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Abstract
Purpose  In this paper, the nonlinear vibration behavior of functionally graded carbon nanotube reinforced composite (FG-
CNTRC) plates is investigated by meshless method.
Methods  The efficiency parameters, which clearly affect the mechanical properties of the composite materials, are char-
acterized by polynomial expressions for different CNT contents, and applied as the inputs in the vibration analysis of plate 
structure. Four distributions of CNTs along the thickness of composite plate are considered, namely, the uniform distribution 
(UD), FG-O, FG-X and FG-V. Based on the classical plate theory and von Karman strain-displacement relation, the govern-
ing equations of motion are derived by the virtual displacement principle. Based on the reproducing kernel particle method 
(RKPM), the discrete governing equations for the vibration of the FG-CNTRC plates are derived. The linearized updated 
mode (LUM) method is adopted to solve the iteration process of governing equations.
Results  Numerical results are employed to investigate the effects of boundary condition, aspect ratio, volume fraction and 
arrangement of CNT on the nonlinear vibration characteristics of composite plates.
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Introduction

Composite with nano-reinforcement is widely used in engi-
neering applications such as aerospace, marine, automo-
tive owing to the high strength and stiffness. As an ideal 
reinforcement for composite structures, carbon nanotubes 
(CNTs) demonstrate the excellent mechanical, electrical 
and thermal properties [1–4]. Scientists and engineers have 
raised huge interest to promote the development of CNT-
based composites in fundamental research and application 
[5–7]. Functionally graded materials (FGMs) were proposed 
by Bever and Duwez [8], in which the volume fraction of 
reinforcement was changed by layers along the thickness 
direction of composite structures, and the resulting material 
properties were changed smoothly and effectively [9, 10]. 
By introducing the concept of the FGMs into the CNT-based 

composites, Shen [11] proposed functionally graded carbon 
nanotube reinforced composite (FG-CNTRC), and the fur-
ther study about nonlinear bending behavior and large ampli-
tude vibration demonstrated the effect of CNT distribution 
on the frequency and deflection of FG-CNTRC plates [12].

Composite materials can be custom tailored to meet the 
specific requirements of particular structures. In the process 
of design, it is necessary to analyze and predict the mechani-
cal property with scale effect taken into account [13]. Wang 
et al. [14] investigated the thermal vibration and buckling of 
FG-CNTRC quadrilateral plates, and presented the effects 
of CNT volume fraction and distribution on the natural fre-
quency and critical buckling load. Chiker et al. [15] studied 
the influence of CNT distribution on the vibrational behavior 
of nanocomposite plates, and the results indicated that com-
pared with the FG-based plates with uniform CNT distribu-
tion, the natural frequencies of FG-X and FG-O CNTRC 
plates were increased and decreased, respectively. Tang and 
Dai [16] established the mechanical model of CNTRC plates 
with different CNT distributions to discuss the effects of 
geometrical size, volume fraction and damping coefficient 
on the nonlinear vibration behaviors.
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The effective material parameters of composites are of great 
significance to study the mechanical behavior of structures, 
which are generally evaluated by Halpin-Tsai micromechan-
ics model or the rule of mixtures. Nevertheless, the difference 
between the homogenization approach and molecular dynamics 
(MD) simulation could not be neglected due to the nano-scale 
effect. Shen and Zhang [17] incorporated the CNT efficiency 
parameters under a specific CNT volume fraction by match-
ing Young’s moduli of CNTRC via the rule of mixtures with 
the MD results obtained by Han and Elliott [18]. It is noticed 
that the value of CNT efficiency parameter may be variable 
according to different CNT volume fractions. Wang et al. [19] 
derived the polynomial expression of efficiency parameters for 
composites with different CNT volume fractions, and extended 
to the vibration analysis of composite plates. Based on that, the 
adjacent macro- and micro-scale of material properties are con-
nected, and the quantitative transfer across scales are achieved.

