-linear free vibration analysis of a flat 
rectangular panel with SSSS B.C.

In this case, a flat square panel without a core was consid-
ered, for which the findings of the present study were com-
pared with those of another work. Please review the details 
described by Ref. [37]. References [37, 38] the components 
of the nonlinear strains are taken on the basis proposed by 
two old studies. The Geometry and mechanical proper-
ties of a square panel are selected based on the following 
definitions:

As shown in Table 1, the results of the current theory 
with harmonic balance and von Karman’s nonlinear strains 
methods were compared with those obtained from the first 
order and nonlinear strains, described previously by Ref. 
[38]. Our results were also in good consistency with those 
reported by an older study [37].

Example 2 Nonlinear Free vibration analysis of laminated 
panel via SSSS B.C.

a = 1, b = 1, h = a∕10,E1 = E2 = E3 = 322.2 GPa,

G12 = G13 = G23 = E∕2(1 + v), v = 0.32, � = 2370 Kg∕m3.

Since there was no available literature for validating the 
results of the current study, we had to reduce the core thick-
ness to zero and compare the data with those reported by 
other references. In this case, we considered a flat sandwich 
panel with multi-layer face sheets and an ER core under sim-
ply supported boundary conditions (SSSS) via First-order 
shear deformation theory for the face sheets. For face sheets, 
the lay-up sequences were [90/0/core/0/90] and the sandwich 
panel was symmetrical about the mid-plane. The following 
material properties were used for computation:

As deduced from Table 2, it may be found that out results 
are reasonably in good consistency with those reported by 
previous studies [4, 14, 39]. Table 2 shows the results of the 
current investigation for a flat sandwich panel with ER core 
utilizing the revised high-order theory of sandwich panel, as 
well as comparisons with results from older multilayer sheet 
theories. As can be shown, the current theory was able to 
forecast lower frequency ratios with a small error margin.

Influence of Hardening/Softening Behavior 
in Nonlinear Vibrations

The mechanical features of the face sheets for the ER core 
are shown in Table 3. Based on the data presented in Table 4, 
the hardening effects were much greater than the softening 
effects.

Nonlinear Free Vibration Analysis

The effects of altering the electric field intensity and the 
thickness of the ER layer were also assessed on the non-
linear frequencies of the sheets. The sandwich panel was 
symmetrical around the mid-plane and the lay-up sequences 
for face sheets were [0/0/0/core/0/0/0]. Table 5 presents the 
comparison of the nonlinear frequency ratios for the first 
vibration modes of a square sandwich panel with ER core, 
based on first-order shear deformation theory.

E1 = 412GPa,E2 = E3 = 10.3GPa,G12 = G13 = 6.18GPa,

G23 = 5015GPa,= v12 = 0.25, � = 1
Kg

m3
.

Table 2  Comparison of the frequency ratio of laminated compos-
ite square panel with SSSS boundary condition, a/b = 1, hc/ht = 1, m, 
n = 1, a/h = 10

AR = wmax/ℎ
Amplitude of 
vibration/h

�
NL

/�
L

Present model 
(IHSDT)

�
NL

/�
L

[4]
�
NL

/�
L

[14]
�
NL

/�
L

[39]

0.3 1.0673 1.0796 1.0731 1.0988
0.6 1.2479 1.2867 1.2859 1.3622
0.9 1.5013 1.5691 1.5650 1.7377
1.2 1.7970 1.8779 1.8750 2.1614
1.5 2.1174 2.2414 2.2400 2.6025

Table 3  Mechanical and 
geometrical properties of the 
composite sandwich panel with 
multi-layer face sheets and an 
ER core

Geometry Laminate face sheets ER core

a = 0.4 m � = 2700 kg/m3 � = 1700 kg/m3
b = 0.4 m E1=E2=E3=70 GPa GC

2b(xz)
= G�C

b(xz)
+ G��C

b(xz)
GC

2b(yz)
= G�C

b(yz)
+ G�C

b(yz)

hc = 0.5mm G12 = G13=G23=26.9 GPa G�C
b(xz)

= G�C
b(yz)

= 50000E2

ht=hb=0.5 mm v = 0.3 G��C
b(xz)

= G��C
b(yz)

= 2600E + 1700
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Comparison of Linear and Nonlinear Frequency 
of Flat Sandwich Panel with an ER Core

Figure 2, shows the effect of electric field intensity on the 
nonlinear frequency. Figure 3 represents the variations in 
the modal loss factor as a function of electric field intensity.