A considerable number of experimental and numerical meth-
ods have been developed rapidly and applied successfully to 
investigate the mechanical behaviors of CNTRC plates. Mehar 
et al. [20, 21] carried out three-point bending test and impact 
hammer test to analyze the bending and vibration behaviors 
of CNTRC plate, respectively. Fantuzzi et al. [22] performed 
the free vibration of arbitrarily shaped FG-CNTRC plates by 
generalized differential quadrature (GDQ) method. Gupta and 
Talha [23] discussed the effects of geometrical parameter and 
boundary condition on the vibration response of FG plates with 
finite element method (FEM). Mesh distortion problem is usu-
ally encountered when dealing with large deformations, and 
lead to reduced accuracy and expensive computational effort 
because of the additional error during remeshing procedure [24, 
25]. Meshless method was proposed to eliminate the above-
mentioned problem, which has been widely used in the vibra-
tion analysis of composite plates [26–30]. Esfahani et al. [31] 
incorporated the reproducing kernel particle method (RKPM) 
into finite strip method (FSM) to study the free vibration of 
rectangular FG plates. Shukla et al. [32] used the radial basis 
function (RBF) to analyze the free vibration of angular lami-
nates. Wang et al. [33] adopted the solution of the RKPM to 
study the nonlinear vibration of composite rectangular plates. 
Kazemi et al. [34] carried out the nonlinear dynamic analysis 
of FG-CNTRC cylinders by the meshless local Petrov Galerkin 
(MLPG) method.

The present work is focused on the nonlinear free vibra-
tion of FG-CNTRC plates by meshless method. The effective 
material parameters including Young’s and shear moduli are 
derived by the extended rule of mixtures. Based on the clas-
sical plate theory and nonlinear strain-displacement relation, 
the governing equations of motion are derived by the virtual 
displacement principle. The numerical results demonstrate 
the effects of boundary condition, aspect ratio, volume frac-
tion and the distribution of CNTs on the nonlinear vibration 
characteristics of FG-CNTRC plates.

Formulations for FG‑CNTRC Plates

According to the classical plate theory, the displacements 
of FG-CNTRC plates along the x, y and z directions are 
defined as

 where u, v, and w are the displacements of an arbitrary point 
along x, y, and z directions, respectively, and u0, v0, and w0 
are the mid-plane displacements in the FG-CNTRC plate. 
The strain-displacement relation is defined as

Therefore, the in-plane and shear strains are expressed as

 where ɛ0 is the mid-plane strain, and κ is the curvature. The 
constitutive relation of CNTRC plates is expressed as

 where Qij are given as

 and E11, E22, and G12 are the effective longitudinal, trans-
verse and shear moduli, respectively. The moduli are deter-
mined by

(1a)u(x, y, z, t) = u0(x, y, t) − zw0,x(x, y, t),

(1b)v(x, y, z, t) = v0(x, y, t) − zw0,y(x, y, t),

(1c)w(x, y, z, t) = w0(x, y, t),

(2a)�0
x
= u,x +

1

2

(
w,x

)2
,

(2b)�0
y
= v,y +

1

2

(
w,y

)2
,

(2c)�0
xy
= u,y + v,x + w,xw,y.

(3a)�x = −w,xx,

(3b)�y = −w,yy,

(3c)�z = −2w,xy.

(4)� =
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�x
�y
�xy
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=
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x

�0
y

�0
xy
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+ z
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= �

0 + z�,
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�xy

⎤⎥⎥⎦
=
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Q11 Q12 0

Q12 Q22 0

0 0 Q66
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�y
�xy
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=Q�,
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Q11 =
E11

1 − �12�21
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,

Q12 =
�21E22
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 where E11
CNT

 , E22
CNT

 and G12
CNT

 indicate Young’s moduli of 
CNT along the longitudinal and transverse directions and 
shear modulus, �1 , �2 and �3 are the corresponding efficiency 
parameters, Em and Gm represent Young’s and shear moduli 
of the matrix.

The FG-CNTRC plates with four distributions of CNT 
are shown in Fig. 1, and the dimensions are length a, width 
b and thickness h. The effective volume fractions of FG-
CNTRC plates are expressed as

(7a)E11 = �1VCNTE
11
CNT

+ VmEm,

(7b)
�2

E22

=
VCNT

E22
CNT

+
Vm

Em

,

(7c)
�3

G12

=
VCNT

G12
CNT

+
Vm

Gm

,

(8a)V∗
CNT

= VCNT, UD,

(8b)V∗
CNT

(z) =
(
1 +

2z

h

)
VCNT, FG - V,

where V∗
CNT

 is the corresponding CNT volume fraction of 
each layer, VCNT is the total CNT volume fraction of com-
posite plate. The volume fractions of composite components 
are denoted as

where Vm is the volume fraction of matrix. The material 
parameters including Poisson’s ratio and density are deter-
mined by volume fractions as

where �m and �CNT are the densities of matrix and CNT, 
respectively. The in-plane and transverse shear force result-
ants are defined as

(8c)V∗
CNT

(z) = 2

(
1 −

2|z|
h

)
VCNT, FG - O,

(8d)V∗
CNT

(z) =

(
4|z|
h

)
VCNT, FG - X,

(9)VCNT + Vm = 1,

(10)�12 = VCNT�
12
CNT

+ Vm�m,

(11)� = VCNT�CNT + Vm�m,

Fig. 1   Configurations of carbon nanotube reinforced composite plates including a UD; b FG-O; c FG-X; d FG-V
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By substituting Eq.  (5) into Eq.  (12), the stress and 
moment resultants are obtained as follows

where A, B, and D are the in-plane, coupled bending-stretch-
ing, and bending stiffness matrices, respectively, which are 
given by

According to the principle of virtual work

where �Win and �Wex are the work done by the inertial force 
and the elastic restoring force, respectively.

After that, the motion equation of composite plate is 
derived by setting the sum of virtual works as zero. Based 
on the von Karman strain–displacement relation and the 
principle of virtual work, we get

Solution Procedure

By introducing a correction function in the reproduction for-
mula of the smooth particle hydrodynamics, RKPM is pro-
posed to modify the kernel function and enhance the accu-
racy [35]. The whole domain Ω is assumed to be discretized 
by the particles (x1, x2, …, xN), and the approximation of 
displacement is expressed as

 where �I(x) is the shape function associated with node 
xI, N denotes the number of nodes, and the in-plane and 

(12)(N,M) = ∫
zk

zk−1

(1, z)�dz.

(13)N = A�0 + B�,

(14)M = B�0 + D�.

(15)(A,B,D) = ∫
zk

zk−1

(
1, z, z2

)
Qdz.

(16)�Win + �Wex = 0,

(17)𝛿Wex = ∫Ω

𝜌h
(
𝛿u0ü + 𝛿v0v̈ + 𝛿w0ẅ

)
dΩ,

(18)�Win = ∫Ω

(
�NT

�
0 + �MT

�
)
dΩ,

(19)
∫Ω

𝜌h
(
𝛿u0ü + 𝛿v0v̈ + 𝛿w0ẅ

)
dΩ + ∫Ω

(
𝛿NT

�
0 + 𝛿MT

�
)
dΩ = 0.

(20)
⎡⎢⎢⎣

u0
v0
w0

⎤⎥⎥⎦
=

N�
I = 1

�I(x)

�
dpI
dwI

�
,

transverse displacements are expressed as dpI = [u0I v0I]
T , 

and dwI = [w0I] , respectively. The shape function is written 
as

 where Φ(x − xI) denotes the kernel function, and the coef-
ficient function C(x;x − xI) is expressed as

 where HT(x − xI) and K(x) denote the quadratic basis and 
undetermined coefficient vectors, respectively. Then, the 
shape function is expressed as

When the shape function satisfies the reproduction 
conditions

and

where

the shape function is expressed as

In the application of meshless method, the commonly 
used weight functions are cubic spline weight function, 
quartic spline weight function, exponential weight function, 
Gaussian weight function, etc. The choice of weight function 
depends on the problem, and the cubic spline function is 
generally adopted for the mechanical behavior of composite 
plates [13, 28–30, 33], which is given by

(21)�I(x)=C(x;x − xI)Φ(x − xI),

(22)C(x;x − xI)=H
T(x − xI)K(x),

(23)
HT(x − xI)=

[
1, x − xI, y − yI,

(
x − xI

)(
y − yI

)
,
(
x − xI

)2
,
(
y − yI

)2]
,

(24)
K(x) =

[
k0(x, y), k1(x, y), k2(x, y), k3(x, y), k4(x, y), k5(x, y)

]T
,

(25)�(x;x − xI)=K
T(x)H(x − xI)Φ(x − xI).