Influence of the Core Thickness Ratio to Total Sheet 
Thickness on the First Natural Frequency

As reflected in Fig. 4, the nonlinear frequency increases by 
increasing the ratio of core thickness relative to the total 
sheet thickness. However, an earlier study [33] suggests that 
increases in the ratio of core thickness to total sheet thick-
ness reduce the natural frequency of the sheet. Regarding the 

Table 4  The Values of a3 and a2 for flat sandwich panel with alu-
minum face sheet and ER core based on first shear Deformation the-
ory

The lay-up sequences for face sheets were [0/0/0/core/0/0/0] and 
E = 3.5 kV/mm, a/b = 1, ℎc/ℎt = 1, m, n = 1

Electric field strengths Effective nonlinearity coefficient

E = 3.5 kV/mm a2 = 4.0991 ×  10−10 a3 = 4.6694 ×  1010

Table 5  Comparison of 
nonlinear frequency ratios for 
the first vibration modes of a 
square sandwich panel with ER 
core based on first-order shear 
deformation theory

The lay-up sequences for face sheets were [0/0/0/core/0/0/0] and E = variable, a/h = 10

AR = wmax/ℎ ℎc/ℎt a/b E = 0 kV/mm E = 1 kV/mm E = 2 kV/mm E = 3.5 kV/mm

�
NL

/�
L

ηNL �
NL

/�
L

ηNL �
NL

/�
L

ηNL �
NL

/�
L

ηNL

0.1 1 1 1.0555 0.0135 1.0377 0.0250 1.0207 0.0157 1.0111 0.0079
1 2 1.0630 0.0048 1.0528 0.0126 1.0363 0.0103 1.0210 0.0075
1 4 1.0898 0.0013 1.0715 0.0041 1.0617 0.0056 1.0454 0.0047
4 1 1.2076 0.0175 1.2113 0.0297 1.0553 0.0223 1.0236 0.0126
4 2 1.2333 0.0065 1.1816 0.0146 1.1101 0.0152 1.0542 0.0109
4 4 1.2763 0.0017 1.2552 0.0046 1.2080 0.0063 1.1387 0.0070

0.2 1 1 1.2076 0.0103 1.1439 0.0206 1.0806 0.0140 1.0440 0.0074
1 2 1.2332 0.0036 1.1976 0.0097 1.1385 0.0086 1.0819 0.0067
1 4 1.2762 0.0009 1.2623 0.0030 1.2287 0.0042 1.1715 0.0037
4 1 1.6836 0.0090 1.4246 0.0184 1.2061 0.0171 1.0915 0.0111
4 2 1.7563 0.0032 1.6079 0.0079 1.3889 0.0097 1.2021 0.0083
4 4 1.8751 0.00081 1.8192 0.0022 1.5312 0.0032 1.4784 0.0042

0.4 1 1 1.6835 0.0053 1.4462 0.0120 1.2829 0.0097 1.1664 0.0060
1 2 1.7562 0.0017 1.6548 0.0051 1.4783 0.0051 1.2970 0.0046
1 4 1.8748 0.0004 1.8369 0.0014 1.7433 0.0021 1.5781 0.0020
4 1 2.8877 0.0030 2.2623 0.0072 1.6791 0.0088 1.3290 0.0075
4 2 3.0560 0.0010 2.7097 0.0027 2.1718 0.0039 1.6676 0.0043
4 4 3.3262 0.00025 3.1951 0.00071 2.8888 0.0011 2.3964 0.0015