(26)
N∑

I = 1

�I(x)
(
x − xI

)i
= �i0, i = 0, 1, 2, 3,… , n,

(27)K(x) = M−1(x)H(�),

(28)M(x) =

N∑
I=1

H
(
x − xI

)
HT

(
x − xI

)
Φ
(
x − xI

)
,

(29)H(�) = [1, 0, 0, 0, ⋅ ⋅ ⋅, 0]T,

(30)�I(x) = HT(�)M−1(x)H
(
x − xI

)
Φ
(
x − xI

)
.
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where r = ‖‖x − xI
‖‖
/
aI , and aI represents the radii of influ-

ence domain corresponding to the particle xI, which should 
be appropriate to involve sufficient particles to ensure the 
invertible matrix and avoid the ill-conditioned system. 
Therefore, aI is defined as dmaxcI, in which dmax denotes the 
scaling parameter ranging from 2 to 4, and cI denotes the 
longest distance between the particle xI and neighbor points.

By substituting Eq. (20) into Eq. (19), the matrix form of 
discretized equations of composite plate is

where

(31)Φ(r) =

⎧
⎪⎨⎪⎩

2

3
− 4r2 + 4r3, 0 ≤ r <

1

2
4

3
− 4r + 4r2 −

4

3
r3,

1

2
≤ r ≤ 1

0, r > 1

(32)

⎡⎢⎢⎣
M

p
�

� M
w

⎤⎥⎥⎦

⎡⎢⎢⎣
d̈
p

d̈
w

⎤⎥⎥⎦

+

⎛⎜⎜⎝

⎡⎢⎢⎣
K
p

�

� K
w

⎤⎥⎥⎦
+

⎡⎢⎢⎣
� K

2

� �

⎤⎥⎥⎦
+

⎡⎢⎢⎣
� �

K
3

�

⎤⎥⎥⎦
+

⎡⎢⎢⎣
� �

� K
4

⎤⎥⎥⎦

⎞⎟⎟⎠

⎡⎢⎢⎣
d
p

d
w

⎤⎥⎥⎦
= �,

(33)
[
Mp

]
IJ
= ∫Ω

BT
pI
I0BpJdΩ,

(34)
[
Mw

]
IJ
= ∫Ω

�II0�JdΩ,

(35)
[
Kp

]
IJ
= ∫Ω

BT
lI
ABlJdΩ,

(36)
[
Kw

]
IJ
= ∫Ω

BT
bI
DBbJdΩ,

(37)
[
K2

]
IJ
=

1

2 ∫Ω

BT
lI
ABnJdΩ,

Furthermore, Eq. (32) is divided into two parts as

By substituting Eq. (41) into Eq. (42), we get

The transverse displacement is assumed as

By substituting Eq. (44) into Eq. (43), the equations of 
motion are expressed as

The weighted residual is taken along the time path [0, 
T/4] to consider the complete displacement path [0, dwmax ], 
and the above equation is written as

(38)
[
K3

]
IJ
=

1

2 ∫Ω

BT
nI
ABlJdΩ,

(39)
[
K4

]
IJ
=

1

4 ∫Ω

BT
nI
ABnJdΩ,

(40)

BpI =

�
�I 0

0 �I

�
,BlI =

⎡
⎢⎢⎣

�I,x 0

0 �I,y

�I,y �I,x

⎤
⎥⎥⎦
,

BbI =

⎡⎢⎢⎣

−�I,xx

−�I,yy

−2�I,xy

⎤
⎥⎥⎦
,BnI =

⎡⎢⎢⎣

w0,x 0

0 w0,y

w0,y w0,x

⎤
⎥⎥⎦

�
�I,x

�I,y

�
.

(41)Mpd̈p + Kpdp + K2dw = �,

(42)Mwd̈w + K3dp + (Kw + K4)dw = �.

(43)Mwd̈w + (Kw + K4 − K3K
−1
p
K2)dw = �.

(44)dwI = �IdwI sin�t.

(45)

[
−�2Mw sin�t + Kw sin�t + (K4 − K3K

−1
p
K2)(sin�t)

3
]
dw = �.

Table 1   The material properties 
of PMMA matrix and CNT 
reinforcement

Matrix Reinforcement

E
m

 (GPa) G
m

 (GPa) �
m

�
m

(g/cm3) E11

CNT
 (GPa) E22

CNT
 (GPa) G12

CNT
 (GPa) �12

CNT

2.85 1.04 0.32 1.18 2349.7 213.93 701.22 0.188

Table 2   The efficiency 
parameters of elastic moduli for 
composite with different CNT 
volume fraction reinforcement

VCNT 1% 2% 3% 4% 5% 6% 7% 8% 9%

�1 0.819 0.802 0.785 0.770 0.753 0.739 0.725 0.712 0.700
�2 1.062 1.291 1.498 1.682 1.842 1.980 2.094 2.186 2.254
�3 1.476 1.541 1.648 1.796 1.987 2.219 2.494 2.810 3.168
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The discretized nonlinear vibration equation without the 
time term is expressed as

The linearized updated mode (LUM) method is adopted 
to solve the nonlinear vibration equation of the composite 
plates. The following linear equations are solved to obtain 
linear eigenvalue and eigenvector via

The linear eigenvalue λL and eigenvector ωL are normal-
ized to obtain the initial input data by the assumed amplitude 
αh as

where 
(
�L

)
max

 denotes the amplitude of linear eigenvector, 
and α is the amplitude parameter. The normalized eigenvec-
tor is substituted into the following equation to solve the 
nonlinear stiffness matrix as

(46)∫
T∕4

0

[
−�2Mw sin�t + Kw sin�t

+(K4 − K3K
−1
p
K2)(sin�t)

3
]
dw sin�tdt = �.

(47)
[
Kw +

3

4
(K4 − K3K

−1
p
K2) − �2Mw

]
dw = �.

(48)
(
−�2Mw + Kw

)
dw = �.

(49)�i =
�h(

�L

)
max

�L,

(50)KNL = Kw +
3

4

(
K4 − K3K

−1
p
K2

)

(51)
(
−�2Mw + KNL

)
dw = �.

Fig. 2   Convergence curves of nonlinear frequency ratio for different 
node numbers with three boundary conditions

Table 3   Comparison of the nonlinear to linear frequency ratios for 
CNTRC plates (a/b = 1, b/h = 100, VCNT = 0.17)

Grading Wmax/h

0.2 0.4 0.6 0.8 1.0

UD
 Ref. [34] 1.0106 1.0420 1.0932 1.1692 1.2472
 Ref. [35] 1.0322 1.1232 1.2603 1.4304 1.6231
 Present 1.0207 1.1094 1.2870 1.5214 1.7849

FG-V
 Ref. [34] 1.0787 1.1714 1.2768 1.3900 1.5117
 Ref. [35] 1.0454 1.1711 1.3549 1.5766 1.8244
 Present 1.0279 1.1368 1.3340 1.5845 1.8630

Fig. 3   Comparison of a fundamental frequencies and b nonlinear frequency ratios of UD, FG-O, FG-X, and FG-V of square composite plate 
(a/b = 1, b/h = 10, VCNT = 2%)
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Afterwards, Eq. (51) is solved to regenerate the eigen-
value λi and eigenvector �i , where i denotes the i-th iteration.

The amplitude αh in Eq. (49) is used to normalize the new 
eigenvalue λi and eigenvector �i

Then, the nonlinear stiffness matrix is calculated, and the 
new eigenvalues λi+1 and eigenvectors ωi+1 are generated.

Finally, the convergence is checked by

where Cr ranges between 10−4 and 10−6. If the condition is 
satisfied, the nonlinear frequency ratios versus amplitude 
parameter are recorded, otherwise, it is returned to Eq. (52).