0.6 1 1 2.2645 0.0029 1.8617 0.0071 1.5847 0.0065 1.3459 0.0045
1 2 2.3854 0.0009 2.2163 0.0028 1.9151 0.0030 1.5923 0.0031
1 4 2.5805 0.0002 2.5185 0.0007 2.3633 0.0011 2.0866 0.0011
4 1 5.1779 0.0014 3.2041 0.0036 2.2570 0.0048 1.6506 0.0048
4 2 4.4456 0.0005 3.9078 0.0013 3.0599 0.0020 2.2376 0.0024
4 4 4.8625 0.00012 4.6604 0.00033 4.1865 0.00052 3.4163 0.00078

0.8 1 1 2.8877 0.0018 2.4373 0.0045 1.9201 0.0044 1.5629 0.0033
1 2 3.0559 0.0005 2.8204 0.0017 2.3963 0.0019 1.9313 0.0021
1 4 2.9245 0.00014 3.2401 0.00045 3.0260 0.00069 2.6387 0.0007
4 1 5.8098 0.0008 4.1802 0.0021 2.8773 0.0030 2.0165 0.0032
4 2 5.8615 0.00028 5.1352 0.00077 4.6835 0.0011 2.8502 0.0014
4 4 6.4230 0.00006 6.1510 0.00019 5.5120 0.00030 4.4689 0.00045

1 1 1 3.5309 0.0012 2.9529 0.0030 2.2799 0.0031 1.8040 0.0025
1 2 3.7456 0.00039 3.4448 0.0011 2.9001 0.0013 2.2947 0.0014
1 4 4.890 0.00009 3.9801 0.00030 3.7075 0.00046 3.2120 0.0005
4 1 6.8465 0.0005 5.1712 0.0013 3.5175 0.0020 2.4065 0.0022
4 2 7.2885 0.00018 6.3751 0.0005 4.9225 0.0007 3.4830 0.0010
4 4 7.9937 0.00044 7.6521 0.00012 6.8490 0.00019 5.5355 0.00029
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nonlinear vibration, increases in the ER core thickness the 
ratio of the natural nonlinear frequency to the linear counter-
part increases initially, then progressively declines.

Effect of Electric Field Intensity on the Nonlinear 
Frequency

Figure 5 illustrates the diagrammatic variations in the first 
nonlinear frequency of the flat sandwich panel with the ER 
core relative to the electric field intensity for varying aspect 
ratio coefficients.

Effect of Length‑to‑Thickness Ratio on the Natural 
Frequency

Figure 6 illustrates the diagram of the nonlinear frequency 
ratio variations of the first flat sandwich panel with an ER 
core based on the length to thickness ratio (ℎc/ℎt = 1, a/b = 1, 
E = 2 kVmm − 1).

Fig. 2  Diagrammatic changes in the a nonlinear and b linear frequency of the sheet for different electric field intensities

Fig. 3  Comparison of the damping coefficient in terms of vibrational modes and different electric fields for a nonlinear and b linear frequency of 
the sheet for different electric field intensities
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Highlights

To Control the Sandwich Panel’s Nonlinear Vibration 
Behavior

• By increasing the electric field intensity, the nonlinear 
frequency of the panel decreases.

• By increasing the aspect ratio, the nonlinear frequency 
of the panel increases.

• By increasing the length-to-thickness ratio, the nonlinear 
frequency decreases.

• During the rise in the electric field intensity, if damping 
is applied, the vibration amplitude declines consistently.

• With an increase in the panel’s ratio, it becomes thinner 
while the vibration amplitude gradually increases.

• Within the ER core, the ratio of nonlinear to linear fre-
quency increases initially, then declines consistent with 
increases in the core thickness.

• As the sandwich panel’s thickness grows, the hardening 
behavior also rises.

Fig. 4  Diagrams of the a first nonlinear (E = 2 kV/mm) and b linear frequency changes of the sheet in different ratios of the core to sheet thick-
ness, for electric field intensities

Fig. 5  Diagram of the a nonlinear (E = 2 kV/mm) and b linear frequency ratio variations of the sheet versus the electric field intensity for differ-
ent aspect ratios
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Conclusions

This study was undertaken for the first time to investigate the 
nonlinear vibration behaviors of sandwich panel with multi-
layer face sheets and an ER fluid core, using an improved 
first-order shear deformation theory. Based on the findings, 
the following conclusions can be drawn:

1. With an increase in the electric field intensity, the non-
linear vibration frequency of the panel decreases and the 
structure hardens, leading to improvement in the struc-
ture’s stability.