(52)�i =
�h(

�i

)
max

�i.

(53)
|||||
𝜆i + 1 − 𝜆i

𝜆i+1

|||||
< Cr,

Results and Discussion

In this section, the nonlinear free vibration of CNTRC 
plate is analyzed. The material parameters of FG-CNTRC 
plates are quoted from the MD simulation of our previous 
study [19]. The Poly (methyl methacrylate), referred to as 
PMMA, is considered as the matrix. Long CNT is used as 
reinforcement throughout the polymer matrix along the axial 
direction, and the material parameters of matrix and CNT 
reinforcement are listed in Table 1. The considered CNT 
volume fraction and corresponding efficiency parameters 
of (5, 5) SWCNT are shown in Table 2. Different boundary 
conditions are considered, where “S” represents simply sup-
ported, and “C” represents clamped boundary conditions. 
Three combined boundary conditions are adopted including 
four edges simply supported (SSSS), a pair of opposite edges 
clamped and left edges simply supported (CSCS), and four 

Fig. 4   Nonlinear frequency ratio–amplitude curve of FG-CNTRC plates including a UD; b FG-O; c FG-X; d FG-V with different aspect ratios 
(b/h = 10, VCNT = 4%)
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edges fully clamped (CCCC). Unless otherwise mentioned, 
the plate is considered with all edges simply supported. 

For convenience, the linear and nonlinear frequencies 
of FG-CNTRC plates are nondimensionalized using the 
formula � = �

�
a2∕h

�√
�m∕Em . The nonlinear frequency 

ratio is defined as �NL∕�L , where �L and �NL represent 
the linear and nonlinear frequencies, respectively. The non-
dimensional maximum amplitude of the composite plate 
is Wmax∕h , which is also called as amplitude parameter. 
The CNTRC plates are considered with four distributions, 
namely UD, FG-O, FG-X and FG-V, and the thickness is 
taken as h = 0.001 m.

Convergence and Validation Study

The convergence study is carried out, and the errors of the 
nonlinear frequency ratios with different node numbers for 

the UD CNTRC plates are illustrated under three boundary 
conditions (SSSS, CSCS and CCCC) with Wmax∕h=0.2 in 
Fig. 2. The aspect ratio a/b is 1, width to thickness ratio a/h 
is 10, and CNT volume ratio is VCNT = 2%. It is observed 
that the error decreases as the node number increases for all 
boundary conditions. When the number of nodes increases 
from 18 × 18 to 24 × 24, the error remains stable around 0, 
and hence, the mesh consists of 18 × 18 nodes is adopted in 
the following studies.

The nonlinear frequency ratios of square simply sup-
ported plates are compared with FEM in Table 3. The non-
linear frequency ratios of UD and FG-V CNTRC plates are 
depicted, and the amplitude ratios are set as Wmax∕h = 0.2, 
0.4, 0.6, 0.8 and 1.0, respectively. The present results are in 

Fig. 5   Nonlinear frequency ratio–amplitude curve of square UD CNTRC plates under different boundary conditions with CNT volume fraction a 
VCNT = 2%; b VCNT = 4%; c VCNT = 6%; d VCNT = 8% (a/b = 1, b/h = 10)
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good agreements with Refs. [34] and [35], which demon-
strate that the nonlinear frequency ratio increases with the 
increase of amplitude parameter.

Parametric Studies

The influence of CNT distribution on the fundamental fre-
quency is shown in Fig. 3a, which indicates that among the 
four CNT distributions of CNTRC plates including UD, 
FG-X, FG-O and FG-V, FG-X has the highest frequency, 
and FG-O CNTRC plates have the lowest one. The com-
posite plate with the reinforcement distributions close to 
the top and bottom surfaces are more efficient in increasing 
the stiffness of CNTRC plate than those distributions near 
the mid-plane. Meanwhile, the nonlinear frequency ratios 
of the composite plate are displayed in Fig. 3b. With the 
increase of amplitude parameter, the nonlinear frequency 