2. With increased damping simultaneously with a rise 
in the electric field intensity, the vibration amplitude 
declines significantly.

3. The findings enable us to develop a controllable elec-
tric field, thereby controlling the natural frequency and 
amplitude of the vibration in structures.

4. The contribution of the core thickness is such that by 
increasing it relative to the panel’s thickness at a fixed 
electric field intensity, the ratio of nonlinear to linear 
vibration frequency initially rises, then declines over 
time.

5. As the ratio of core thickness to that of the whole panel 
increases, the panel’s stiffness declines.

6. By injecting more oil into the core layer, the panel’s 
weight increases, thereby reducing the ratio of the pan-
el’s density to its stiffness.

7. With an increase in the panel’s dimensional ratio, it 
becomes thinner while the vibration amplitude gradu-
ally increases.

8. By adjusting the above parameters, it is possible to 
achieve the optimal and desired nonlinear vibration fre-
quency and amplitude in a variety of structures.

Appendix A: Descriptions of Notations

dVt, dVc, dVb  The core Volume element of the top face 
sheet, the core and the bottom face sheet, 
respectively

Ii
n
(i = t, b, c)  The moments of inertia of the top and 

bottom face sheets and the core
Mc

z
  Normal bending moments per unit length 

of the edge of the core
Mi

xy
,Mi

xx
,Mi

yy
  Bending and shear moments per unit 

length of the edge (i = t,b)
Mc

nxx
,Mc

nxy
,Mc

nyy
  Shear and bending moments per unit 

length of the edge of the core, Mc
nxz
,Mc

nyz

Ni
xy
,Ni

yx
,Ni

xx
,Ni

yy
  In-plane and shear forces per unit length 

of the edge (i = t, b)
Nc
xz
,Nc

yz
  Shear forces per unit length of the edge 

of the core
Qij  The reduced stiffnesses referred to the 

principal material coordinates
Qij  Transformed reduced stiffnesses
uk, vk,wk  Unknowns of the in-plane displacements 

of the core (k = 0,1,2,3)
uc, vc,wc  Displacement components of the core
ui
0
, vi

0
,wi

0
  Displacement components of the face 

sheets, (i = t, b)
üc, v̈c, ẅc  Acceleration components of the core

Fig. 6  The diagram of the(a) nonlinear (E = 2 kV/mm) and (b) linear frequency ratio variations of the sheet in terms of electric field intensity for 
different length to thickness ratios
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üi, v̈i, ẅi  Acceleration components of the face 
sheets, (i = t, b)

Zt, Zb, Zc  Normal coordinates in the mid-plane of 
the top and the bottom face sheets and

Greek Letters

�t, �b, �c  Material densities of the face sheets 
and the core

�
j

ii
  Normal stress in the face sheets, 

(i = x,y), j = (t,b)
�c
ii
  Normal stress in the core, (i = x,y,z)

�i
xy
, �

j
xz, �

i
yz

  Shear stress in the face sheets, 
j = (t,b)

�c
xy
, �c

xz
, �c

yz
  Shear stresses in the core

�
j

0xx
, �

j

0xy
, �

j

0yy
, �

j

0xz
, �

j

0xz
  The mid-plane strain components, 

(i = t,b)
�c
zz
, �c

xx
, �c

yy
  Normal strains components of the 

core layer
�c
xz
, �c

yz
, �c

xy
  Shear strains components of the 

core layer
�i
x
,�i

y
  Rotation of the normal section of 

midsurface of the top face sheet 
and the core bottom face sheet 
along x and y, respectively(i = t,b)

Appendix B: Constitutive Equations 
for In‑plane Stress Resultants
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In the above equations, the stiffness coefficients for mul-
tilayer sheets are defined as follows:

Appendix C: Constitutive Equations 
for the thick core layer

To define the motion equations in terms of displacement, 
and to facilitate solving the motion equations, the following 
integrals are applied:
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By applying the above equations to the fundamental ten-
sion equations of the core, they can be written as follows:
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