ratio increases obviously. When the composite plate has a 
high dimensionless fundamental frequency, the correspond-
ing nonlinear frequency ratio is low relatively. The nonlinear 
frequency ratio of the composite plates decreases with the 
increase of the stiffness, because of the transverse deforma-
tion of the composite plate and that the influence of geo-
metrical nonlinearity decrease with the increase of stiffness. 
Figure 4 presents the influence of aspect ratio (a/b = 1.0, 1.2, 
1.4, 1.6 and 1.8) on the nonlinear frequency ratio of four 
FG-CNTRC square plates, which reveals that the nonlinear 
frequency ratio of CNTRC plates decreases gradually with 
the increase of aspect ratio. 

The influence of boundary condition on the nonlinear fre-
quency ratio of UD and FG-X CNTRC plates with different 
CNT volume fractions are shown in Figs. 5 and 6, respec-
tively. The nonlinear frequency ratios of CNTRC plates with 
SSSS boundary condition are generally higher than those 

Fig. 6   Nonlinear frequency ratio–amplitude curve of square FG-X CNTRC plates under different boundary conditions with CNT volume frac-
tion a VCNT = 2%; b VCNT = 4%; c VCNT = 6%; d VCNT = 8% (a/b = 1, b/h = 10)
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with CSCS boundary condition, and the nonlinear frequency 
ratios with CCCC boundary condition are usually lower than 
those with CSCS boundary condition. The similar nonlinear 
vibration behaviors of FG-O and FG-V CNTRC plates are 
consistent with UD and FG-X CNTRC plates for the above 
three boundary conditions.

Figures 7 and 8 depict the effects of reinforcement con-
tent and amplitude parameter on the nonlinear vibration of 
the FG-CNTRC plates, respectively, in which the variation 
range of CNT volume fractions are 1%, 2%, 3%,4%, 5%, 
6%, 7%, 8% and 9%, and the scope of amplitude parameters 
are from 0.2 to 1. The effect of the amplitude parameter on 
nonlinear frequency ratio of square CNTRC plates is demon-
strated in Fig. 7, which indicate that the nonlinear frequency 
ratio increases with the amplitude parameter increases, fur-
thermore, the downward trend of curve declines apparently 
with the increase of amplitude parameters. Figure 8 illus-
trates that as the CNT volume fraction increases from 1 to 
9% and the amplitude parameter is taken as 1, the stiffness of 
the plate increases correspondingly resulting in the decrease 
of the nonlinear frequency ratio. For the four distribution 
patterns, the decline amplitude of nonlinear frequency ratio 
curve almost decreases gradually, which demonstrates that 
the reinforcement effect of CNT on the stiffness of compos-
ite plate is not linearly related to the CNT volume fraction. 

Conclusions

The nonlinear vibration behavior for CNTRC plate is pre-
sented, and a parametric study of CNTRC plates with dif-
ferent boundary conditions, aspect ratios, CNT volume 
fractions and distributions is carried out in detail. The com-
parison analysis proves that the nonlinear frequency ratio 
of FG-CNTRC plates obtained by RKPM is consistent with 
FEM. Numerical results reveal that the nonlinear frequency 
ratio is increased by increasing the amplitude parameter. 
Among the four distributions, FG-X CNTRC plates have 
the highest frequency, and FG-O CNTRC plates have the 
lowest. On the contrary, FG-X CNTRC plates have the low-
est nonlinear frequency ratio, and FG-O CNTRC plates have 
the highest. Hence, the composite plate with the reinforce-
ment close to the top and bottom surfaces are more efficient 
in increasing the stiffness of CNTRC plates than those near 
the mid-plane. The nonlinear frequency ratio is reduced by 
increasing the CNT volume fraction. As the aspect ratio 
increases, the nonlinear frequency ratio decreases slowly. 
The present results indicate that the nonlinear frequency 

Fig. 7   Nonlinear frequency ratio of square CNTRC plates with dif-
ferent amplitude parameters under the boundary condition a SSSS; b 
CSCS; c CCCC (a/b = 1, b/h = 10)
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ratio decreases with the increase of boundary constraint of 
the FG-CNTRC plates.
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